
LLNL-TR-857729

Learning to Predict and Improve
Build Successes in Package
Ecosystems

H. Menon, D. Nichols, A. Bhatele, T. Gamblin

November 29, 2023

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Learning to Predict and Improve Build Successes in Package
Ecosystems

Harshitha Menon
∗

Lawrence Livermore National Laboratory

Livermore, California, USA

harshitha@llnl.gov

Daniel Nichols
∗

University of Maryland

College Park, Maryland, USA

dnicho@umd.edu

Abhinav Bhatele

University of Maryland

College Park, Maryland, USA

bhatele@cs.umd.edu

Todd Gamblin

Lawrence Livermore National Laboratory

Livermore, California, USA

tgamblin@llnl.gov

ABSTRACT
Software has become increasingly complex, with a typical applica-

tion depending on tens or hundreds of packages. Finding compatible

versions and build configurations of these packages is challenging.

This paper presents a method to learn the likelihood of software

build success, and techniques for leveraging this information to

guide dependency solvers to better software configurations. We

leverage the heavily parameterized package recipes from the Spack

package manager to produce a training data set of builds, and we

use Graph Neural Networks to learn whether a given package con-

figuration will build successfully or not. We apply our tool to the

U.S. Exascale Computing Project’s software stack. We demonstrate

its effectiveness in predicting whether a given package will build

successfully. We show that our technique can be used to improve

the solutions generated by dependency solvers, reducing the need

for developers to find working builds by trial and error.

1 INTRODUCTION
Modern software has become incredibly complex. Developers fre-

quently reuse software components, such as libraries, frameworks,

and APIs, to expedite the development process. Reusing software

saves time and separates concerns, allowing developers to rely on

well-established implementations without rewriting them. While

reusable software components enable rapid development and feature-

rich applications, they introduce complexity to software manage-

ment. Different components may have different version and config-

uration requirements on their dependencies, leading to compatibil-

ity issues requiring additional efforts for integration. Developers

must constantly expend effort to keep pace with rapidly changing

software dependencies.

In order to tackle this complexity, modern software ecosystems

rely on automated package managers like APT, Cargo, Maven, NPM,

and Spack. These tools analyze compatibility constraints among dif-

ferent packages and select a compatible set of package versions to

install. The process of selecting a consistent version configuration is

known to be NP-complete [7, 26, 28, 1, 41], and most package man-

agers use sophisticated solvers to find valid package configurations

*
These authors contributed equally to this work.

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

that satisfy compatibility constraints. However, these constraints

are specified by package maintainers, and they are inherently im-

perfect because maintainers cannot test all package combinations

for compatibility. In practice, a valid solution may still fail to build,

if the constraints it is based on are not sound.

Package management systems adopt different strategies when

selecting package versions, for instance, always selecting the most

recent version that satisfies an open ended range. Any such version

selection mechanism can produce errors as long as it relies on

imprecise, hand-annotated version constraints. As the number of

dependencies grows, the likelihood of an incompatibility increases,

particularly for large, transitive dependency stacks. The software

ecosystem is too large and there are too many exceptions and

corner cases to come up with a concise set of rules for all package

recipes. Packagemaintainers cannot test every version combination,

particularly among deep, transitive dependencies theymay not even

be aware of. Therefore, the practice of user-defined package version

constraints is inherently susceptible to errors.

Complexities arising from such errors is particularly common in

the scientific computing, High-Performance Computing (HPC), and

ML ecosystems, where it is common to port software to new archi-

tectures and platforms. Preexisting builds, such as those provided

by a standard Linux package manager, don’t necessarily work on

these hardwares. Existing dependency constraints are not sufficient

as these ecosystems are dealing with new hardware, exotic compil-

ers and libraries, where compatibility information is not known yet.

Package maintainers typically specify open-ended compatibility

ranges to allow new versions to be integrated easily, but the cor-

rect ranges for one platform may be slightly different from those

for another, and even very slight differences can lead to build er-

rors [15, 25, 21, 10]. Finding a working configuration and updating

constraints can be a very expensive trial-and-error exercise that

can take days or weeks to converge to a working build. Moreover,

finding one working build does not necessarily tell us how best to

update compatible version ranges.

Our aim in this paper is to understand build incompatibilities,

predict bad configurations, and assist developers in managing ver-

sion constraints by automatically generating constraints based on

empirical information. With recent advances in machine learning

we can learn from a relatively small set of examples and predict

what options will most likely lead to success. Graph neural net-

works are uniquely suited to this problem as they can model and

https://orcid.org/0000-0003-4707-9580
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

learn node properties and edge relationships in general graphs.

This, in conjunction with the ability of neural networks to find

patterns and model extremely complex systems, is uniquely suited

to modeling complex software dependency graphs.

