EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-857729

Learning to Predict and Improve
Build Successes in Package
Ecosystems

H. Menon, D. Nichols, A. Bhatele, T. Gamblin

November 29, 2023

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Learning to Predict and Improve Build Successes in Package
Ecosystems

Harshitha Menon*
Lawrence Livermore National Laboratory
Livermore, California, USA
harshitha@lInl.gov

Abhinav Bhatele

University of Maryland
College Park, Maryland, USA
bhatele@cs.umd.edu

ABSTRACT

Software has become increasingly complex, with a typical applica-
tion depending on tens or hundreds of packages. Finding compatible
versions and build configurations of these packages is challenging.
This paper presents a method to learn the likelihood of software
build success, and techniques for leveraging this information to
guide dependency solvers to better software configurations. We
leverage the heavily parameterized package recipes from the Spack
package manager to produce a training data set of builds, and we
use Graph Neural Networks to learn whether a given package con-
figuration will build successfully or not. We apply our tool to the
U.S. Exascale Computing Project’s software stack. We demonstrate
its effectiveness in predicting whether a given package will build
successfully. We show that our technique can be used to improve
the solutions generated by dependency solvers, reducing the need
for developers to find working builds by trial and error.

1 INTRODUCTION

Modern software has become incredibly complex. Developers fre-
quently reuse software components, such as libraries, frameworks,
and APIs, to expedite the development process. Reusing software
saves time and separates concerns, allowing developers to rely on
well-established implementations without rewriting them. While
reusable software components enable rapid development and feature-
rich applications, they introduce complexity to software manage-
ment. Different components may have different version and config-
uration requirements on their dependencies, leading to compatibil-
ity issues requiring additional efforts for integration. Developers
must constantly expend effort to keep pace with rapidly changing
software dependencies.

In order to tackle this complexity, modern software ecosystems
rely on automated package managers like APT, Cargo, Maven, NPM,
and Spack. These tools analyze compatibility constraints among dif-
ferent packages and select a compatible set of package versions to
install. The process of selecting a consistent version configuration is
known to be NP-complete [7, 26, 28, 1, 41], and most package man-
agers use sophisticated solvers to find valid package configurations

“These authors contributed equally to this work.

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Daniel Nichols*
University of Maryland
College Park, Maryland, USA
dnicho@umd.edu

Todd Gamblin
Lawrence Livermore National Laboratory
Livermore, California, USA

tgamblin@llnl.gov

that satisfy compatibility constraints. However, these constraints
are specified by package maintainers, and they are inherently im-
perfect because maintainers cannot test all package combinations
for compatibility. In practice, a valid solution may still fail to build,
if the constraints it is based on are not sound.

Package management systems adopt different strategies when
selecting package versions, for instance, always selecting the most
recent version that satisfies an open ended range. Any such version
selection mechanism can produce errors as long as it relies on
imprecise, hand-annotated version constraints. As the number of
dependencies grows, the likelihood of an incompatibility increases,
particularly for large, transitive dependency stacks. The software
ecosystem is too large and there are too many exceptions and
corner cases to come up with a concise set of rules for all package
recipes. Package maintainers cannot test every version combination,
particularly among deep, transitive dependencies they may not even
be aware of. Therefore, the practice of user-defined package version
constraints is inherently susceptible to errors.

Complexities arising from such errors is particularly common in
the scientific computing, High-Performance Computing (HPC), and
ML ecosystems, where it is common to port software to new archi-
tectures and platforms. Preexisting builds, such as those provided
by a standard Linux package manager, don’t necessarily work on
these hardwares. Existing dependency constraints are not sufficient
as these ecosystems are dealing with new hardware, exotic compil-
ers and libraries, where compatibility information is not known yet.
Package maintainers typically specify open-ended compatibility
ranges to allow new versions to be integrated easily, but the cor-
rect ranges for one platform may be slightly different from those
for another, and even very slight differences can lead to build er-
rors [15, 25, 21, 10]. Finding a working configuration and updating
constraints can be a very expensive trial-and-error exercise that
can take days or weeks to converge to a working build. Moreover,
finding one working build does not necessarily tell us how best to
update compatible version ranges.

Our aim in this paper is to understand build incompatibilities,
predict bad configurations, and assist developers in managing ver-
sion constraints by automatically generating constraints based on
empirical information. With recent advances in machine learning
we can learn from a relatively small set of examples and predict
what options will most likely lead to success. Graph neural net-
works are uniquely suited to this problem as they can model and

https://orcid.org/0000-0003-4707-9580
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

learn node properties and edge relationships in general graphs.
This, in conjunction with the ability of neural networks to find
patterns and model extremely complex systems, is uniquely suited
to modeling complex software dependency graphs.

In this paper, we leverage cutting-edge Al technology and ad-
vanced package management methodologies to address the chal-
lenges of managing software ecosystems. We use graph neural
networks (GNNs) to analyze a prominent software ecosystem in
HPC, the Exascale Computing Project (ECP) software stack E4S. By
using the ECP’s E4S stack as an example, and leveraging Spack’s
parameterized package recipes, we demonstrate that GNNs can be
effectively trained to understand the build incompatibilities in a
large software ecosystem and identify configurations that will not
work, without the need to actually build them. Moreover, we use the
compatibility information extracted from the GNN model and inte-
grate it into Spack package manager’s version selection mechanism
to steer the package solver towards likely-to-build solutions.

Our main contributions are the following:

o BuildCheck, a Graph Neural Network based approach that
predicts the outcome of builds for different package configu-
rations.

e Apply transfer learning, which involves transferring the
learning from a low-cost source data to a target data, and use
it when limited resources are available for collecting data at
scale for a target application.

o A detailed experimental evaluation of our approach over
45,837 builds from the E4S scientific software ecosystem.

e A methodology for using the outputs of BuildCheck to im-
prove build likelihood in Spack.

Furthermore, we seek to answer the following research questions
in our work.

RQ1 Can BuildCheck predict the build outcome of various pack-
age configurations with high accuracy? We demonstrate that,
after training, BuildCheck is able to correctly classify build
outcomes for 91% of the builds in the testing dataset.

RQ2 Can self-supervised pre-training be used to reduce the need of
expensive build data to train the model? When trained with
pre-training + fine-tuning, BuildCheck is shown to achieve
comparable or better performance to the base model. In
particular, it gets up to 3% improvement for low numbers of
training samples.

RQ3 Can the outputs of BuildCheck be used to select package ver-
sions and increase build success rate? We integrate the outputs
of BuildCheck into Spack’s concretizer and show an improve-
ment in overall number of packages successfully built. This is
additionally demonstrated for a set of packages not included
in the training dataset.

