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Abstract—Wide-area voltage control systems (WAVCS) are
widely deployed in power grid to improve the voltage stability
in transmission system using Flexible AC Transmission System
(FACTS) devices. The WAVCS relies on wide-area measurement
and control signals for closed-loop control of FACTS devices to
improve the transient voltage stability in power grid in real-time.
Since the WAVCS utilizes a cyber-layer communication during
its normal operation, they are susceptible to cyber attacks from
adversaries which can lead to a voltage collapse if the attacks go
undetected and unmitigated. This paper proposes a supervised
machine learning (ML)-based anomaly detection algorithm for
detecting various stealthy cyber attacks in the context of WAVCS
cybersecurity. In particular, a fuzzy logic-based wide-area con-
troller, as proposed by the Bonneville Power Administration
(BPA), is implemented on the Kundur’s four machine two-area
system that is integrated with a static var compensator (SVC) to
improve voltage profile on sensitive buses. Later, different types
of data integrity attacks, including pulse and ramp attacks, are
considered on the wide-area measurement and control signals to
analyze the performance of the proposed anomaly detector. OQur
experimental evaluation shows a promising performance with a
high true-positive rate (more than 99%) and low false-negative
rate (less than 1%) while exhibiting a small prediction time.

Index Terms—Anomaly detection, FACTS, Fuzzy Logic Con-
trol, Machine Learning, wide-area voltage control system.

I. INTRODUCTION

With the ever increasing demand of electric loads, reliable
operation of the power grid faces new challenges everyday
especially given the uncertain and extreme weather condi-
tions and a shift from conventional power sources to the
distributed energy resources (DERs). Voltage security is one
of the most crucial areas of concern when it comes to reliable
operation of the grid. The North American Electric Reliability
Corporation (NERC) recommends the application of wide-
area monitoring systems using the synchrophasor technology
necessary to identify and prevent major voltage collapses [1].
This implies that wide-area voltage control systems (WAVCS),
one of the critical applications within Wide-Area Control
System (WACS), are now a priority for power utilities to
control, protect, and ensure reliable operations of the bulk
power system [2]. A wide variety of literature shows new and
innovative techniques being adopted for achieving the goal
of voltage stability and security in bulk power systems using
wide-area monitoring and control [3]-[6].

The North American Transmission Forum (NATF) recom-
mends use of FACTS devices, such as Static VAR Com-
pensator and Static Synchronous Compensator (STATCOM)
for improving voltage stability [7]. The WACS design and
implementation, proposed in [5], using fuzzy-logic control for
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SVC is deployed in the North-Western region of the US power
grid implying the use of FACTS devices for wide-area voltage
control as feasible and pragmatic in the modern grid.

Since the WAVCS relies on the wide-area network (WAN)
for monitoring and control, it is susceptible to cyber attacks
that exploit the vulnerabilities in the system. Successful cyber
attacks on these systems can be catastrophic and can lead to
voltage collapse of the grid [8], [9]. It has, thus, become
imperative to design, develop, and deploy defense-in-depth
measures that can fend off stealthy cyber attacks when the
traditional IT cybersecurity systems fail to do so. There is
a plethora of work which deals with the cybersecurity of
wide-area measurement, protection, and control (WAMPAC)
systems in the smart grid [10]-[15] but only a few deal with
the cybersecurity of wide-area voltage control systems. In [16],
the authors propose a model-based temporal prediction method
for detecting false-data injections in WAMCS.

In this paper, we propose an ML-based anomaly detection
system (MLADS) for WAVCS. This paper contributes towards
development of a data-driven algorithm for detecting stealthy
cyber attacks in WAVCS. We develop a centralized fuzzy
logic-based wide-area voltage control system (FL-WAVCS)
on the modified two-area four-machine Kundur power system
equipped with a static VAR compensator (SVC) using phasor
measurement units (PMU). We carry out various stealthy
cyber attacks on the measurement and control signals exploit-
ing the attack surfaces to emulate anomalies in the system.
Using datasets generated from the FL-WAVCS, we develop
the proposed MLADS using supervised ML-algorithms with
physics- and entropy-based feature extraction and compare its
performance using various supervised ML-algorithms.

This paper is organized as follows: Section II shows the
architecture and design of the WAVCS, Section III details
the proposed algorithm, Section IV shows the experimental
setup and performance evaluation, and Section V concludes
the work.

