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Key Points:

e Large-scale stratospheric cooling and circulation changes are observed following the
Hunga Tonga-Hunga Ha'apai eruption.

e Observations show ozone reduction in the Southern Hemisphere wintertime midlatitudes
and large springtime Antarctic ozone losses in 2022.

e A chemistry-climate model can track the plumes and capture observed responses to the
volcanic eruption.
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Abstract

The Hunga Tonga-Hunga Ha’apai (HTHH) volcanic eruption in January 2022 injected
unprecedented amounts of water vapor (H,O) and a moderate amount of the aerosol precursor
sulfur dioxide (SO,) into the Southern Hemisphere (SH) tropical stratosphere. The H,O and
aerosol perturbations have persisted during 2022 and early 2023 and dispersed throughout the
atmosphere. Observations show large-scale SH stratospheric cooling, equatorward shift of the
Antarctic polar vortex and slowing of the Brewer-Dobson circulation. Satellite observations
show substantial ozone reductions over SH winter midlatitudes that coincide with the largest
circulation anomalies. Chemistry-climate model simulations forced by realistic HTHH inputs of
H,0 and SO, qualitatively reproduce the observed evolution of the H,O and aerosol plumes over
the first year, and the model exhibits stratospheric cooling, circulation changes and ozone effects
similar to observed behavior. The agreement demonstrates that the observed stratospheric

changes are caused by the HTHH volcanic influences.
Plain Language Summary

The Hunga Tonga-Hunga Ha’apai (HTHH) submarine volcano (21°S, 175°W) eruption in
January 2022 injected unprecedented amounts of water vapor (H,O) as well as moderate
amounts of aerosol precursor sulfur dioxide (SO,) into the stratosphere. The H,O and aerosol
perturbations persisted throughout 2022 and were accompanied by large changes in stratospheric
climate and ozone chemistry. We use a chemistry-climate model forced by realistic HTHH
inputs of H,O and SO, to simulate these stratospheric changes. The model exhibits temperature,
circulation, and ozone anomalies in response to these forcings that are similar to those observed.
The agreement demonstrates that the observed anomalies impacts are caused by HTHH volcanic

influences.
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1 Introduction

Global ozone levels are recovering due to reductions of CFCs in the stratosphere as the
result of the Montreal Protocol and its amendments. However, natural impacts from wildfires
(Solomon et al. 2022; 2023; Strahan et al, 2022; Santee et al. 2022) or from large volcanic
eruptions (Stone et al. 2017) can temporarily impact stratospheric ozone. The Hunga Tonga-
Hunga Ha'apai (HTHH) submarine volcano erupted on 15th January 2022 and increased the
global stratospheric water burden by ~10%, setting a record for the modern satellite era and
differentiating itself from previous major volcanic eruptions (Vomel, Evan, and Tully 2022;
Khaykin et al. 2022; Millan et al. 2022; Randel et al. 2023). The excess moisture is expected to
remain in the stratosphere for several years and could exert a substantial impact on the climate
system (Solomon et al. 2010; Li and Newman 2020; Jenkins et al. 2023). A moderate amount of
sulfur-containing gases, approximately 0.4-0.5 Tg sulfur dioxide (SO;), about thirty times lower
than the emission from Pinatubo (Carn et al. 2022), was lofted into the stratosphere by the
HTHH eruption and quickly converted to sulfate aerosol particles (Zhu et al. 2022). Simulations
carried out with the Whole Atmosphere Community Climate Model (WACCM), a coupled
chemistry-climate model, suggest the excessive moisture halves the SO, lifetime and promotes
faster sulfate aerosol formation, resulting in large perturbations to stratospheric aerosol evolution
(Zhu et al. 2022). As with the H,O, HTHH aerosols have persisted and dispersed in the SH
stratosphere; a notable feature is the separation of the H,O and aerosol plumes over time due to

sedimentation of the aerosols (Legras et al. 2022).