2 MOTIVATION

One of the challenges with software components is that each pack-
age integrated into an application must be compatible with all other
packages. Changes to one package can affect others, and as a result,
integration costs grow combinatorially with the package count. Fur-
thermore, the package ecosystem is in a constant state of flux, with
packages being added, upgraded, or deprecated. When upgrading a
package or its dependency to a newer version, one needs to ensure

Menon and Nichols et al.

|AUGUSTUS | [auGusTUS |

/ \ Upgrade / \
Bcftools Samtools, ——— Bcftools Samtools
@1.15 @1.15.1 @1.16 @l.16.1

/N / \ / N/ N\
.en Htslib .ee .ee Htslib ee
@1.16 @1.17

Figure 1: Package upgrade scenario resulting in build errors
due to inconsistent versions of packages.

that the updates are compatible. This typically involves building
and installing the package to verify that the changes are valid. How-
ever, some updates can trigger a cascade of errors, necessitating
an exploration in the package version space to find a compatible
configuration.

Here is an example showcasing how a change in the version
of one package leads to a cascading error. We look at package
AUGUSTUS, which is a program that predicts genes in eukaryotic
genomic sequences and has 16 dependencies, 3 of which are shown
in Figure 1. Suppose the developers of AUGUSTUS want to use the
latest version of beftools, which is 1.16. This requires htslib version
1.17. However, samtools@1.15.1, which is dependent on htslib is
not compatible with htslib@1.17. We need to use samtools@1.16.1
to build this successfully. This is known as the diamond problem and
it is a difficult problem for package managers that manage package
versions. To find a compatible version of the software, developers
would have to try out different version combinations until they find
one that is compatible with all the packages. Then they must add
constraints to Spack’s package files and submit a pull request back
to Spack so that others can benefit from what they learned.

This process becomes impractical when there are hundreds of
dependencies requiring considerable time and effort to evaluate
compatibility. The build configuration space is combinatorial. For
example, the tcl package with just one dependency to zlib contains
98,000 valid configurations when taking into account all possible
package versions, compilers, compiler versions, and architectures.
We want to identify valid configurations without performing 98,000
builds. For every new architecture and build flag this compatibility
search would have to be done manually. In a rapidly changing
software ecosystem this is a constant effort.

BuildCheck can help with this process. In this example, develop-
ers of the AUGUSTUS package can sample the package versions
and use BuildCheck to predict whether that configuration builds or
not. In this way developers can use BuildCheck to improve the ver-
sion constraints of individual packages within their specifications.
Furthermore, BuildCheck can be integrated into package managers
and their version selection mechanisms. This allows the central
software provider, the package manager, to reduce the number of
failed installs due to version mismatches.

3 BACKGROUND

In this section, we discuss the current state of software build process,
present an overview of Spack package management system, and
provide sufficient background on Graph Neural Networks.

Learning to Predict and Improve Build Successes in Package Ecosystems

3.1 Software Build Process

Software packages are highly desirable as they break down com-
plex software into manageable components enabling separation of
concern, promoting software reuse, and facilitating installation and
updates. Packages are designed by various individuals or commu-
nities and their ecosystems enable developers to leverage existing
codes to build on top of, thereby saving time and resources. Package
management systems are an integral part of any software develop-
ment process. They provide a convenient way to manage software,
enabling users to easily discover, download, and install a wide range
of software packages from trusted repositories.

Despite the benefits provided by software components, man-
aging packages can pose several challenges, including handling
dependencies and ensuring package compatibility. Moreover, the
package ecosystem is in a constant state of flux with packages being
added, upgraded, or deprecated. When upgrading a package or its
dependency to a newer version, one needs to ensure that the up-
dates are compatible. This typically involves building and installing
the package to verify that the changes are valid. However, some
updates can cause a cascade of errors necessitating an exploration
in the package version space to find a compatible configuration.

Versioning allows developers to declare dependencies on a spe-
cific version number or a range of version numbers, which helps
package managers determine package compatibility. Using a fixed
version can help build a package in a deterministic manner, but
it is less flexible and may conflict with other dependent packages
making it difficult to use into a large project. Using flexible version
ranges allows more customization, but it is not feasible for main-
tainers to test for all possible combinations. More often than not
they assume that the compatibility remains consistent within that
range and this can potentially cause a cascade of build errors. While
testing can help to a certain extent, it is not possible to evaluate all
possible configurations and in the event of a package build failure
finding a working configuration may involve significant developer
time and system resources.

3.2 Spack

For our work we use the Spack [15] package manager to explore the
combinatorial build space of packages and analyze package incom-
patibilities. Spack is critical for DoE’s Exascale Computing Project
mission to create robust exascale software ecosystem. It is designed
to support building packages from source in a flexible manner to
support the various platforms. Spack exposes parameters to users
as adjustable knobs and allows a single package to be built in many
different ways. This flexibility is critical for HPC ecosystems as
HPC developers need scientific software to be built in multiple
ways tailored to each platform to obtain optimal performance.

In Spack, package dependencies and constraints are represented
as shown in in Figure 2. Package maintainers write constraints
like bzip2@1.9.7: on line 11 for "bzip version 1.0.7 or higher",
or ‘zlib@1.2.8:° on line 14 to indicate that the example package
requires zlib version 1.2.8 or higher. Constraints can be conditional
using a ‘when’ clause; the when clauses here tell Spack that these
two constraints only apply for certain versions of the example
package. The dependency on mpi on line 17 is unbounded; we can
attempt to build the example package with any version of any MPI

Conference’17, July 2017, Washington, DC, USA

1# This is the class name for the package ‘example"
2 class Example(Package):

3 """Example depends on zlib, mpi, and optionally bzip2"""
version(”1.1.0") # two versions are available
version(”"1.0.0")

4
5
6
7
8 variant("bzip"”, default=True, description="enable bzip")
9

10 # Depends on bzip2 or later when bzip is enabled

1 depends_on("bzip2@1.0.7:", when="+bzip")

12 depends_on("z1lib") # depends on zlib

13 # Newer versions require newer versions of zlib

14 depends_on("z1ib@1.2.8:", when="@1.1.0:")

16 # Depends on xsomex MPI implementation

17 depends_on("mpi”)

18

19 # Known failure when building with intel compilers
20 conflicts("%intel™)

21 # Does not support architectures derived from ARM64
22 conflicts("target=aarch64:")

Figure 2: Constraints in a Spack package.py file, expressed
in Spack’s embedded DSL.

implementation. The conflicts on lines 20 and 22 indicate that the
package does not work on ARM or with the Intel compiler.

The Spack project had over 1,100 contributors at the time of
writing, and constraints like those shown in Figure 2 accumulate
over time as these contributors add more package information. At
the core of Spack is a sophisticated dependency solver called the
concretizer [14], which finds package configurations that are valid
in the sense that they satisfy all applicable constraints. However,
if the constraints are not fully specified or comprehensive, it may
encounter errors when building seemingly valid configurations.

