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Abstract—With the increasing deployment of Flexible AC
Transmission System (FACTS) devices in wide-area voltage con-
trol systems (WAVCS) for achieving improved voltage stability
of bulk power systems, the possibility for cyber attacks on these
systems is also increasing. Successful stealthy cyber attacks that
are difficult to detect by traditional informational technology
(IT)-based cybersecurity solutions or threshold-based bad data
detectors can lead to a voltage collapse in power grid. This paper
presents the testbed-based attacks implementation and real-time
evaluation of machine learning (ML) algorithm for detecting and
mitigating stealthy cyber attacks on FACTS-based WAVCS on
a hardware-in-the-loop (HIL) testbed. Initially, we discuss the
implementation of a fuzzy logic controller (FLC) that controls
a Static VAR Compensator (SVC) device deployed in a two-
area four-machine Kundur power system for improving tran-
sient voltage stability. Later, the ML-based Anomaly Detection
and Mitigation (ADM) system is implemented on the cyber-
physical HIL testbed to detect and mitigate various stealthy
cyber attacks, which are injected in real-time over the wide-
area network (WAN). The experimental results show accurate
and effective performance of ADM system in detecting and
mitigating anomalies while keeping the grid stable and within
the system operating limits, as defined by the North America
Electric Reliability Corporation (NERC).

Index Terms—Anomaly detection, FACTS, Fuzzy Logic Con-
trol, HIL Testbed, Machine Learning, Mitigation, wide-area
voltage control system

I. INTRODUCTION

Over the recent years, with the increase in electric power
demand and extreme weather events, organizations like NERC
and The North American Transmission Forum (NATF) have
recommended use of FACTS devices for wide-area control of
power grids to improve voltage stability and prevent voltage
collapses [1], [2]. To this end, there has been increasing de-
ployment of FACTS-based wide-area voltage control schemes
as well as extensive research in this field [3]-[6]. At the same
time, there is an increasing threat of cyber-attacks on power
grid applications that utilize wide-area communications.

Traditionally, most of the wide-area monitoring, protection,
and control (WAMPAC) applications that have been researched
and developed for achieving reliable operations in the smart
grid have been developed without consideration for cyberse-
curity. This calls for the development of efficient and accurate
cyber security solutions that can defend the wide-area commu-
nication system, specifically, measurement and control signals
necessary for WAMPAC applications, against stealthy cyber-
attacks. In the recent years, there has been a significant growth
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in research literature on cyber attack-resilient algorithms that
focuses on securing WAMPAC applications against stealthy
cyber attacks that bypass traditional cybersecurity measures.
A data-driven algorithm and a physics model-based method
are proposed in [7] for false data injection attack detection in
WAMPAC-based HVDC systems. A machine-learning-based
methodology for detection of stealthy cyber attacks in wide-
area protection systems is proposed in [8]. Some research has
also been focused on the implementation and evaluation of
attack-resilient algorithms for WAMPAC applications on real-
time testbeds [8]-[10]. But there still exists a need for devel-
opment and HIL testbed-based evaluation of attack-resilient
methodologies and algorithms for various WAMPAC applica-
tions like FACTS-based WAVCS. Previously, we performed
the impact analysis of different data integrity attacks and
showed their impact using the voltage profile index (VPI) [11].

This work involves the implementation and evaluation of
anomaly detection and mitigation system for WAVCS on a
hardware-in-the-loop (HIL) testbed which closely emulates
real-world grid characteristics. This allows for the evaluation
of offline trained ML model (Fine KNN), proposed by us
in [12] in a close to real-world environment. Additionally,
the cyber attacks that introduce anomalies in the system are
injected in the live environment with a realistic response
from the system. The results show high accuracy in anomaly
detection with small time-delays followed by the mitigation
of the cyber attacks to minimize the impact of the attack. The
mitigation successfully prevents the propagation of impacts of
the anomalies till they persist in the system, stabilizing the
grid to operate within the System Operation Limits (SOL) as
dictated by NERC for bulk power systems.

This paper is organized as follows: Section II shows the
architecture and design of the WAVCS, Section III delineates
the proposed algorithm methodology and implementation,
Section IV shows the HIL Testbed-based implementation and
performance evaluation, and Section V concludes the work.