In this paper, we leverage cutting-edge AI technology and ad-

vanced package management methodologies to address the chal-

lenges of managing software ecosystems. We use graph neural

networks (GNNs) to analyze a prominent software ecosystem in

HPC, the Exascale Computing Project (ECP) software stack E4S. By

using the ECP’s E4S stack as an example, and leveraging Spack’s

parameterized package recipes, we demonstrate that GNNs can be

effectively trained to understand the build incompatibilities in a

large software ecosystem and identify configurations that will not

work, without the need to actually build them. Moreover, we use the

compatibility information extracted from the GNN model and inte-

grate it into Spack package manager’s version selection mechanism

to steer the package solver towards likely-to-build solutions.

Our main contributions are the following:

• BuildCheck, a Graph Neural Network based approach that

predicts the outcome of builds for different package configu-

rations.

• Apply transfer learning, which involves transferring the

learning from a low-cost source data to a target data, and use

it when limited resources are available for collecting data at

scale for a target application.

• A detailed experimental evaluation of our approach over

45, 837 builds from the E4S scientific software ecosystem.

• A methodology for using the outputs of BuildCheck to im-

prove build likelihood in Spack.

Furthermore, we seek to answer the following research questions

in our work.

RQ1 Can BuildCheck predict the build outcome of various pack-
age configurations with high accuracy? We demonstrate that,

after training, BuildCheck is able to correctly classify build

outcomes for 91% of the builds in the testing dataset.

RQ2 Can self-supervised pre-training be used to reduce the need of
expensive build data to train the model?When trained with

pre-training + fine-tuning, BuildCheck is shown to achieve

comparable or better performance to the base model. In

particular, it gets up to 3% improvement for low numbers of

training samples.

RQ3 Can the outputs of BuildCheck be used to select package ver-
sions and increase build success rate?We integrate the outputs

of BuildCheck into Spack’s concretizer and show an improve-

ment in overall number of packages successfully built. This is

additionally demonstrated for a set of packages not included

in the training dataset.

2 MOTIVATION
One of the challenges with software components is that each pack-

age integrated into an application must be compatible with all other

packages. Changes to one package can affect others, and as a result,

integration costs grow combinatorially with the package count. Fur-

thermore, the package ecosystem is in a constant state of flux, with

packages being added, upgraded, or deprecated. When upgrading a

package or its dependency to a newer version, one needs to ensure

AUGUSTUS

Bcftools
@1.15

Samtools
@1.15.1

Htslib
@1.16

… …

Upgrade

AUGUSTUS

Bcftools
@1.16

Samtools
@1.16.1

Htslib
@1.17

… …

Figure 1: Package upgrade scenario resulting in build errors
due to inconsistent versions of packages.

that the updates are compatible. This typically involves building

and installing the package to verify that the changes are valid. How-

ever, some updates can trigger a cascade of errors, necessitating

an exploration in the package version space to find a compatible

configuration.

Here is an example showcasing how a change in the version

of one package leads to a cascading error. We look at package

AUGUSTUS, which is a program that predicts genes in eukaryotic

genomic sequences and has 16 dependencies, 3 of which are shown

in Figure 1. Suppose the developers of AUGUSTUS want to use the

latest version of bcftools, which is 1.16. This requires htslib version

1.17. However, samtools@1.15.1, which is dependent on htslib is

not compatible with htslib@1.17. We need to use samtools@1.16.1

to build this successfully. This is known as the diamond problem and

it is a difficult problem for package managers that manage package

versions. To find a compatible version of the software, developers

would have to try out different version combinations until they find

one that is compatible with all the packages. Then they must add

constraints to Spack’s package files and submit a pull request back

to Spack so that others can benefit from what they learned.

This process becomes impractical when there are hundreds of

dependencies requiring considerable time and effort to evaluate

compatibility. The build configuration space is combinatorial. For

example, the tcl package with just one dependency to zlib contains

98,000 valid configurations when taking into account all possible

package versions, compilers, compiler versions, and architectures.

We want to identify valid configurations without performing 98,000

builds. For every new architecture and build flag this compatibility

search would have to be done manually. In a rapidly changing

software ecosystem this is a constant effort.
BuildCheck can help with this process. In this example, develop-

ers of the AUGUSTUS package can sample the package versions

and use BuildCheck to predict whether that configuration builds or

not. In this way developers can use BuildCheck to improve the ver-

sion constraints of individual packages within their specifications.

Furthermore, BuildCheck can be integrated into package managers

and their version selection mechanisms. This allows the central

software provider, the package manager, to reduce the number of

failed installs due to version mismatches.

3 BACKGROUND
In this section, we discuss the current state of software build process,

present an overview of Spack package management system, and

provide sufficient background on Graph Neural Networks.

Learning to Predict and Improve Build Successes in Package Ecosystems Conference’17, July 2017, Washington, DC, USA

3.1 Software Build Process
Software packages are highly desirable as they break down com-

plex software into manageable components enabling separation of

concern, promoting software reuse, and facilitating installation and

updates. Packages are designed by various individuals or commu-

nities and their ecosystems enable developers to leverage existing

codes to build on top of, thereby saving time and resources. Package

management systems are an integral part of any software develop-

ment process. They provide a convenient way to manage software,

enabling users to easily discover, download, and install a wide range

of software packages from trusted repositories.