3.3 Graph Neural Networks

Graph neural networks (GNNs) have emerged as a highly-effective
technique for analyzing graph-structured data found in various real-
world systems, such as social networks, recommender systems, and
chemical analysis for drug discoveries. GNNs are able to capture
the inherent relationship between nodes in the graph by passing
messages along the edges, which are used to generate effective
representations. These representations are then used to perform a
wide variety of downstream tasks that include node classification,
link prediction, and graph classification.

GNNs use both the graph structure and node features to learn a
representation vector for each node or for the entire graph. They
achieve this by performing neighborhood aggregation, where the
node representation is updated iteratively by aggregating its neigh-
bors representations. After a number of iterations, a node’s represen-
tation captures the structural information within its neighborhood.
A popular architecture used in GNNs is the Graph Convolutional
Network (GCN) [23]. GCN is a framework of spectral graph convo-
lutions, which is a generalization of convolutions to graph data. It
integrates local node features and graph topology in the convolu-
tional layers. Figure 3 shows a GNN for graph classification using
Graph Convolutional layers and shows the message passing and
state updates.

Conference’17, July 2017, Washington, DC, USA

Hidden layer

Hidden layer
~

e
Input Output
/ﬁ-\\ RelU /ﬁ\\ RelU
)
X=H° zZ=HV

/
H1 = J(AH[WZ)

Figure 3: A GNN with Graph Convolutional Network (GCN)
Layers. The GNN consists of several layers of graph convo-
lution that operate on the graph data by propagating node
features across the graph. The output of each GCN layer
is passed through a non-linearity. The output captures the
graph structure and is used for the final task.

The update rule for each layer is given by the following trans-
formation.

7 = s(AH'WY) (1)

where H' is the input matrix to the I-th hidden layer with row H ll

consisting of a d-dimensional feature vector for node i and wlis
the trainable weights for layer I. A is the normalized adjacency
matrix. This is passed through a non-linearity function o(.), which
in this example is shown as ReLU(z) = max/(0, z). The output of
the last layer denoted as Z = HY is then used for the final task. For
node classification, softmax(z,) is used and the output of that is a
matrix RVXC where N is the number of nodes and C is the number
of labels and each row contains a score for each of the labels for
that node. In the case of graph classification task, the output of the
last layer is aggregated or pooled to summarize the entire graph
into a single representative node followed by the application of a
softmax given by softmax(Z,z,) [11]. The GCN parameters are
trained to minimize the cross-entropy error over labeled data.

4 APPROACH

Package management is a crucial aspect of software engineering
where compatible versions of packages and their dependencies need
to be chosen to ensure that software builds without errors. Current
approaches rely on experts with in-depth knowledge of packages
and constraints to identify compatible versions. In practice, users
often have to explore different choices of package versions to find an
appropriate one that builds successfully. Depending on the size of a
package dependency graph, this can be time-consuming and error-
prone. The problem is exacerbated by the fact that the search space
formed by the packages and their versions is large, and exhaustively
exploring it is impractical. To address this challenge, we want to use
Machine Learning to predict whether a given package dependency
graph, with specific versions, can successfully build. Furthermore,
we want to automatically come up with version constraints for
packages and integrate it with the version selection mechanism.
Automating this process can save time and resources for software
developers and package maintainers, ultimately resulting in faster
and more reliable software development.

Menon and Nichols et al.

4.1 Problem Definition

The package dependency graph is a directed acyclic graph (DAG)
that represents the dependencies between different packages. This
graph is represented as G = (V, &), where V is the set of nodes
representing the packages and & is the set of edges capturing the
dependencies. Classifying whether a given package dependency
graph builds or not is challenging due to the complicated interac-
tions between different packages.

We cast the build success prediction problem as a supervised
learning problem. Given a dataset D = {(Gi, yi)}jlw of M graphs G;
and their corresponding build outcomes y; € {SUCCESS, FAILURE},
our goal is to train a prediction model f(G;) parameterized by
the parameters 6. For a given graph G, our prediction model can
then be used to predict the build outcome § = f(G; 0). Supervised
learning corresponds to estimating the optimal parameters 0* using
the given dataset D as following

M
0* = argeminz L(yi, f(Gi;9)) (2
i=1

Here the loss function L(y, §) is a measure of the discrepancy be-
tween the ground truth label y and the predicted label §. For discrete
prediction tasks, the loss function L is typically chosen to be the
cross-entropy loss.

Graph Neural Networks (GNN) are ideally suited for this ap-
plication and we delve more into the modeling considerations in
section 4.2. Further, each sample (G, y;) in the dataset D can be
quite expensive to obtain as it requires building the entire graph.
As a result it is desirable to reduce the data requirements. We con-
sider self-supervised pre-training as a strategy for reducing data
requirements in section 4.3. Finally, we show in section 7 how the
model can be used to improve version constraints in two software
ecosystems and reduce the number of failed builds due to version
mismatches.

4.2 GNN model for Package Dependency Graph

Success or failure of a build depends upon the relationships between
the packages in the corresponding package dependency graph. To
make an accurate prediction for the entire graph G = (V, &), we
need to construct a model that can effectively capture and represent
the dependency relationships in the graph. In essence, this would
require looking at neighboring nodes for each node in the graph and
summarizing their interactions. Graph convolutional networks are
a promising modeling choice for this task because they iteratively
process each node and then aggregate information from neighbors
for each node. Note that a graph convolutional layer computes a
function of a node and its first order neighbors. To increase the
neighborhood, a GCN stacks several graph convolutional layers,
where each successive layer increases the order of neighborhoods
considered by one.

Our model architecture, shown in figure 4, consists of multiple
Graph Convolutional layers. The input to the model is a package
specification graph represented by its adjacency matrix A and node
features X € RN*4 where N is the total number of packages being
considered and d is the feature dimensionality. We choose d to
be the maximum number of versions for any given package over
the set of all packages. Each layer of our model takes a matrix of

Learning to Predict and Improve Build Successes in Package Ecosystems

features along with the adjacency matrix as input, and outputs
another matrix with same number of rows as the input. The output
of the GCN layers undergoes normalization through a LayerNor-
malization layer, followed by the application of the ReLU activation
function introduce non-linearity. The output of the final residual
block is passed through a linear layer and subsequently pooled
globally to obtain a representation of the entire graph, which is
used to predict the build outcome. Following is a brief explanation
of various layers in our model:

Embedding Layer: This is the first layer of the model and it maps
the node indices to a node specific dense representation and com-
bines it with the version features X. Node embeddings represent
graph nodes in a continuous vector space. They are a learned dictio-
nary Z € RN*€ of e-dimensional embedding per node. The output
X = [Z,X] of the embedding layer is a concatenation of the learned
node embeddings Z and version features X.