It is anticipated that the large H,O and aerosol perturbations can impact stratospheric

temperatures, circulation and chemistry. Substantial stratospheric warming has been observed
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linked to enhanced aerosols from the eruptions of El Chichon and Pinatubo (e.g., Labitzke and
McCormick, 1992; Angell, 1997). While there are no precedents for the large H,O perturbation
in the observational data record, it is expected that increased H,O will radiatively cool the
stratosphere (e.g., Forster and Shine, 1999; Sellitto et al, 2022). Changes to stratospheric ozone
(and related trace species) are also expected from large volcanic eruptions due to enhanced
aerosol surface areas for heterogeneous chemistry, e.g., Hofmann and Solomon (1989). In this
paper we aim to document the observed changes in stratospheric climate and ozone during 2022
and early 2023, which are identified as large changes from climatology based on the past two
decades. We furthermore run an ensemble of chemistry-climate model simulations using realistic
HTHH inputs of H,O and SO, to quantify impacts on stratospheric climate and chemistry, and
evaluate their significance compared to internal variability. We first examine the detailed
dispersion and evolution of the H,O and aerosol plumes as observed and as simulated with
WACCM to quantify the associated transport and radiative effects. We then compare modeled
effects on circulation and ozone with observed anomalies in 2022. Similar behaviors are found in

many regards, and these results can be used as fingerprints of HTHH effects on the stratosphere.

2 Observational data and model experiments
2.1 Satellite data
a) Microwave Limb Sounder (MLS)

The MLS instrument was launched onboard the EOS Aura satellite in 2004 as part of the
“A-Train” satellite constellation and has operated continuously since that time in a low-Earth,

high-latitude, sun-synchronous orbit. The instrument utilizes five broad microwave spectral
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regions, with centers ranging approximately from 118 to 2500 GHz, in a limb-viewing
configuration to measure various atmospheric properties and constituents, including temperature,
H,0, Oz and N,O. For this work, version 5.0 of MLS H,0, O3, and temperature data (Waters et
al., 2006; Livesey et al., 2020) were compiled into daily zonal means at a resolution of 2.5°
latitude. The vertical resolution of temperature changes with pressure, ~3-4 km for 100-10 hPa,
~5-6 km up to 0.01 hPa, and 8-10 km above. The vertical resolution of the H,O retrievals is ~3
km, covering pressure levels 316 hPa to above 1 hPa. Anomalies for 2022 are calculated as
deviations from the 2004-2021 background, and we especially highlight anomalies that are

outside of all previous variability.
b) Ozone Monitor and Profiler Suite Limb Profiler (OMPS-LP)

Aerosol extinction and stratospheric aerosol optical depth (SAOD) data are from the
University of Saskatchewan (USASK) Ozone Monitor and Profiler Suite Limb Profiler product
(Bourassa et al., 2023). These data, derived from a tomographic inversion, provide height-
resolved aerosol extinction at 745 nm with a tomographic inversion, with a vertical resolution of
1-2 km. The tomographic product improves vertical resolution and reduces artifacts from
spatially inhomogeneous aerosols. However, the retrieval relies on assumed aerosol size and
optical properties that may cause biases and large uncertainties during periods of enhanced

aerosol.
2.2 The fifth generation of European ReAnalysis (ERADS)

Stratospheric circulations are derived using monthly European Center for Medium-Range
Weather Forecasts ERAS reanalysis data on model pressure levels (Hersbach et al., 2020). We
include analyses of zonal winds, along with derived residual mean meridional circulation and
Eliassen-Palm (EP) fluxes (Andrews, Holton, and Leovy 1987). Anomalies in 2022 are

5
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calculated as deviations from the 2004-2021 climatology. We note that the ERA5 assimilation
model did not include anomalous stratospheric H,O or aerosols from HTHH, and hence the
model is not balanced and likely incorporates large assimilation increments. This behavior is

shown for a different assimilation model in Coy et al. (2022).
2.3 WACCM chemistry-climate model experiments

We use the Community Earth System Model, version 2 (CESM2), with the Whole
Atmosphere Community Climate Model (WACCM) (Gettelman et al. 2019) as the atmosphere
component, to simulate the stratospheric H,O and aerosol enhancements due to the HTHH
eruption and evaluate their influence on stratospheric temperature, circulation and ozone
chemistry. WACCM has 70 vertical layers extending upward to 140 km with vertical resolution
of about 1 to 1.5 km in the stratosphere. The model is fully coupled to interactive ocean, sea-ice,
and land models, and is initialized at the beginning of January 2022 using the observed sea-
surface temperatures following the procedure described in Richter et al. (2022). The HTHH
volcanic H,O (~ 150 Tg) and SO, (~0.42 Tg) are injected on January 15, 2022 from ~20 to 35
km. The SO, injection is tuned based on comparisons between the simulated sulfate aerosol and
OMPS Limb Profile aerosol extinction. The H,O injection is tuned to mimic the observed MLS
water vapor profile. More details can be found in Zhu et al. (2022). To accurately simulate the
early plume structure and evolution, WACCM winds and temperatures are nudged to the
Goddard Earth Observing System (GEOS) Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2) meteorological analysis (Gelaro et al. 2017) throughout
January 2022; that is, the model is artificially constrained a model by adding a forcing term that
relaxes its winds and temperatures towards the MERRAZ2 data with a 12-hour relaxation time