II. FACTS-BASED WAVCS: ARCHITECTURE & DESIGN
A. System Architecture

In this section, we discuss a high-level system architec-
ture, as shown in Fig. 1, of the fuzzy logic-based wide-area
voltage control system (FL-WAVCS). It consists of a fuzzy
logic controller (FLC) that receives phasor measurements
from different sensitive buses and sends an optimal voltage
setpoint (V;..r) every 0.2 seconds to the deployed static VAR
compensator (SVC) device of rating 300 MVAR to inject or
absorb reactive power as required to improve the voltage pro-
file during disturbances. This architecture is implemented on
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Fig. 1. High-level system architecture of WAVCS with its attack surfaces

the modified Kundur’s four-machine two-area system, which
consists of four generators, and an additional PQ load (60
MW, 30 Mvar) is connected to the bus 10 to create a voltage
stress in the selected system. Fig. 1 also illustrates attack
surfaces on measurement and control signals, as highlighted by
lightning bolt symbols, that can be exploited to inject severe
disturbances in the grid network. In our previous work [9], we
assessed the impact of different data integrity attacks and also
perform quantitative assessment using voltage profile index.

B. Design of FLC

We have developed a control center-based FLC, as discussed
by the Bonneville Power Administration (BPA) [5], [6]. The
design of this controller is discussed in several steps here.

Step 1 (Voltage stability analysis): For developing this
controller, we have initially computed sensitive voltage nodes
using the static voltage stability analysis [17] based on the
Jacobian matrix, J, as shown in (1). AP and AQ represent
the incremental changes in active and reactive powers. Af
and AV are incremental changes in bus voltage angle and
magnitudes. Assuming change in real power is zero, Q-V
analysis can be performed using (2) and (3).

Jre  Jpv AP] [ Ao 17°
N L@e JQV] N {AQ} ' [AVPQ} M
AQ = [Jgv — Jgo-dpy-Tpv] -AVeg 2)
AQ = Jr.AVpg 3)
AV = Jp  AVpg 4)

For the given Kundur system, the computed reduced Ja-
cobian matrix, J~1, is a square matrix; and hence singlular
value approach can be applied for the static voltage stability
analysis. Fig. 2 illustrates the computed magnitude of the
output singular vector for all buses for a maximum singular
value of 0.135. Bus 10 represents the most sensitive node
with a computed magnitude of 0.65734 and SVC is deployed
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g. 2. Output singular vector plot for the static voltage stability analysis.

on this bus to improve the transient voltage stability during

disturbances.
Step 2 (Apply VmagQ algorithm): We have applied the

rules-based VmagQ algorithm [5] to calculate V.. to the
local SVC (FACTS) device. Fig. 3 illustrates the VmagQ
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Fig. 3. VMagQ algorithm-based FLC scheme of FL-WAVCS
algorithm-based control scheme for FL-WAVCS. This algo-
rithm utilizes voltage magnitude measurements (Vb9, Vb3,
Vb7, and Vb10) of top four sensitive buses — bus 9, bus 3, bus
7, and bus 10, based on their rankings on the magnitude of the
output singular vector. Also, reactive powers (Qb8 and Qb12)
of area 1 and area 2 using bus 8 and bus 12 are considered
for input features as they provide the accumulative power
injection for these four sensitive buses. The overall scheme
is categorized into four major stages.

Stage 1: Performs an input processing to validate input
phasor signals and later compute V,,, and (), as normalized
and weighted values as input features for FLC. In this case,
different weights for selected buses are assigned based on
their magnitudes of output singular vector. We have performed
offline analysis to compute weights of 0.58 to bus 8 and 0.42 to
bus 12 for reactive power measurements based on the reactive
power injection during physical disturbances.

Stage 2: Applies a set of fuzzy rules, as defined in [5],
and provides an output u,, using membership functions. For
example, if Q4 is positive large and V,,, is low, then u,, is
positive large so that SVC can inject more reactive power to
improve voltage profile.

We have considered triangular membership functions, where
isosceles triangle membership functions are applied for small
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and medium values and end functions are considered for large
values while the output is residing between 1 to -1. Further, we
have considered min-max logic during fuzzy inference where
maximum value is selected when multiple rule conflicts the
output variable.