GCN: A graph convolutional layer as detailed in section 3.3.
Residual Blocks: The residual block is a composite building block
consisting of several layers and uses an identity shortcut to ef-
fectively train very deep neural networks [19]. Our model stacks
several residual blocks to construct a deep neural network that can
capture higher order neighborhoods.

LayerNorm: A normalization layer that has been found to be
effective for stable training of deep models [2].

ReLU: Pointwise non-linearity computed as ReLU(x) = max(x,0).
Pool Layer: This layer computes the average of all node features
as a representation for the entire graph.

Linear Layer: This layer computes a linear transform of its inputs
and optionally applies the ReLU non-linearity. The last linear layer
in the model outputs a two dimensional vector representing the
logits for the two possible outcomes {SUCCESS, FAILURE}.
Softmax: Computes the softmax function to yield probability val-
ues for the two outcomes.

4.3 Self-supervised Pre-training

The supervised learning of build outcomes requires significant
amounts of data that is expensive to collect. Moreover, while it is
resource intensive to collect the data, it is also inefficient to train
GNNs from scratch for every downstream task. Transfer learning,
which separates the training into two distinct steps: 1) pre-training
and 2) fine-tuning, has been shown to be very effective [38, 6]. Typi-
cally, the pre-training step is performed using any readily available
data that may be related to the final task, and does not require la-
bels. Pre-training yields an informative initialization for the model,
which can then be fine-tuned in the second step using the labels to
yield the final model. More recently, self-supervised pre-training
methods have been proposed, where a pretext task is constructed
using only the model input data, such that it encourages the model
to capture final task relevant characteristics of the data.

The task of predicting whether a package builds or not is based
on the compatibility relationship between packages. Therefore,
we construct a pretext task using only the input graphs (but not
requiring the labels) that encourages the model to capture these
relationships. Inspired by the success of masked token modeling
in large language models, such as BERT [6], we propose masked
build dependency graph modeling as a pretext task. Given a build

Conference’17, July 2017, Washington, DC, USA

Residual Block

LayerNorm

Residual

Block

Linear \)

BUILD
Yes/No

Figure 4: Architecture of our GNN model. Our GNN model
is constructed by stacking multiple Graph Convolutional
layers in the form of residual blocks.

dependency graph, we “hide” a random subset of packages, and
train a model to predict the hidden packages. The intuition behind
this choice of pretext task is that the model will be forced to capture
the relationships between packages to accurately predict the hidden
package and reconstruct the full original dependency graph, given
the incomplete version of it. Note that our pretext task does not
require build outcomes but only valid dependency graphs, which
are much easier to generate.

F mi [|
i " I
|:'> Node
GNN |:"> |:\'>
[MASK]
—
[MASK] 11
—

Figure 5: Pretext task training using GNN. For a given build
dependency graph, we hide a certain fraction of nodes by
replacing their embeddings with a MASK token and train the
model to predict the hidden packages.

In practice, given a build dependency graph and a masking frac-
tion, we randomly sample the specific nodes to mask. The nodes
are then masked by replacing their node specific embeddings x € X
with a special MASK token embedding, which is also learned. The
model then predicts a package for each node. The model is updated
based on the loss for masked nodes. Once the model is trained, we
apply transfer learning on this pre-trained model to fine-tune for

Conference’17, July 2017, Washington, DC, USA

the downstream task of build outcome prediction. This is done by
removing the last linear layer in the pretext task model, adding a
pooling layer followed by a linear layer and then fine-tuning the
model on the labeled data. Figure 5 shows the overview of our
pretext learning task and figure 6 shows a high level overview of
transfer learning.

More formally, our pretext task is a classification task. However,
instead of predicting the build success, our model now predicts the
correct package for each masked node. Given a graph G = (V, &)
where V is the set of packages with N = |V|, E is the edges capturing
the dependencies between the packages, and X € RNXF are the
node features, our model computes the embeddings X for all the
nodes in the graph. A target fraction of nodes to mask are selected
as the set of nodes T, computed as a fraction of total nodes in
the graph. Embeddings of the nodes in T are replaced with the
embedding for the MASK token. Using these masked embeddings
as input, the rest of the model predicts a logit for each of the N
possibilities, corresponding to each masked node. The model is
trained using the following objective

K
0" =argmin) > L(v. fo(Gi:) 3
0 i=1 veT;

Here, we use the bar to differentiate between the pretext model
and its parameters from the final model and the corresponding
parameters. K is the total number of graphs in the dataset and this
could potentially be much larger than the number of labeled graphs
M. The loss is computed only on the masked set of nodes included
in T; for the graph G;. Once the pretext model is trained, a subset
of the build success prediction model f parameters 8 are initialized
using the corresponding subset of parameters in 6. The reset of the
parameters in 0 are randomly initialized.

5 EXPERIMENTAL SETUP

In this section, we will provide details of the dataset used in our
study and the specifics of the model employed for training on
package dependency graphs to predict build outcomes.

5.1 Dataset

We evaluated our model on several packages from the Extreme-scale
Scientific Software Stack (E4S). E4S provides open source software
packages for developing, deploying and running scientific appli-
cations on high-performance computing (HPC) platforms. These
software packages are implemented in different programming lan-
guages such as C/C++, FORTRAN, Python, Lua, and others. E4S
uses Spack for managing software packages. We used the dataset
provided in [27] and use it to evaluate our prediction model. These
packages are accompanied by their dependency packages, resulting
in a total of 367 unique packages in our evaluation dataset. In total
we explore 45, 837 unique package builds. Many of these packages
have tens and hundreds of dependencies and some of them provide
100 different package versions.

5.2 Implementation

We use PyG (PyTorch Geometric), a library built upon PyTorch,
to implement our method. Our model uses Graph Convolutional

Menon and Nichols et al.

Embedding
parameter
transfer

X
Residual
Block

Linear
Linear

Linear

Node BUILD
prediction Yes/No

Figure 6: Overview of transfer learning used in our model.
knowledge of the pre-trained model is transferred to the final
model by initializing it with a subset of parameters from
the pre-trained model. This enables us to use the learned
representations from the pre-training stage to improve the
performance of the final model on the target task.

layers with LayerNorm normalization and RELU non linearity. We
train using the AdamW optimizer with a learning rate of le — 3
and a weight decay of 0.05. We also use a learning rate schedule
with a linear warmup of 50 epochs followed by a cosine decay
schedule. Each model is trained for 120 epochs on a single GPU,
unless otherwise stated.