scale. After February 1%, 2022 the model is free-running to simulate fully-coupled variability
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including the coupling between changes in composition and radiation. We conducted four sets of
experiments: the control case without SO, or H,O (no volcanic forcing); an SO, only case with
only SO; injection (with SO, converting to sulfate aerosol); an H,O only case with only H,O
injection, and the SO,+H,O case with both SO, and H,O injection, which mimics the total
forcing of HTHH eruption. Calculated anomalies are the differences between the forcing runs
and the control runs. We include ten ensemble members for each scenario to examine internal
variability and to better isolate forced behavior. Individual ensemble members differed by the
last date of the meteorological nudging, in the range from 27 January 2022 to 5 February 2022.

Once the nudging period ends, the model is free-running.

3 Results
3.1 Observed and simulated volcanic plumes

Satellite observations show that the HTHH H,0O and aerosol plumes have persisted in the
stratosphere and evolved throughout 2022 and early 2023 (Figs. 1la-c). The majority of the
sulfate aerosol was initially collocated with the H,O plume near 24 km (March 2022 in Fig. 1a),
but has subsequently sedimented to the lower stratosphere (Legras et al., 2022; Schoeberl et al.,
2022) and dispersed in latitude to span much of the Southern Hemisphere (SH) by midwinter
(August 2022 in Fig. 1b). As a note, it is unclear from the OMPS extinction measurements in
Fig. 1b whether the HTHH aerosols penetrated the Antarctic polar vortex, as the enhanced polar
extinction in OMPS-LP measurements is also due to the formation of polar stratospheric clouds
in this season. The H,O plume was centered near 25 km and covered 60°S-20°N by August
2022; the H,0 anomalies (>4 ppmv in Fig. 1b and > 3 ppmv in Fig. 1c) are large compared to the
stratospheric background mixing ratio of ~5 ppmv. By January 2023, the H,O plume ascended in

7
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the tropical stratosphere and spread into the Northern Hemisphere midlatitudes (and over the
pole in the SH) while the aerosol layer became weaker and remained over the SH lower

stratosphere (Schoeberl et al. 2023).

The modeled evolution of the H,O and sulfate aerosol plumes in the SO,+H,0 case are
shown in Figs. 1d-f, with patterns similar to those observed. Results in Figs. 1d-f are ensemble
averages, but there are relatively small differences in the evolution of the plumes among the 10
realizations (not shown). The H,O and aerosol plumes initially overlap and then separate
vertically over time, with latitudinal dispersion similar to the observed behavior. The model
HTHH aerosol layer in the lower stratosphere extends to polar latitudes near the bottom of the
polar vortex during winter (Fig. 1e), while the H,O plume spreads poleward but is mostly
excluded from polar latitudes by the stronger jet near 25 km (see discussion in Section 3.3). The
magnitude of the model aerosol extinction in midwinter is about half as large as measured by
OMPS-LP (cf. Figs. 1b-e), which may be related to uncertainties in SO, injection amount and/or

the modeled aerosol size distribution and evolution, along with uncertainties in the OMPS-LP

retrievals.
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Figure 1. Observed and simulated H,O and aerosol perturbations after the HTHH eruption. (a-c)
show the observed dispersion of the HTHH H,O (colors, ppmv) enhancement and aerosol
extinction (red contours, 10°km™) in (a) March, (b) August 2022 and (c) January 2023.
The maximum H,O amounts are indicated by the number on the top right corner; (d-f) are

similar to (a-c) but for WACCM simulations.

The HTHH aerosol plume descends over time and disperses meridionally in the SH lower
stratosphere. Details of the latitudinal distribution of SAOD observed during 2022 by OMPS are
shown in Fig. 2a, suggesting a double-peak sAOD pattern in latitude, with one tropical
maximum associated with immediate aerosol formation and one midlatitude maximum during
SH winter (~July-September). The double-peak sAOD was also reported from observation and
model simulation of the 1991 Pinatubo eruption (Long and Stowe, 1994; Quaglia et al., 2023)
and from the response of sustained SO, injections under geoengineering (Tilmes et al., 2017).
The pattern arises as aerosols spread rapidly across the surf zone into the SH midlatitudes during
winter, resulting in a lower sAOD in between. Then the SAOD accumulates in mid-latitudes as
the SH polar vortex constitutes a transport barrier. This behavior is qualitatively captured in the
WACCM SO,+H,0 model simulations (Fig. 2b), although the midlatitude SAOD in the model is
about half as large as observed. One possible reason is that the model underestimates the aerosol
particle effective radius compared with that in SAGE I11/1SS (Khaykin et al. 2022) due to either

inadequate model microphysics processes or unconsidered pre-existing particles such as sea salt.
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Figure 2. Latitude-time plots of the zonal average stratospheric aerosol optical depth at 745 nm
in 2022 from (@) OMPS-LP and (b) WACCM ensemble H,O+SO, ensemble average.