Stage 3: The computed u,, is forwarded for defuzzification
that produces a crisp output value u;;, with domain 1 using
the center of sums method [5].

Stage 4: Finally, V;..; is computed by re-scaling the output
domain *1 to 0-1 range. Further manual tuning and testing is
required to avoid frequent changes in output value, computing
threshold logic for output updates, and analyze voltage profile
for different V...

III. PROPOSED ML-BASED ANOMALY DETECTION
SYSTEM (MLADS)

Machine Learning algorithms are being extensively used for
detection of anomalies in Cyber-Physical Systems (CPS) [18].
By making predictions, decisions, and classifications based on
data, ML algorithms enable us to build models for applications
that otherwise are challenging to design. We propose a ML-
based Anomaly Detection System (MLADS) for accurate clas-
sification and detection of a broad range of anomalies that can
exist in the WAVCS due to stealthy cyber attack injections. The
essential components for building the MLADS include dataset
generation, feature extraction from the generated dataset, and
the ML algorithms for classification or regression. A flowchart
depicting the MLADS algorithm is shown in Fig. 4.

A. Dataset Generation

Prior to creation of ML-based models, ensuring availability
of sufficient data is vital for the design and optimal perfor-
mance of any anomaly detector. In order to have enough data
for highly accurate performance of the MLADS, we consider a
combination of system faults and stealthy cyber-attack vectors
for the dataset generation. Stealthy cyber-attacks are carried

out on both measurement signals coming into the FLC from
PMUs and control signals being forwarded by the FLC to
the SVC over the wide-area network, as shown in Fig. 1. In
particular, two types of data-integrity attacks are considered:

Ramp Attack: Ramp attack on the measurement or control
signals involves either continuous increase or decrease of
the amplitude of the signal being attacked by addition or
subtraction of attack vector parameters, respectively, to the
target signal. Ramp attack [19] involve adding a time-changing
ramp signal with a ramp signal parameter, A, to the input
signal, P;(t), as shown in (5).

P"‘””I)(t) = Pi(t) + >\'ramp x 1 (5)

Pulse Attack: Pulse attack on the measurement or control
signals involves a usually high frequency (as compared to
system frequency) pulse signal multiplication to the target
signal, rapidly manipulating its magnitude. Pulse attack vector
[19] periodically changes an input control signal, P;(t), by
adding the pulse attack parameter, Apyise, for a small time
interval, (t1) and retaining the P;(¢) for a remaining interval,
(T- t1), for the given time period, (T), as shown in (6).

P

p
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Pi(t=T—t)

Appropriate adjustment of the parameters of the afore-
mentioned attack vectors enable cyber attackers to bypass
the conventional bad-data detectors. In order to generate a
wide variety of data integrity attacks on the measurement and
control signals, we use the combination of a wide range of
parameters of the ramp and pulse signal attacks in addition
to simulating system faults in the two-area Kundur system.
These parameters will be discussed in more detail in the next
section. Moreover, the impact analysis of these stealthy cyber
attacks on the given system have been studied in [9].

Since MLADS uses supervised ML algorithms for detection
of anomalies, the next stage after the collection of data from
attack and fault simulations is labeling of the data. The
labeling stage involves assignment of tags to each data point in
the generated dataset for the corresponding event in the power
system.

B. Feature Extraction

Appropriate feature extraction and selection from the raw
dataset is an effective way of increasing efficiency and ac-
curacy of trained ML-models [20]. For the purpose of ac-
curately distinguishing cyber attacks from system faults and
normal operation, it becomes necessary to extract physics- and
entropy-based features apart from using the raw data. MLADS
uses two such feature vectors extracted for each data point
in the generated dataset to improve the accuracy of anomaly
detection:

Discrete Wavelet Transform (DWT): This feature allows
for accurate and fast decomposition of the given signals in
the frequency domain both for short-period frequency compo-
nents (transients) and for long-period frequency components
(fundamental and harmonics). Such a decomposition is very
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TABLE I
ATTACK VECTOR INJECTION PARAMETERS

Attack Vector
Pulse Attack
(Measurement & Control)

Parameters
Duty Cycle (%) = [30, 50, 80]
Period = [0.5, 1, 1.5, 2]
Amplitude = 1
Start Time (seconds) = [4, 10]
Slope = [1, 2, 3, 4, 5]
Start Time (seconds) = [4, 10]
Fault Duration
Start Time (seconds) = 8
End Time (seconds) = 8.2

Ramp Attack
(Measurement & Control)

Fault Type
L-L-L (A-B-C) at B9

efficient in differentiation between short- and long-term faults
and normal operation [21].