6 EVALUATION

In this section we present an evaluation of the effectiveness of both
the base GNN model as well as the pre-training followed by fine-
tuning approach. We begin by evaluating the accuracy for build
prediction task and subsequently delve into the effects of different
characteristics of the proposed architecture.

6.1 Build Outcome Prediction Evaluation

RQ1 Can BuildCheck predict the build outcome of various
package configurations with high accuracy?

6.1.1 Effect of Model Size. We conducted evaluations using a vary-
ing number of GCN layers and analyzed their impact on the build
prediction accuracy. The results of our analysis for different frac-
tions of training data are shown in Table 1. In general, increasing
the number of GCN layers does not improve accuracy significantly
and in fact the model performs slightly better when fewer Graph
Convolution layers are used. When a GNN model with a single
GCN layer is used, the information is aggregated solely over its
immediate neighborhood. This means that the model considers
only the features of a node and its immediate neighbors to make

Learning to Predict and Improve Build Successes in Package Ecosystems

Training Data %

Layers 0.1% 1% 10% 20% 50% 80%
1 56.54 74.66 84.71 87.53 90.78 91.56
3 58.67 74.09 84.10 86.63 90.55 91.82
5 59.49 7417 83.82 86.17 90.43 91.41
7 57.69 73.19 83.73 8589 90.11 91.64
9 58.75 73,52 83.75 86.07 90.53 91.75

Conference’17, July 2017, Washington, DC, USA

Training Data %

#dim 0.1% 1% 10% 20% 50% 80%
32 528 7126 8285 85.46 88.98 90.99
64 59.51 73.07 8398 86.37 89.97 90.97
128 57.13 74.21 83.89 86.77 9042 91.38
256 58.67 74.09 84.10 86.63 90.55 91.82
512 57.74 74.63 83.45 86.03 90.95 91.57

Table 1: Test accuracy with respect to different number of
GCN layers with a hidden dimension of 256. When only a
limited amount of training data is available, for instance at
0.1%, the increase in the number of layers helps the model to
perform better. In the absence of sufficient data, the model
is able to construct a better representation by relying on
information from farther away nodes.

its prediction. As the number of GCN layers in a model increases,
the information gets propagated further thereby capturing farther
relationships. However, our results suggest that capturing the re-
lationship with farther away nodes does not improve the model’s
accuracy. Based on this observation, we conclude that the build out-
come for the dataset under consideration is primarily determined
by pair-wise interaction between a package and its dependencies.
When a package and its immediate dependency fails to build, the
package fails to build because its requirements cannot be satisfied.

We also evaluated the model’s performance using varying amounts
of training data ranging from 0.1% to 80% of the entire dataset. We
reserved 20% of the entire data for testing. The results of the eval-
uation are shown in Table 1, which indicate that the accuracy is
heavily impacted by the quantity of training data. For instance,
when using only 0.1% data, which amounts to 40 examples, the
accuracy is notably low at around 59.5%.

Next, we examine the influence of the hidden dimensions on our
model. Table 2 shows the effect of the size of the hidden dimen-
sions of a GNN on the graph classification accuracy. If the hidden
dimensions are small, then the model may not be able to capture
the information and underfit. In contrast, if the hidden dimensions
are too large, then the model may overfit to the training data and
fail to generalize. Based on our evaluation, we determine that a
hidden dimension size of 256 provides an optimal balance between
model complexity and generalization performance.

6.1.2 Effect of Residual connections. While deep networks with
many GCN layers can capture complex interactions between far-
away nodes, it can be hard to train. As the input passes through
multiple layers, the gradient can become very small resulting in
the vanishing gradient problem. This can cause the model to train
poorly. Shortcut connections, also known as skip connections or
residual connections, are additional connections that bypass one or
more layers of the network allowing information to flow directly
from one layer to another without having to pass through inter-
mediate layers. Figure 7 shows the impact of the residual block for
different number of layers when trained on 80% of the dataset.

Table 2: Test accuracy with respect to different dimensions
for 3 GCN layers architecture. For small hidden dimensions,
the model is unable to capture the information resulting in
underfitting. For large hidden dimensions, the model is un-
able to generalize resulting in a decrease in testing accuracy.

91.5 A~\\\\\
91.01 e
\\
3 90.5 S
© \,
g 90.01 *\\
< 89.51 M
] h S
89.01 o w/o Shortcuts \\\
88.5 With Shortcuts S
1 3 5 7 9
layers

Figure 7: Evaluation of the effect of shortcut or residual con-
nections. Using an architecture with shortcut connections
enables the deep models to train better and improve the ac-
curacy by over 3% in the case of a 9 layer model.

1.0 -
7’
7’
L 0.8 -~
= Y. 7’
< //’
2 0.6 PR
= 7’
0 7’
£ 0.41 7
F 0.2 _~+ — BuildCheck (AUC = 0.95)
7’ = = Random Guess (AUC = 0.5)
0.0{1 ~
0.0 0.2 04 06 08 1.0

False Positive Rate

Figure 8: ROC curve showing True Positive and False Positive
rate at different classification thresholds. Our model achieves
very good AUC of 0.95.

6.1.3 False Positive and False Negative. While false positives result
in long, expensive builds that eventually fail, false negatives result
in not attempting builds that would succeed. Typically, the set of
constraints in a package is incomplete. The constraints are either

Conference’17, July 2017, Washington, DC, USA

too narrow, missing versions that could be built, or too broad such
that when the solver comes up with a valid solution it might not
build. When the constraints are too narrow, our preference lies in
minimizing false negatives and when the constraints are broad our
aim is to minimize false positives. In fig. 8, the ROC curve plots the
true positive rate (Number of True Positives to Number of Actual
Positives) against the false positive rate (Number of False Positives
to Number of Actual Negatives) at various classification thresholds
between 0 and 1. The model has a high Area Under Curve (AUC) of
0.95 indicating that it is capable of distinguishing between positive
and negative outcomes.

6.2 Evaluation of Pretext training and
fine-tuning

RQ2 Can self-supervised pre-training be used to reduce the
need of expensive build data to train the model?

We first evaluate the efficacy of the pretraining task and then
evaluate the effect of various hyperparameters of the pretext task
on the final task after fine tuning.

6.2.1 Effect of Pre-training task. Figure 9 shows the comparison
of prediction accuracy between a baseline model and a fine-tuned
model using the pre-trained model. The pre-trained model outper-
forms the baseline model when the training dataset is small. This
suggest that using a pre-trained model for fine-tuning on the down-
stream task using transfer learning can compensate for the limited
availability of training data to improve model accuracy. Although
the gains become less as the size of the training data increases, it
still allows the model to learn faster. Figure 10 shows the training
loss of both the models. Since the pre-trained model has already
learnt relevant representation, the fine-tuned model starts off with
a better initialization, thereby rapidly decreasing the training loss
and enabling faster convergence.