Both panels show total aerosol optical depth, not anomalies.

The large perturbations of stratospheric H,O and aerosol have substantial effects on the
solar and infrared radiation balances, which in turn influence stratospheric temperatures and
circulation. The radiative impacts of H,O and aerosol volcanic plumes simulated in WACCM are
estimated from the instantaneous radiative heating rates (i.e., longwave heating rate plus

shortwave heating rate, without dynamical or thermal adjustment) due to volcanic plumes, as

10
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shown in Fig. 3 for August 2022. Specifically, the water vapor and sulfate aerosols from the
volcanic run are imposed on the no-volcano run, and the shortwave and longwave heating rates
are calculated and output after one model time step, before any thermal or dynamical feedbacks
have occurred. The H,O plume produces a localized cooling of order —0.1 K/day that overlaps
the plume, while a small heating layer occurs near the bottom due to upwelling longwave
radiation (Fig. 3b). A small net aerosol radiative heating overlaps the aerosol plume (Fig. 3c),
reinforcing the warming below the H,O plume, so that there is a dipole vertical structure of
cooling above warming for the combined effects (Fig. 3a). The calculated forcings are almost
completely due to longwave effects. Instantaneous radiative heating/cooling rate patterns are

similar in other months (not shown), and decrease slowly over time as the plumes disperse.
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Figure 3. August net radiative heating rate (longwave plus shortwave tendencies, colors, unit:
K/day) due to (a) both H,O and aerosol plumes, (b) H,O plume only, and (c) sulfate
aerosol plume only, compared to no-forcing control runs. Red line contours denote the
sulfate aerosol mixing ratio in ppbv, and black line contours denote the anomalous H,O

concentration in ppmv.
3.2 Temperature perturbation

Satellite observations show evidence of systematic stratospheric cooling following the

HTHH eruption (Figs. 4a and b). Temperatures near 25 hPa over the SH show cold anomalies in

11
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2022 that are well outside of previous variability, beginning one-to-two months after the eruption
(Fig. 4a). This delay is consistent with a radiative response to the increased H,O near this altitude
with a radiative time scale of ~ 10-20 days (e.g. Hitchcock, Shepherd, and Yoden 2010). The
vertical structure of the temperature anomalies averaged over 60°S-10°S (Fig. 4b) shows cooling
covering much of the mid-stratosphere throughout 2022, with largest cold anomalies during SH
winter (June-August) extending to ~45 km. During these months there are anomalous warm
temperatures in the lower mesosphere above ~50 km (Yu et al., 2023, see Section 3.3). Cold

anomalies are reduced in 2023.

The unprecedented evolution of temperatures in 2022 suggests forced changes from the
HTHH eruption, but also contains components of internal variability. To evaluate the forced
signal in the model runs we use ensemble simulations of WACCM with and without the volcanic
injections. The modeled structure of temperature changes in the (H,O+SO;) simulations (Figs.
4c-d) capture the salient aspects of the observed behavior including cooling throughout the year
over ~25-30 km and enhanced winter maxima, including warming in the lower mesosphere (Fig.

4d).

12
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Figure 4. Temperatures averaged over 60°S-10°S from MLS observations showing persistent

anomalous cooling in 2022. (a) Gray lines show time series of MLS temperatures at 25

hPa for 2004-2021 while the black line is the climatology. Red/orange lines shows 25

hPa temperature for 2022/2023. (b) Time-height section of MLS temperature anomalies

(differences from 2004-2021 averages). Hatched regions in (b) indicate where the 2022

anomalies are outside the range of all variability during 2004-2021. (c) As in (a), but

temperatures at 25 hPa simulated in WACCM. Black lines indicate the control cases, blue

lines indicate SO, only cases, and red lines indicate the SO,+H,O cases, respectively

(including ten realizations for each case). (d) Time-height section of WACCM

temperature differences for the SO,+H,O minus control ensemble means. Hatched

regions indicate where the temperature anomalies are statistically significant at the 95%
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level according to Student’s t-test. Note that color bars in (b) and (d) have different

ranges.