II. FACTS-BASED WAVCS: ARCHITECTURE & DESIGN
A. System Architecture

This subsection presents a high-level architecture for de-
veloping the response-based wide-area voltage control system
(WAVCS) that has been developed through a joint effort
of Bonneville Power Administration (BPA), Ciber Inc., and
Washington State University (WSU) [5], [6]. In general, the
WAVCS utilizes positive sequence PMU measurements from
several substations and provides several corrective actions,
including generator tripping and switching FACTS devices
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Fig. 1. High-level system architecture of WAVCS with its attack surfaces

that is decided through the rules-based fuzzy logic controller
(FLC), operating between 0.15 to 0.3 seconds.

In this paper, one of our key contributions is to implement
the FLC on the modified Kundur’s four-machine two-area
system, as shown in Fig. 1. This system consists of two
symmetrical areas (Area 1 and Area 2) that are connected
through two 230 kV lines of 220 km length and and each
area consists of two generators of ratings (900 MVA, 20 kV).
Note that the kundur system is well-known to study dynamic
voltage stability [13], oscillation damping, power interchange,
etc. In this test system, we have connected an additional PQ
load (60 MW, 30 Mvar) to the bus 10 to create a voltage stress
in the grid network.

In this architecture, the applied FLC receives phasor mea-
surements from different sensitive buses and sends an optimal
voltage setpoint (V.. ) every 0.2 seconds to the deployed static
VAR compensator (SVC) device of rating 300 MVAR. The
SVC injects or absorbs reactive power as required to improve
the voltage profile during disturbances. Based on the existing
wide-area synchrophasor network, possible attack surfaces
on measurement and control signals are also highlighted by
lightning bolt symbols.

B. Design of FLC

The major steps involved in designing FLC include voltage
stability analysis to select sensitive bus voltages and applying
V magQ algorithm to calculate (V. ;) for the SVC. The details
of these steps are discussed here.

Step 1 (Voltage stability analysis): The static voltage sta-
bility analysis [13] is performed by computing power flow
jacobian matrix, J, during modal analysis. In (1), AP and
AQ represent the incremental changes in active and reactive
powers. Af and AV are incremental changes in bus voltage
angle and magnitudes. Assuming change in real power is zero,
Q-V analysis can be performed using (2) and (3).

[Jpe Jpv] [AP] [ A6 171 X
= loe JQV| T |AQ| " |AVrg M
AQ = [Jov — Joo-dpg - Jpv] -AVpg 2)
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AQ = Jr.AVpg 3)

AV = J;' . AVpqg 4)

For the given Kundur system, the computed reduced Ja-
cobian matrix, J~!, is a square matrix; and hence both
modal analysis and singular value approach can be applied
for the voltage stability analysis. Fig. 2 shows the computed
magnitude of the output singular vector for all buses for
a maximum singular value of 0.135. In this case, with the
computed magnitude of 0.65734, bus 10 represents the most
sensitive node followed by bus 9, bus 7, and bus 3. This
finding also supports the fact of optimal location of SVC in
this system, i.e., bus 10.

o
3

e e ° e @°
M W > o o

o
o

Magnitude of the output singular vector

o

1 2 3 4 5 6 7 8 9 10 11 12
Bus number

Fig. 2. Output singular vector plot for the static voltage stability analysis.

Step 2 (Apply V magQ algorithm): We have applied 11
rules, stated in [5], to calculate V.. using weighted and
normalized voltage and reactive power measurements.
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Fig. 3. V magQ algorithm-based FLC scheme of FL-WAVCS

Fig. 3 illustrates the V magQ algorithm-based control
scheme for FL-WAVCS. This algorithm utilizes voltage mag-
nitude measurements (Vb9, Vb3, Vb7, and Vb10) of top four
sensitive buses — bus 9, bus 3, bus 7, and bus 10. Also,
reactive power measurements of area 1 and area 2 are collected
using bus 8 (Qb8) and bus 12 (Qbl2) for input features as
they provide the accumulative power injection for these four
sensitive buses. The overall scheme is categorized into four
major stages.

Authorized licensed use limited to: Hitachi Energy. Downloaded on December 01,2023 at 19:21:54 UTC from IEEE Xplore. Restrictions apply.



Stage 1: Performs an input processing to validate input
phasor signals and later compute V,,, and (), as normalized
and weighted values as input features for FLC. In this case,
different weights for selected buses are assigned based on
their magnitudes of output singular vector. We have performed
offline analysis to compute weights of 0.58 to bus 8 and 0.42 to
bus 12 for reactive power measurements based on the reactive
power injection during physical disturbances.