6.2.2 Effect of Masking ratios. Figure 11 shows the impact of the
masking ratio, which represents the percentage of tokens that are
masked during the pre-training of the GNN model. For larger train-
ing datasets, a wide-range of masking ratios, from 0.3 — 0.8 work
well. For smaller training dataset, the effect of masking ratio is more
pronounced. As the masking ratio increases from 0.1 to 0.6, the
performance of the model increases, which suggest that masking
a large portion of the tokens during the pre-training enables the
model to learn a meaningful representation. The model relies on the
remaining unmasked token to learn a representation that captures
the neighborhood to predict the masked token accurately. How-
ever, beyond a 0.6 masking ratio, the model’s performance starts to
degrade as it lacks sufficient information from unmasked token to
learn an effective representation leading to decreased performance.

Menon and Nichols et al.

90{ —#A= Base X
cd
Pre-trained + Fine-tuned ’,-'
,-
//
4 7
. 80 g
E r
o < aunl
[s] 74
< 704 ///
//
///
6] & &
X
0.05 0.1 1 10 20 5080

Training Data (%)

Figure 9: Comparison of the base model with pre-trained +
fine-tuned model. The model that has been initialized with
the parameters from the pre-trained task performs better
than the base model when training dataset is small. For the
case of 0.1% and 0.05% of the dataset, which amounts to 45
and 22 examples respectively, the fine-tuned model gives a
performance improvement of 3% over the base model.

Base
Pre-trained + Fine-tuned

0 20 40 60 80 100 120
Epochs

Figure 10: Comparison of loss for the base model and pre-
trained + fine-tuned model when trained on 80% of the
dataset. Although fine-tuned model does not improve the
overall accuracy in the presence of abundant data, it expe-
dites convergence, evidenced by the reduction in training
loss in the initial epochs.

7 USING THE GNN OUTPUTS TO SELECT
VERSIONS IN SPACK

RQ3 Can the outputs of BuildCheck be used to select pack-
age versions and increase build success rate?

In this section we discuss how the outputs of the GNN model can
be integrated into the Spack package manager. We further demon-
strate how this integration can improve the number of overall
successful builds in Spack.

Learning to Predict and Improve Build Successes in Package Ecosystems

0| F————————3
R N PN o o o o
¢ & < . 4 A > g A4
— —-+- 01
.80 —o— 1
3 —— 10
3 || o
< 70 —m— 50
—¥— 80
O —+
604 e Bttt U
-
02 0.4 0.6 0.8

Masking Ratio

Figure 11: Evaluation of the effect of masking ratio. For larger
training dataset, masking ratios don’t impact the prediction
accuracy. However, when training on small amount of data,
masking ratio of 0.40 and above help the model learn mean-
ingful representation that capture the neighborhood to make
improved prediction on the final task.

7.1 Integrating Build Probabilities into Spack’s
Concretizer

Spack’s concretizer is responsible for resolving abstract package
requirements into concrete dependencies, versions, and build set-
tings. It uses an Answer Set Programming (ASP) solver to find valid
configurations given the package and environment requirements.
Since there may be a number of valid configurations, Spack also
uses several optimizations to find the most optimal configuration.
For package versions this involves choosing the package version
with the lowest package version weight. Packages are weighted 0 for
the most recent version, 1 for the second most recent version, etc.
Thus, the solver will pick the most recent version of all valid ver-
sions for a package. Spack may also select older versions if the user
flags the concretizer to reuse existing binaries from the machine or
public build cache.

To incorporate the outputs of the GNN model we modify the
existing version selection optimization to be a weighted sum of the
package version weight and package version pair weight. The package
version weights are included in the optimization for packages that
are present in valid configuration. Likewise package version pair
weights are included for parent-child package pairs when they are
present in the valid configurations in the solver. Assigning the
package version pair weights a larger weight in the weighted sum
gives the behavior of favoring versions from more likely to build
pairs, while falling back to the existing version preferences. For our
experiments we found 0.35 and 0.65 to work well for the package
version and package version pair weights, respectively.

The package version pair weights are computed as an ordinal
encoding of the pairwise build probability of each package pair.
Package build probabilities are computed for each parent-child pair
for all versions by inputting them as 2 node, 1 edge graphs into the
GNN and using the softmax output as its build probability. Then
for each pair, all the build probabilities are sorted and assigned an
integer encoding based on their index in the sorted list where the
pair with the highest build probability is 0. When newer versions of

Conference’17, July 2017, Washington, DC, USA

a package exist that are not in the data set we use the probabilities
from the nearest pair (based on version distances).

Changing the concretizer to use the weighted sum of version
weights is accomplished by a simple change to the minimization
criteria in Spack’s ASP solver. The package version pair weights are
incorporated via a separate “facts” file that is included in the solver.
This can be generated offline and used across many different installs.
It can also be changed between systems to account for potentially
different build probabilities on different architectures and OS’s.

7.2 Packages for Concretizer Evaluation

We evaluate the new concretizer by building a set of packages from
EA4S (see Section 5.1). We build each package at all of its available
versions in Spack with its default settings. This is done with both
Spack’s current concretizer and the new one proposed in Section 7.1.
Based on these builds we can compare the number of packages suc-
cessfully built between the two concretizers. Additionally, we can
investigate if any packages do not build under the new concretizer
that do with Spack’s default concretizer.

7.3 Concretizer Evaluation

Lo Build Rates for Each Concretization Method

0.8

0.6

Build Rate

0.4

0.2

0.0

Default Weighted Opt.

Figure 12: Comparison of build rates between the two con-
cretization methods. The weighted opt. concretizer, using the
outputs of the GNN, improves the ratio of packages that build
from 89% to 96%.

Figure 12 compares the ratio of packages that build successfully
for each concretizer. This is the ratio of packages that build success-
fully to the total number of attempted builds. The new concretizer
improves the number of packages that build from 89% to 96% for
E4S. The packages that still do not build successfully with the new
concretizer are due to compiler vendor/version errors, package
definition errors, deprecated dependencies, and unknown linking
errors. We removed any results that had errors due to the source
repository being taken offline. Additionally, all of the packages that
built successfully with the original concretizer built successfully
with the new one meaning no new errors were introduced.

8 THREATS TO VALIDITY

Internal Validity: A threat to the internal validity of the study may
arise from the GNN model simply correlating entire build graphs
or single packages with build success and not understanding how

Conference’17, July 2017, Washington, DC, USA

py-petsc4py@3.13.0 py-petsc4py@3.13.0
N N

petsc@3.13.6 py-setuptools@63.4.3 petsc@3.13.6 py-setuptoolst

Figure 13: An example improvement using the new con-
cretizer. Changing the setuptools version, which further
propagates version changes to other Python packages, leads
to a successful build (on the right).

complex packages interplay to create incompatibilities. This threat
is first addressed by the training validation tasks. It is also addressed
by using independent parent-child pairs inputted into the model to
inform actual successful builds in the concretizer.