Observed cold temperature anomalies and H,O plume overlap until April and decouple in
early SH winter. The strongest cooling occurs primarily in midlatitudes centered near 50°S, and
do not directly overlap the H,O plume as illustrated for August 2022 in Fig. 6a (other months are
shown in Fig. S1). High latitude cold anomalies (in excess of 15 K) occur in combination with
warm tropical anomalies, with maxima near 23 and 38 km. Part of the tropical and extratropical
temperature maxima are related to the phase of the Quasi-Biennial Oscillation (QBO) in 2022
(Coy et al. 2022). The see-saw patterns in temperature (opposite sign responses) between high
and low latitudes are suggestive of coupling to the hemispheric-scale mean meridional
circulation (Yulaeva, Holton, and Wallace 1994). The strong high latitude temperature anomalies

are in balance with changes in the stratospheric circulation, as discussed below.

14
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274  Figure 5. Observed and modeled temperature anomalies in August 2022 (color shading, K). (a)

275 MLS observations, calculated as differences between the 2022 and the 2004-2021
276 average. (b) WACCM simulated modeled temperature changes in the all-forcing
277 (SO,+H,0) case minus the no-forcing control runs. (c) Similar to (b), but for SO, only
278 simulations. (d) Similar to (b), but for H,O only simulations. Red line contours denote the
279 sulfate aerosol extinction in 10° km™, and black line contours denote the anomalous H,0
280 concentration in ppmv. Hatched regions denote statistical significance, as in Fig. 4.
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The simulated ensemble average temperature changes in response to the (SO,+H,0)
forcing in August are shown in Fig. 5b (other months are shown in Fig. S2); they display patterns
similar to observed behavior (Figs. 5a, S1), although the model winter cooling is centered at
somewhat higher latitudes (60-70° S). Modeled temperature changes with only SO, (sulfate
aerosol) forcing (Fig. 5c) have temperature perturbations of similar polarity to the total forcing
(tropical warming and high latitude cooling), but are weaker and not significant (see also blue
lines in Fig. 4c). Without H,O injection the volcanic aerosol layer is thicker and heats the lower
stratosphere over a deeper vertical layer, implying that the coupled H,O-aerosol effects have
amplified stratospheric cooling in the high latitudes. In contrast, simulations with only H,O
injection show a very different temperature response (Fig. 5d), with weak cooling anomalies in
the tropics and midlatitudes that overlap the H,O plume. The responses due to the single-forcing
H,O and SO, perturbations are not additive. Overall, our model sensitivity experiments
demonstrate that stratospheric temperature responses change from direct radiative effect in the
early stage to much stronger dynamical effect during SH winter. Including both H,O and SO,
(sulfate aerosol) forcings is important for realistic simulation of the HTHH responses with strong

effects only for the combined forcings.

The coupling of stratospheric temperature (polar vortex strength) and planetary wave
amplitude is a well-known feature of the winter stratosphere, with correlation between wave
amplitudes and polar temperature (e.g. Andrews et al., 1987; Holton & Mass, 1976; Randel & Newman,
1998).The coupling is evident in Fig. 6 as correlations of polar temperature vs planetary wave
activity (quantified as the vertical component of the Eliassen-Palm flux divergence in the lower
stratosphere) for our control simulations, showing results for July and August for each of the 10

realizations. Figure 6 furthermore shows a systematic shift in temperatures and wave activity in
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the H,0O+SO, forced run with respect to the control runs, with colder temperature and weaker
Eliassen-Palm (EP) fluxes associated with the HTHH forcing in most cases. We view this shift as
a fingerprint of the forced response due to the HTHH forcing. While most of the H,O+SO,
ensemble members show relative cold temperatures and weak wave fluxes, there is considerable
stochastic variability among the realizations, and several realizations (6 out of 10) have
temperature anomalies comparable to the observed 2022 anomalies. We conclude that internal
variability in the ensemble model simulations contributes to the low bias in ensemble average
temperature anomalies in Fig. 4 compared to the observed pattern in 2022 (Yu et al., 2023). In
spite of this difference in magnitude, the similarity in timing and spatial structure of observed

and modeled temperature patterns is strongly suggestive of an HTHH attribution for the observed

anomalies.
WACCM
104 @ control
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Figure 6. The relationship between temperatures at 60°S, 10 hPa and the vertical component of

EP flux divergence at 60°S, 74 hPa in the WACCM control (blue) and H,O+SO; (red)
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simulations. Results are shown for both July and August statistics for the 10 realizations in each

ensemble.