Teager Kaiser Energy Operator (TKEO): This feature
represents instantaneous energy of the signal at any point of
time and, thus, allowing for an accurate segregation of normal
operation, fault, and attack scenarios where the instantaneous
energy can differ significantly [14].

Post feature extraction, Principal Component Analysis
(PCA) is carried out on the feature dataset. PCA helps in
dimensionality reduction of the feature dataset by giving
higher weightage to the highly uncorrelated features present in
the data which explain majority of the variance (e.g. > 95%
variance) in the output, thus, reducing the computational
burden of the algorithm being used [22].

C. ML Algorithms

Once the dataset is generated with extracted features and
PCA, training and testing datasets are extracted from this
dataset for training and testing different ML algorithms, re-
spectively. The proposed MLADS uses supervised ML algo-
rithms for classification and detection of anomalies in the
FL-WAVCS. Using the training dataset, multiple algorithms
including Support Vector Machine (SVM), K-Nearest Neigh-
bour (KNN), Decision Tree (DT), Neural Network (NN), and
Random Forest (RF) algorithms are trained using the training
dataset. The performance of these algorithms is compared
using the test dataset. For the purpose of creating training and
testing datasets, we use the sliding window technique in order
to aggregate multiple data points from the originally generated
time-series dataset which allows for improved performance of
these algorithms. The sliding window technique aggregates
multiple data points together based on the selected window
size and uses a first-in first-out method to include the latest
data point in the window while removing the oldest data point.

IV. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION OF THE MLADS

This section describes the (i) modeling platforms and
parameters used for simulating the fuzzy logic controller-
based wide-area voltage control system using SVC; and (ii)
Performance evaluation of the proposed ML-based anomaly
detection system comparing various ML algorithms.

A. FL-WAVCS Model Simulation for Dataset Generation

The two-area four-machine Kundur power system is im-
plemented on OPAL-RT, a real-time digital simulator, using

its ARTEMIS library which allows faster simulations at time-
steps of the order of a few microseconds which is necessary
for simulating the FACTS device (SVC) model. The simulation
(refer to Fig. 1) includes a 3-Phase-to-Phase fault on one of the
inter-tie buses (B9) and ramp and pulse attacks with varying
parameters on the measurement signals from the PMUs and
control signal sent to the SVC from the FLC. Various param-
eters for the attack vector injection are depicted in Table I.
The dataset generated consists of 4 bus voltage magnitude
signals (V19, Vb3, Vb7, and Vb10), 2 reactive power flow
measurements (Qb8 and Qbl12), 2 x 6 (12) coefficients of
TKEO, and 2 % 6 (12) coefficients of DWT. The complete
feature dataset thus consists of 30 features. For dimensionality
reduction, we conduct PCA on the feature dataset which
retained 16 features (explaining 99% variance) that are used
for generating the training and testing datasets. The complete
dataset contains 3.35 Million data points. The training and
testing datasets have 70% and 30% of the data points from the
complete dataset, respectively, which are split randomly. The
training and testing is performed in a MATLAB environment
(Classification Learner App) on a Microsoft Windows Server
2016 with Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz, 4
Cores and 32 GB RAM.

B. Performance evaluation of the MLADS

Table II shows the performance comparison of the four
ML algorithms in terms of overall accuracy, true positive
rates (TPR) for each class, training time, and prediction time.
The overall accuracy is the overall percentage of observations
that are correctly classified for all classes, the TPR is the
proportion of correctly classified observations per true class,
the training time is time taken for the algorithm to train
using the training dataset, and the prediciton time is the
time taken by the trained algorithm to classify test data. We
have defined three classes or labels for the dataset used: (i)
Label-1 defines Normal Operation and/or System Fault; (ii)
Label-2 defines Pulse Attack on eihter the measurement or
the control signals; and (iii) Label-3 defines Ramp Attack on
the measurement or control signals. Evidently, the fine KNN
algorithm outperforms the other algorithms that have been
tested, namely, Support Vector Machine (Fine Gaussian SVM),
Decision Tree (Fine DT), 3-layered Neural Network (NN),
and Random Forest (RF). We have also shown detailed results
for the Fine KNN algorithm. Table. III shows the Confusion
Matrix for Fine KNN with the total number of correctly and
incorrectly classified observations from the test dataset with
an overall accuracy of 99.99%. Table. IV shows the TPR
and the False Negative Rate (FNR) for Fine KNN for each
class as is summarized in Table II as well. A 100% TPR for
Label-1 in case of Fine KNN shows that the algorithm has no
false negatives in terms of classifying and detecting anomalies
(i.e., 100% detection accuracy). The negligible inaccuracy
(~ 0.04%) in classification for this algorithm exists only
within the correct classification of the type of attack within
the dataset (Label-2 and Label-3), highlighting the highly
accurate attack detection performance of Fine KNN.
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS ML ALGOTRITHMS