Dataset quality and specificity may introduce further threats, as

build errors may be due to factors beyond version incompatibilities,
such as compilers and systems software, and it might not represent
broader build errors. To address this and improve model’s efficacy
for unseen software ecosystems, fine-tuning with a limited number
of samples can be performed. Since the model is trained on a sub-
stantial dataset of more than 45, 000 unique package builds from
the E4S software ecosystem, the model is likely to perform well
when tested on previously unseen configurations. This is possible
because the dependency graph of new recipes will include some
packages encountered during the training phase.
External Validity: A threat to the generalizability of BuildCheck is
that it is only applicable to scenarios where package managers pro-
vide support for compiling on a target system. Unlike using a stan-
dard Linux package manager, where we are choosing among pre-
existing builds that are known to work, in our work, we are choosing
configurations to build, some of which may be new untested config-
urations. Our technique could be applied to maintaining software
distributions, such as Debian, RPM, and Redhat.

There is sampling bias present in the selection of packages used
for training the GNN. While we believe E4S to contain dependencies
representative of all Spack packages, it is possible that the proposed
methodologies do not extend to new package sets or package man-
agers. Additionally, the methodology applied to the current data
set, which only varies versions, may not produce the same results
when different package metadata, such as the compiler, is varied.

9 RELATED WORK

In the 1990s, package management systems emerged as a solution
for software installation and management [42], providing mecha-
nisms for downloading, installing, updating, and resolving depen-
dencies. Early package management systems included RPM [12]
for Linux, dpkg for Debian-based systems, and apt [17]. Over time,
package managers evolved to include sophisticated dependency
resolution algorithms. Since the version compatibility problem is
NP-complete, the version resolution can be encoded as SAT or Con-
straint Programming problems [7, 26, 16, 28], an approach that has
been adopted by various main-stream package managers [36, 3, 44].

Constraints to the solver are still provided by package main-
tainers who rely on knowledge regarding version dependencies
among packages to detect possible conflicts. Although semantic
versioning (semver) [35] is commonly used to determine package

Menon and Nichols et al.

compatibility based on the version numbers [5, 9], its complex rules
are not fully understood [8] resulting in package build breaks [33].
Consequently, developers may switch to using fixed versioning
approach, but this can also result in version conflicts and build
failtures [13]. Additionally, the study by Kula et al. [24] found that
package maintainers are often hesitant to update their dependen-
cies due to the complex inter-dependency relationship, resulting in
software systems with known vulnerabilities.

There are several approaches to identify compatible versions
of packages. One of the approaches used by maintainers is called
the wisdom of the crowd [29], where the most popular or highly
used version of a library is chosen. This can prevent build errors
to some extent. Some researchers have proposed techniques that
automatically change the code to fix the conflicts introduced by
their dependencies [45]. Others have proposed tools that identify
incompatibilities between different versions of libraries at the bi-
nary level [4]. Additionally, there are several works [34, 40, 31, 30,
32, 20] that focus on recommending third-party libraries for use
in projects. These amount to adding new dependencies and not
necessarily suitable for finding compatible package versions for
a given dependency graph. Our goal is to design an entirely data
driven method that automatically learns to capture the relevant
relationships between the packages that are useful for predicting
whether a given package dependency graph builds or not.

A recent work [27] uses Bayesian Optimization to suggest pack-
age versions that are likely to build. While that work is useful for
picking a configuration that is highly likely to build, it lacks support
for reproducible builds and a mechanism to predict success of a
specific configuration of interest. In contrast, our approach focuses
on predicting whether a given configuration can successfully build,
which is a common scenario for package upgrades. Furthermore,
the rules derived from BuildCheck are incorporated into Spack’s
concretizer solver, which is used to resolve package contraints,
and the solver ensures that it finds an optimal configuration that
satisfies minimization criteria, leading to reproducible builds.

GNNs employs message passing across the nodes to learn the
structure of the graph dataset. There are various types of GNNs,
such as Graph Convolutional Networks [23], Graph Attention Net-
work [43], and GraphSAGE [18], graph autoencoders [39] etc. [22]
developed a method for self-supervised pretraining of GNNs. More
recently, [37] proposed GCC, a generative pre-training that used
contrastive learning and transfers the learnt knowledge to down-
stream tasks. Masked language modeling, such as BERT [6], has
shown to be highly successful for pre-training tasks in Natural
Language Processing (NLP) domain. Other self-supervised learning
approaches, including GPT [38], have seen a lot of interest with
a wide variety of pre-text tasks. However, the use of GNNs and
pre-training strategies on Package dependency graph to predict the
build outcome has not been done before.

10 CONCLUSION

We have demonstrated how to combine the capabilities of Graph
Neural Networks and advanced package management technologies
to offer practical solutions for managing package dependencies. Our
tool, BuildCheck, evaluated on E4S software ecosystem consisting
of 45, 837 data points can predict build outcomes with 91% accuracy

Learning to Predict and Improve Build Successes in Package Ecosystems

eliminating very expensive trial-and-error exercise to find working
builds. Furthermore, our novel self-supervised pre-training method
using masked modeling was shown to improve the prediction accu-
racy when only a limited amount of data is available. The results
of BuildCheck make it ready to be used in production for much
more reliably successful builds. We use the results from the GNN
model with the optimization phase of Spack’s concretizer which
enables it to steer each solve towards solutions that are more likely
to build. We showed that using this for building E4S can help de-
velopers and package maintainers to avoid broken configurations
and superfluous builds. In conclusion, our results show that using
GNN:s for predicting build outcomes in conjunction with a package
dependency solver can significantly improve software development
practices.

11 ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-TR-857729). Work at LLNL
was funded by the Laboratory Directed Research and Development
Program under project tracking code 21-SI-005.

REFERENCES

[1] Josep Argelich, Daniel Le Berre, Inés Lynce, Jodo P. Marques Silva, and Pascal
Rapicault. 2010. Solving linux upgradeability problems using boolean opti-
mization. In Proceedings First International Workshop on Logics for Component
Configuration, LoCoCo 2010, Edinburgh, UK, 10th July 2010 (EPTCS). Inés Lynce
and Ralf Treinen, (Eds.) Vol. 29, 11-22. por: 10.4204/EPTCS.29.2.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normal-
ization. arXiv preprint arXiv:1607.06450.

[3] 2014.Cargo: The Rust package manager. Online. https://github.com/rust-lang/cargo.

(Mar. 2014).