3.3 Stratospheric circulation response

Because they are in thermal wind balance with the temperature anomalies, the zonal
mean zonal winds show intensification and equatorward shift of the polar vortex throughout the
winter (see Fig. 7a for August). The simulated zonal wind changes also show a strengthening and
equatorward shift of the winter westerlies in response to the (SO,+H,0) forcing (Fig. 7b), with
patterns similar to the observed anomalies. As with temperatures, the model ensemble mean
wind anomalies are only about half as large as observed in 2022. Reanalysis fields and models
show that the strengthened polar vortex persists into SH spring (Figs. S3 and S4). Figures 7a-b
also include anomalies in the residual mean meridional (Brewer-Dobson) circulation (BDC),
highlighting anomalous high latitude upwelling and low latitude downwelling that opposes and
weakens the normal background equator to pole circulation. These results are consistent with the
residual circulation anomaly patterns discussed in Coy et al. (2022) and the weakened
background tropical upward residual circulation in Schoeberl et al. (2022). The changes in the
BDC are associated with adiabatic cooling/warming in stratosphere/mesosphere, and are also
consistent with weakened planetary-scale wave forcing in the middle and upper stratosphere. As
noted above (Fig. 5), the SO,+H,0 simulations have planetary wave amplitudes and EP fluxes
that are about half the size of the control runs, and reanalysis data likewise show weak planetary
waves in 2022. We note that the vertical out-of-phase temperature changes above ~50 km
observed in winter (Figs. 4b-d) are characteristic of dynamically forced effects, consistent with

the reductions in stratospheric EP fluxes (Andrews, Holton, and Leovy 1987). Similar to

18



manuscript submitted

to JGR-A

342  differences in temperature response (Fig. 6), model simulations with only sulfate aerosol forcing
343  or only H,O forcing show mostly insignificant circulation changes (Fig. S5a) or opposite
344  circulation responses (Fig. S5b) across ten ensembles, highlighting the importance of combined
345  effects due to sulfate aerosol and H,O enhancements.
a ERAS5 Aug U Anomalies b Modeled Aug U Anomalies
2022 minus cIir‘na‘tollog‘y‘ L $02+H20 minus Control 1
L N
[ ! ¥ P o4 | -
| \\\\ e L / ﬁ ( '
| \ 39 LR - ) f A - 39
‘ 27 WL .
g HVISE S R (S s B
< 10 A \[-' e Vst 9_ £ 10 § i, L s 4_
g / - Vi 27 (;E % “ "." R Ye ZE
g 30 - \/.- | 03 18 6 30 \| | 4 . . - 23 -8
50 e 07 % 0 W 42
70 L u’u 19 70 L 19
100 1 4 100 ’ .
150 [ ~2h) 'l’, A e 150 4 e S, e
346 90S 60S 308 0 30N 60N 90N 9(;8 6(;8 3(;8 (; 3(;N 6(;N 90N
347  Figure 7. Anomalous zonal wind changes in August 2022. Colors show zonal mean zonal wind
348 anomalies in (a) observations from the ERAS reanalysis data and (b) simulations in the
349 all-forcing (SO,+H,0) WACCM simulations compared to the control runs. Gray
350 contours show the background zonal winds with an interval of 15 m/s. Colored regions in
351 (a) indicate where the 2022 anomalies are outside the range of all variability during 2004-
352 2021. The vectors depict anomalies in the residual mean meridional circulation (BDC) in
353 ERAS that are outside of two standard deviations. Colored regions and vectors in (b)
354 indicate where anomalies are significant at the 95% level.
355
356 3.4 Midlatitude stratospheric ozone changes
357 Stratospheric ozone changes after HTHH can be anticipated from both changes in
358  circulation and anomalous chemistry from enhanced H,O and aerosols (Tie and Brasseur 1995;
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Hofmann and Solomon 1989; Solomon 1999; Zhu et al. 2022; Yook, Thompson, and Solomon
2022; Lu et al. 2023). MLS observations show lower stratospheric (LS) ozone reductions during
winter over the SH midlatitudes and tropics (~50°S-10°S), which are outside of previous
variability (Fig. 8a). The lower stratospheric midlatitude ozone decreases are accompanied by
anomalously high values over the equator (Fig. 8c), and part of these coupled anomalies are
linked to the phase of the QBO in 2022 (https://acd-