Algorithm Overall Accuracy | TPR-1 | TPR -2 | TPR - 3 | Training Time(sec) | Prediction Time (obs/sec)
Fine KNN 99.99% 100.0% 99.96% 100.0% 44.58 ~330000
Fine Gaussian SVM 94.1% 99.9% 90.3% 85.9% 19112 ~350

Fine DT 91.3% 99.7% 84.3% 82.1% 23.42 ~530000

NN 90.9% 100.0% 78.4% 83.7% 4775.1 ~880000

RF 87.7% 99.1% 48% 90.9% 247.58 ~100000
TABLE III [3] A. S. Musleh, S. M. Muyeen, A. Al-Durra, and H. M. Khalid, “Pmu
CONFUSION MATRIX FOR FINE KNN based wide area voltage control of smart grid: A real time implementa-

tion approach,” in IEEE ISGT - Asia, 2016.

True| /Predicted — | Label-1 | Label-2 | Label-3 [4] A. Ashrafi and S. M. Shahrtash, “Dynamic wide area voltage control
Label-1 503415 0 0 strategy based on organized multi-agent system,” IEEE Transactions on
Label-2 0 179979 74 Power Systems, vol. 29, no. 6, pp. 2590-2601, 2014.

Label-3 0 10 324118 [5] C. Taylor, D. Erickson, K. Martin, R. Wilson, and V. Venkatasubrama-
nian, “Wacs-wide-area stability and voltage control system: R amp;d
and online demonstration,” Proceedings of the IEEE, vol. 93, 2005.
TABLE IV [6] R.‘ Wilson and C Taylor, “Using dynamic simulations to design the
TPR AND ENR FOR FINE KNN FOR ALL THREE CLASSES wide-area stability and voltage control system (wacs),” in IEEE PES
Power Systems Conference and Exposition, 2004, pp. 100-107 vol.1.
Label-1 | Label-2 | Label-3 [7] North  American  Transmission Forum (NATF), “Transient
TPR 100.0% 99.96% 100.0% Voltage Criteria Reference Document,” 2016. [Online]. Available:
FPR 0.0% 0.04% 0.0% https://www.natf.net/documents

V. CONCLUSION AND FUTURE WORK

This paper proposed a supervised machine learning (ML)-
based anomaly detection algorithm for detecting various
stealthy cyber attacks on the WAVCS. For the dataset gen-
eration and validation of the algorithm, a Fuzzy Logic Con-
troller (FLC)-based wide-area control scheme on a two-area
four-machine Kundur power system equipped with a Static
VAR Compensator (SVC) was considered. Different types of
stealthy data integrity attack vectors were simulated on this
model including pulse and ramp attacks on both measurement
and control signals to analyze the performance of the pro-
posed anomaly detection algorithm. Performance of various
supervised ML algorithms were compared for classification of
anomalies. The experimental results showed high detection ac-
curacy (100%) and TPR (> 99.9%) for anomaly detection and
classification using the Fine KNN algorithm. This work serves
as a preliminary step towards implementation of MLADS in
a real-time environment for anomaly detection and mitigation
for the WAVCS. The future work includes implementation of
the MLADS module in a quasi-realistic WAVCS environment
on the PowerCyber Testbed at the Towa State University [23]
with industry grade communication protocols like DNP3 and
IEEE C37.118 over a wide-area network. This would allow
for real-time red team testing of the proposed algorithm with
real-world attack injections, allowing for validation of the
algorithm for field deployment in the near future.
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