[4] Bradley E Cossette and Robert] Walker. 2012. Seeking the ground truth: a
retroactive study on the evolution and migration of software libraries. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 1-11.

[5] Alexandre Decan and Tom Mens. 2019. What do package dependencies tell us
about semantic versioning? IEEE Transactions on Software Engineering.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

[7] Roberto Di Cosmo. 2005. EDOS deliverable WP2-D2.1: Report on Formal Man-
agement of Software Dependencies. Tech. rep. hal-00697463. INRIA, (May
2005).

[8] JensDietrich, Kamil Jezek, and Premek Brada. 2016. What java developers know
about compatibility, and why this matters. Empirical Software Engineering, 21,
3, 1371-139%6.

[9] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency versioning in the wild. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 349-359.

[10] P.F.Dubois, T. Epperly, and G. Kumfert. 2003. Why johnny can’t build [portable
scientific software]. Computing in Science Engineering, 5, 5, 83—88.

[11] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems, 28.

[12] = Marc Ewing and Erik Troan. 1995. RPM Timeline. Online. https://rpm.org/timeline html.

(1995).

[13] Todd Gamblin. 2021. Software integration challenges. Tech. rep. Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States).

[14] Todd Gamblin, Massimiliano Culpo, Gregory Becker, and Sergei Shudler. 2022.
Using Answer Set Programming for HPC Dependency Solving. In Supercom-
puting 2022 (SC’22). LLNL-CONF-839332. Dallas, Texas, (Nov. 2022).

[15] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam
Moody, Bronis R De Supinski, and Scott Futral. 2015. The spack package man-
ager: bringing order to hpc software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
1-12.

[16]

[17]

(18]

(19]

[21]

[22]

[23]

[24]

[27]

(28]

[29]

(30]

(31]

(33]

(34]

(38]

(39]

Conference’17, July 2017, Washington, DC, USA

Martin Gebser, Roland Kaminski, and Torsten Schaub. 2011. Aspcud: a linux
package configuration tool based on answer set programming. Electronic Pro-
ceedings in Theoretical Computer Science, 65, (Aug. 2011), 12-25.

Jason Gunthorpe. 1998. APT User’s Guide. Online. https://www.debian.org/doc/manuals/apt-

guide/. (1998).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems,
30.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 770-778.

Qiang He, Bo Li, Feifei Chen, John Grundy, Xin Xia, and Yun Yang. 2020.
Diversified third-party library prediction for mobile app development. [EEE
Transactions on Software Engineering.

K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt. 2012. Easybuild: build-
ing software with ease. In 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, 572-582. por: 10.1109/SC.Companion.2012.81.
Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay
Pande, and Jure Leskovec. 2019. Strategies for pre-training graph neural net-
works. arXiv preprint arXiv:1905.12265.

Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning Repre-
sentations (ICLR).

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Kat-
suro Inoue. 2018. Do developers update their library dependencies? Empirical
Software Engineering, 23, 1, 384-417.

G Kumfert and T Epperly. 2002. Software in the DOE: The Hidden Overhead
of “The Build”. Tech. rep. UCRL-ID-147343. Lawrence Livermore National
Laboratory, (Feb. 2002).

F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and R.
Treinen. 2006. Managing the complexity of large free and open source package-
based software distributions. In 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE’06), 199-208.

Harshitha Menon, Konstantinos Parasyris, Tom Scogland, and Todd Gamblin.
2022. Searching for high-fidelity builds using active learning. In Proceedings
of the 19th International Conference on Mining Software Repositories (MSR 22).
Association for Computing Machinery, Pittsburgh, Pennsylvania, 179-190.
ISBN: 9781450393034. DoI: 10.1145/3524842.3528464.

Claude Michel and Michel Rueher. 2010. Handling software upgradeability
problems with MILP solvers. In Proceedings First International Workshop on
Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th July
2010 (EPTCS). Inés Lynce and Ralf Treinen, (Eds.) Vol. 29, 1-10. por: 10.4204
/EPTCS.29.1.

Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas
Zeller. 2009. Mining trends of library usage. In Proceedings of the joint interna-
tional and annual ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops, 57-62.

Phuong T Nguyen, Juri Di Rocco, and Davide Di Ruscio. 2018. Mining software
repositories to support oss developers: a recommender systems approach. In
IIR.

Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
2020. Crossrec: supporting software developers by recommending third-party
libraries. Journal of Systems and Software, 161, 110460.

Phuong T Nguyen, Juri Di Rocco, Riccardo Rubei, Claudio Di Sipio, and Davide
Di Ruscio. 2021. Recommending third-party library updates with Istm neural
networks.

Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. 2021.
Breaking bad? semantic versioning and impact of breaking changes in maven
central. arXiv preprint arXiv:2110.07889.

Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M
German, and Katsuro Inoue. 2017. Search-based software library recommenda-
tion using multi-objective optimization. Information and Software Technology,
83, 55-75.

Tom Preston-Werner. 2013. Semantic versioning 2.0. 0. (2013).

Python Software Foundation. 2020. New pip resolver to roll out this year.
Online. https://pyfound.blogspot.com/2020/03/new-pip-resolver-to-roll-out-
this-year.html. (Mar. 2020).

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming
Ding, Kuansan Wang, and Jie Tang. 2020. Gee: graph contrastive coding for
graph neural network pre-training. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, 1150-1160.
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAl blog, 1, 8, 9.

Arindam Sarkar, Nikhil Mehta, and Piyush Rai. 2020. Graph representation
learning via ladder gamma variational autoencoders. In Proceedings of the AAAI
Conference on Artificial Intelligence number 04. Vol. 34, 5604-5611.

https://doi.org/10.4204/EPTCS.29.2
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1145/3524842.3528464
https://doi.org/10.4204/EPTCS.29.1
https://doi.org/10.4204/EPTCS.29.1

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

[40] Zhensu Sun, Yan Liu, Ziming Cheng, Chen Yang, and Pengyu Che. 2020. Req2lib:
a semantic neural model for software library recommendation. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 542-546.

[41] Chris Tucker, David Shuffleton, Ranjit Jhala, and Sorin Lerner. 2007. OPIUM: op-
timal package install/uninstall manager. In International Conference on Software
Engineering (ICSE).

[42] Andre Van Der Hoek, Richard S Hall, Dennis Heimbigner, and Alexander L
Wolf. 1997. Software release management. ACM SIGSOFT Software Engineering
Notes, 22, 6, 159-175.

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat, 1050, 20, 10—
48550.

[44] Natalie Weizenbaum. 2018. PubGrub: Next-Generation Version Solving. https://medium.com/@nex3/pubgrub-
2fb6470504f. (Apr. 2018).

[45] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: inference and application
of api migration edits. In 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC). IEEE, 335-346.