ext.gsfc.nasa.gov/Data_services/met/gbo/gbo.html). We note that midlatitude QBO anomalies in

ozone often have an asymmetric latitude structure with maximum amplitude in the winter
hemisphere (Randel et al., 1999), as observed here. This QBO influence can be seen in the
relatively large spread of midlatitude winter ozone amounts in 2004-2021 seen in Fig. 8a, with
individual years typically above or below the long-term mean, but note that low values in 2022
extend outside of this background variability. The wintertime SH mid-latitude ozone reduction is
reproduced in the model (Figs. 8b and d, below 30 hPa), with similar spatial and temporal
patterns to those observed, but only about half the anomaly magnitude in the ensemble average.
Note the lack of strong interannual variations in the individual model realizations in Fig. 8b, due
to a lack of subtropical QBO variability in these idealized model simulations (all 10 realizations
are initialized with the same phase of the QBO). The large difference in ozone response between
MLS and WACCM in the upper stratosphere (above 30 hPa, poleward of 60°S) is consistent
with the streamfunction anomalies shown in Fig. 7, which are computed from the values in 2022
minus climatology in MLS and from the 2022 volcano minus no volcano simulations in

WACCM.
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Figure 8. Evolution of midlatitude stratospheric ozone after HTHH. (a) Time series of MLS

observed ozone (in ppmv) at 35 hPa, 50°S-10°S, showing low ozone values in 2022 (red

line) compared to other years. Gray lines show time series for 2004-2021, the black line

is the climatology, and the orange line shows 35 hPa ozone for 2023. (b) Ozone at 35 hPa

simulated in WACCM, comparing the control cases (black lines) and the SO,+H,0 cases

(red lines). Fractional ozone anomalies (color shading, %) from (c) MLS and (d)

WACCM simulation in August 2022. Regions of significant changes are hatched, as in

Fig. 4.
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The evolution of SH midlatitude ozone changes associated with HTHH is highlighted in
Fig. 9, which shows density-weighted ozone anomalies (in DU/km) over 50°-10° S from MLS
data and WACCM SO,+H,0 simulations. Observations show strong negative anomalies in the
lower stratosphere that maximize during winter, and similar but weaker patterns are found in the
model ensemble mean. There is a narrow layer of ozone increases above the lower level
decreases seen in both observations and model in Figs. 8a-b persisting through May 2023. The
center or node of this vertical dipole pattern coincides in altitude with the climatological ozone
maximum near 25 km, so that these ozone changes are consistent with the weakening of the
midlatitude BDC discussed above. The consistency on the timing of circulation changes and LS
ozone losses, which both maximize during SH winter (e.g., temperature anomalies in Fig. 4 and
ozone losses in Figs. 8-9), is a fingerprint of substantial contribution due to changes in transport.
This aligns with the conclusion in Santee et al. (2023) that no appreciable chemical ozone loss
occurred in SH midlatitude. We note that while ozone changes in the SO,+H,O0 WACCM
simulations result from a combination of transport and chemistry effects, it is not simple to
separate dynamical and chemical contributions in our coupled simulation. Complementary
studies using Specified Dynamics WACCM (SD-WACCM) may help quantify the importance of
the different chemical and dynamical processes affecting the midlatitude ozone loss (Zhang et

al., 2023).
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416 4.5 Antarctic stratospheric ozone
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Anomalous ozone changes during 2022 are also found associated with the Antarctic
ozone hole (Figs. 10a and b), where variability is tied to polar stratospheric cloud (PSC) and
aerosol amounts together with cold temperatures that generate photochemically active chlorine
(Solomon et al. 1986; Zhu et al. 2017). In the model, springtime polar ozone losses are enhanced
by HTHH aerosols that reach the polar stratosphere (red contours in Fig. 10c), in combination
with anomalously cold temperatures from circulation effects that enhance reactive chlorine
chemistry. The combined effects of SO,+H,0 lead to net losses of ~15 DU compared to control
runs amid substantial variability in the polar region (Fig. 10d), and comparisons with SO, only
simulations (blue lines in Fig. 10d) show that most of the polar ozone losses are due to the
impact of HTHH aerosols. Time series in Fig. 9d show that the ozone loss rates accelerate in
September, during the formation of the ozone hole. MLS observations show a relatively deep
ozone hole in October 2022 (Figs. 10a-b), but differences with previous years are only apparent
during and after October; this detail is different from the model behavior, where differences are
already noticeable in September. The bias may come from comparing the anomaly from 2004-
2021 climatology versus the anomaly from control runs. We note that, while the HTHH aerosols
penetrated across the bottom of the polar vortex and provided more surface area to promote
heterogenous chemistry in the model (Fig. 1e), it is unclear if this behavior occurred in the real
atmosphere because enhanced polar aerosol extinction in the OMPS data (e.g. Fig. 1b) could
simply reflect the occurrence of polar stratospheric clouds. In any case, the observed Antarctic
ozone remains near record low levels during SH spring (October-December in Fig. 10b), rivaling
other recent years with enhanced polar aerosols due to volcanic eruptions such as the Calbuco