Stage 2: Applies a set of fuzzy rules, as defined in [5],
and provides an output u,, using membership functions. For
example, if Q)4 is positive large and V,,, is low, then u,, is
positive large so that SVC can inject more reactive power to
improve voltage profile.

We have considered triangular membership functions, where
isosceles triangle membership functions are applied for small
and medium values and end functions are considered for large
values while the output is residing between 1 to -1. Further, we
have considered min-max logic during fuzzy inference where
maximum value is selected when multiple rule conflicts the
output variable.

Stage 3: The computed u,, is forwarded for defuzzification
that produces a crisp output value u;, with domain +1 using
the center of sums method [5].

Stage 4: Finally, V,..; is computed by re-scaling the output
domain *1 to 0-1 range. Further manual tuning and testing is
required to avoid frequent changes in output value, computing
threshold logic for output updates, and analyze voltage profile
for different V..

III. PROPOSED ANOMALY DETECTION AND MITIGATION
SYSTEM: METHODOLOGY AND ARCHITECTURE

Machine Learning algorithms are being extensively used for
detection of anomalies in Cyber-Physical Systems (CPS) [14].
ML-based algorithms help in the detection of cyber-attacks
as well as in differentiating between non-cyber system events
(like system faults) from cyber-injected anomalies, which
otherwise are hard to model.

Fig. 4 shows the methodology adopted for the development
and evaluation of the proposed Anomaly Detection and Mit-
igation (ADM) system. The methodology involves two broad
steps, offline process and real-time implementation process.
The offline process has been presented in [12], which shows
a comparison of the performance evaluation of various ML
models for the cyber-anomaly detection and mitigation in
the FACTS-based WAVCS for the power system discussed
in Section II. The offline process discussed in [12] yielded
in the Machine Learning (ML) model Fine KNN with the
best performance for detection of stealthy cyber attacks in the
FACTS-based WAVCS having an overall detection accuracy
of 99.99% and a false positive rate of less than 0.04%.

This paper deals with the real-time implementation process
of the ADM system along with the testing and performance
evaluation. The real-time implementation process involves
three steps: (1) Implementation of trained KNN model in the
HIL Testbed; (2) Simulation of system faults and injection of
real-time stealthy cyber attacks through the communication
network; and (3) Evaluating the performance of the ADM
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Fig. 4. Proposed anomaly detection and mitigation system methodology

system using attack detection time and accuracy as well as
monitoring power system stability after mitigation of cyber
attacks.

We use the Voltage Profile Index (VPI) of the power grid
given by (5) as a metric to monitor the voltage stability of
the grid and to evaluate the performance of the ADM system.
The VPI is the root-mean square deviation of the bus voltage
magnitudes from the reference voltage, that is, 1 pu [15].
The VPI enables the performance evaluation of the proposed
algorithm with respect to the NERC’s SOL.

n

1
VPI:EZ

T
1
7 2 (Viresl = [Vi)? 5)
i i=1
where T is the simulation time-step, V; is the voltage mag-
nitude at bus ¢, and V; ,..y is 1 pu for all the buses. The bus
voltages taken into consideration for calculating the VPI are

VB3, V7, Vs, Vo, VBi0, and Vpi2 (n = 6).

TABLE I
ATTACK VECTOR INJECTION PARAMETERS

Attack Vector
Pulse Attack
(Measurement & Control)

Parameters
Duty Cycle (%) = [30, 50, 80]
Period = [0.5, 1, 1.5, 2]
Amplitude = 1
Slope =[1, 2, 3, 4, 5]

Ramp Attack
(Measurement & Control)
Fault Type

L-L-L (A-B-C) at B9

Fault Duration
Start Time (seconds) = 8
End Time (seconds) = 8.2

Various stealthy cyber attacks injected in the system are
summarized in Table I.

The methodology used for mitigating the cyber attacks is
depicted in fig. 5. The FACTS device (SVC)-controlled power
system sends wide-area measurements to the FLC and the
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Fig. 5. Overview of anomaly detection and mitigation methodology

ADM system situated in the control center. The FLC calculates
a control signal based on the input measurements and sends
an appropriate control signal (V,.s) to the SVC. The ADM
system constantly monitors the power system for anomalies
using the input measurements. In case the ADM system detects
an anomaly, it sends a mitigation signal to the Control Signal
Selector which switches the control signal of the SVC from
wide-area control to local control. The Local Control provides
a constant V.. to the SVC affecting the optimal operation of
the power system. When the cyber attack is stopped, the ADM
system resets the mitigation signal and subsequently, the input
control signal to the SVC is switched back to the wide-area
control signal sent by the FLC to allow for wide-area voltage
control of the power system for optimal operation of the grid.