volcanic eruption in 2015 (purple line in Fig. 10b, Solomon et al., 2016; Stone et al., 2017; Zhu
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et al., 2018) and smoke from wildfires (blue line in Fig. 10b, Australian bush fires in 2020

persisting into 2021; Rieger et al., 2021).
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Figure 10. (a) Fractional ozone anomalies (%) from MLS in October 2022. Hatched regions

indicate where the 2022 anomalies are outside the range of all variability during 2004-

2021. (b) MLS observations of polar cap (82°S-60°S) ozone column over 11-22 km in

2004-2022. (c) Similar to (a) but modeled October ozone changes in SO,+H,O minus

control simulations. Hatched regions mark the grid points for which the changes exceed

the 95% significance level according to Student’s t-test. (d) Similar to (b) but

corresponding modeled results comparing control, SO,+H,0 and SO, only simulations.

4. Conclusion
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Satellite measurements demonstrate persistent perturbations in stratospheric temperatures
and circulation following the HTHH eruption, including influences on the seasonally-evolving
polar vortex, planetary waves and Brewer-Dobson circulation. Global chemistry-climate model
simulations forced by HTHH inputs can track the evolving H,O and aerosol plumes, and the
modeled volcanic responses in temperatures and circulation in the SH are similar to the time-
evolving patterns of the observed behavior. This agreement suggests that the observed
stratospheric changes are a fingerprint of the forced global-scale response to the HTHH eruption.
Several realizations have strong responses in temperature and circulation as large as that
observed in 2022, however, the ensemble average forced model responses are only about half the
magnitude of observed anomalies in 2022. These differences are likely related to large stochastic
variability due to wave-mean flow coupling during SH winter, evident in model simulations (Fig.
6) and are not negligible compared to the HTHH forcing. Comparison of control and HTHH
model results (Fig. 6) suggests that the HTHH forcing biases pushed the system towards a
balance of weak wave fluxes and a cold/strong polar vortex, although the dynamical details are
not well understood. Sensitivity experiments further demonstrate that the combined effects of
both H,O and SO, (sulfate aerosol) are important in these simulations, as smaller and

insignificant changes are found in individual H,O or SO, forcing experiments.

MLS observations show anomalous low ozone in the SH winter midlatitude lower
stratosphere following HTHH; although some component of these low values is probably related
to the phase of the QBO (as evidenced by out-of-phase changes over the equator), the low 2022
values are outside of all previous variability. The WACCM SO,+H,0 simulations capture the
key spatial and temporal patterns of these midlatitude ozone changes, arguing for an HTHH

attribution of the observed low values. Large ozone decreases during 2022 are also found
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associated with the Antarctic ozone hole. While it is not simple to separate ozone changes due to
transport and chemistry effects in our coupled model simulations, the spatial and temporal
fingerprints suggest a dominant contribution from transport effects at midlatitudes, and from
heterogeneous chemistry in the Antarctic. Future studies using models constrained with nudged
meteorological fields may help separate the influence of chemistry from dynamics. The
WACCM simulations show that aerosol transported to the Antarctic lower stratosphere
combined with a circulation-induced cold polar vortex contributed to low Antarctic ozone levels
in the model during September-December (i.e., a relatively deep ozone hole). Observed Antarctic
ozone levels were relatively low during October-December 2022 (Fig. 10b), consistent with the
model behavior, although there is no evidence of anomalous amounts of reactive Cl species
inside the vortex (Manney et al., 2023). The 2022 SH ozone losses caused by HTHH are
transient effects and should not impact the long-term ozone recovery expected from the Montreal
Protocol. In addition, the simulations show no significant sea surface temperature change
between the all-forcing runs and the control runs across 10 ensembles until early 2023 (not
shown). However, the sustained water vapor enhancement due to HTHH eruption might be
expected to affect surface climate in the upcoming years. The HTHH eruption provides a
remarkable natural experiment for validating a fully coupled chemistry-climate model and

provides confidence in ensemble forecast simulations, such as those performed here.
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