1V. HIL TESTBED-BASED REAL-TIME EVALUATION
A. HIL Testbed Architecture and Implementation

Fig. 6 shows the overall architecture for implementation
of the ADM system in the HIL testbed present at the Iowa
State University [16]. The SVC-based two-area Kundur power
system is implemented in the real-time power system simulator
(RTPSS) The PMU measurements from the virtual PMUs
within OPAL-RT are converted to DNP3 communication pro-
tocol and sent over the wide-area network (WAN) to the OPC
server in the control center. The control center is implements
the FLC and the ADM system in real-time environment. The
FLC and the ADM system receive wide-area measurement
signals from the OPC server. The FLC sends the control signal
to the SVC in RTPSS over the WAN through the OPC Server.
Pulse and ramp attack signals are injected by the attacker
through the WAN. After injection of attacks, the ADM system
detects and classifies the attacks and sends an appropriate
mitigation signal back to the power grid (as depicted in fig. 5)
through the OPC server over the WAN. The control signal and
the mitigation signal are also sent using DNP3 communication
protocol to the RTPSS.

B. Real-Time Performance Evaluation

Figs. 7 and 8 show the VPI of the system under fault
conditions (3-phase line-to-line (3PLL) fault) and for pulse
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Fig. 7. VPI and attack detection by ADM algorithm for pulse attack on
control signal

and ramp attacks on the control signal. The plots also show
the time of actual attack injections and time of detection (with
and without mitigation) of attack by the ADM system. These
results also show the action of the control signal of the FLC
which is able to damp the transient oscillations within a few
seconds (up to 5 seconds) after the fault is injected and cleared.
The red plots show the attack injection by the attacker and
the blue plots show the attack detection (with and without
mitigation) by the ADM system. During the attack (left y-
axis value is 2 for pulse attack and 3 for ramp attack), when
the mitigation is turned off, the impact of the attack on the
VPI of the system can be seen for the entire duration of
the attack even though the attack is detected by the ADM
system (left y-axis value is 1 for attack detected and O for
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Fig. 8. VPI and attack detection by ADM algorithm for ramp attack on
control signal

no attack detected). On the other hand, when the mitigation
is turned on, the impact of the attack is briefly seen on the
system VPI due to the short delay in detection (referred to as
detection time). Post the detection of the attack, the mitigation
signal immediately mitigates the attack impact and stabilizes
the system voltage using local control instead of wide-area
control. The mitigation signal resets the system to wide-area
control as soon as the ADM system detects the removal of
attack, further improving the voltage profile. For the plots in
Figs. 7 and 8, the pulse attack duty cycle is 50% and the period
is 0.5, and the ramp attack slope is 1.

TABLE I
REAL-TIME PERFORMANCE OF THE ADM SYSTEM FOR VARIOUS ATTACKS

Average VPI
Average during Attack -
Attack Type Detection Time with mitigation
(s) (% deviation
from 1pu)
Pulse: Control 1.17 1.39%
Ramp: Control 2.5 1.51%
Pulse: Measurement 1.55 1.14%
Ramp: Measurement 1.02 1.18%
TABLE III

NERC SOL FOR BULK POWER SYSTEMS

System Voltage
Limits
(% deviation System State
from 1pu)
+5% Normal State (24 hours)
+8% Emergency State (<4 Hours)
+10% 15-minute Emergency State (<15 minutes)

The results for the real-time performance of the ADM
system for all the attack parameters mentioned in Table I are
summarized in Table II, averaged for each attack type. The
results show that the power system operating limits are well
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within the SOL set by NERC for bulk power systems which
are summarized in Table III.

V. CONCLUSION AND FUTURE WORK

This work presents the HIL testbed-based implementation
and evaluation of ML algorithm in WAVCS cybersecurity
using local FACTS device in real-time. In particular, this work
shows the efficient performance of Fine-KNN in detecting and
mitigating anomalies in a realistic cyber-physical environment.
The experimental results show an efficient performance of the
proposed algorithm in presence of stealthy cyber-attacks on
the WAN by keeping the system stable and within the system
operating limits, as stated by NERC. The future work includes
red-team testing of this platform by third party with new attack
parameters that are not included in the training phase of this
algorithm. This testing will improve the robustness of ADM
system and will also facilitate the subsequent development for
field deployment.
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