Despite the benefits provided by software components, man-

aging packages can pose several challenges, including handling

dependencies and ensuring package compatibility. Moreover, the

package ecosystem is in a constant state of flux with packages being

added, upgraded, or deprecated. When upgrading a package or its

dependency to a newer version, one needs to ensure that the up-

dates are compatible. This typically involves building and installing

the package to verify that the changes are valid. However, some

updates can cause a cascade of errors necessitating an exploration

in the package version space to find a compatible configuration.

Versioning allows developers to declare dependencies on a spe-

cific version number or a range of version numbers, which helps

package managers determine package compatibility. Using a fixed

version can help build a package in a deterministic manner, but

it is less flexible and may conflict with other dependent packages

making it difficult to use into a large project. Using flexible version

ranges allows more customization, but it is not feasible for main-

tainers to test for all possible combinations. More often than not

they assume that the compatibility remains consistent within that

range and this can potentially cause a cascade of build errors. While

testing can help to a certain extent, it is not possible to evaluate all

possible configurations and in the event of a package build failure

finding a working configuration may involve significant developer

time and system resources.

3.2 Spack
For our work we use the Spack [15] package manager to explore the

combinatorial build space of packages and analyze package incom-

patibilities. Spack is critical for DoE’s Exascale Computing Project

mission to create robust exascale software ecosystem. It is designed

to support building packages from source in a flexible manner to

support the various platforms. Spack exposes parameters to users

as adjustable knobs and allows a single package to be built in many

different ways. This flexibility is critical for HPC ecosystems as

HPC developers need scientific software to be built in multiple

ways tailored to each platform to obtain optimal performance.

In Spack, package dependencies and constraints are represented

as shown in in Figure 2. Package maintainers write constraints

like bzip2@1.0.7: on line 11 for "bzip version 1.0.7 or higher",

or ‘zlib@1.2.8:‘ on line 14 to indicate that the example package

requires zlib version 1.2.8 or higher. Constraints can be conditional

using a ‘when‘ clause; the when clauses here tell Spack that these

two constraints only apply for certain versions of the example

package. The dependency on mpi on line 17 is unbounded; we can

attempt to build the example package with any version of any MPI

1 # This is the class name for the package `example`
2 class Example(Package):
3 """Example depends on zlib, mpi, and optionally bzip2"""
4

5 version("1.1.0") # two versions are available
6 version("1.0.0")
7

8 variant("bzip", default=True, description="enable bzip")
9

10 # Depends on bzip2 or later when bzip is enabled
11 depends_on("bzip2@1.0.7:", when="+bzip")
12 depends_on("zlib") # depends on zlib
13 # Newer versions require newer versions of zlib
14 depends_on("zlib@1.2.8:", when="@1.1.0:")
15

16 # Depends on *some* MPI implementation
17 depends_on("mpi")
18

19 # Known failure when building with intel compilers
20 conflicts("%intel")
21 # Does not support architectures derived from ARM64
22 conflicts("target=aarch64:")

Figure 2: Constraints in a Spack package.py file, expressed
in Spack’s embedded DSL.

implementation. The conflicts on lines 20 and 22 indicate that the

package does not work on ARM or with the Intel compiler.

The Spack project had over 1,100 contributors at the time of

writing, and constraints like those shown in Figure 2 accumulate

over time as these contributors add more package information. At

the core of Spack is a sophisticated dependency solver called the

concretizer [14], which finds package configurations that are valid
in the sense that they satisfy all applicable constraints. However,

if the constraints are not fully specified or comprehensive, it may

encounter errors when building seemingly valid configurations.

3.3 Graph Neural Networks
Graph neural networks (GNNs) have emerged as a highly-effective

technique for analyzing graph-structured data found in various real-

world systems, such as social networks, recommender systems, and

chemical analysis for drug discoveries. GNNs are able to capture

the inherent relationship between nodes in the graph by passing

messages along the edges, which are used to generate effective

representations. These representations are then used to perform a

wide variety of downstream tasks that include node classification,

link prediction, and graph classification.

GNNs use both the graph structure and node features to learn a

representation vector for each node or for the entire graph. They

achieve this by performing neighborhood aggregation, where the

node representation is updated iteratively by aggregating its neigh-

bors representations. After a number of iterations, a node’s represen-

tation captures the structural information within its neighborhood.

A popular architecture used in GNNs is the Graph Convolutional

Network (GCN) [23]. GCN is a framework of spectral graph convo-

lutions, which is a generalization of convolutions to graph data. It

integrates local node features and graph topology in the convolu-

tional layers. Figure 3 shows a GNN for graph classification using

Graph Convolutional layers and shows the message passing and

state updates.

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

… …

ReLU ReLU
…

Input

Hidden layer Hidden layer

Output

! = #!

#"#$ = $(&'#"(")

* = #%

Figure 3: A GNN with Graph Convolutional Network (GCN)
Layers. The GNN consists of several layers of graph convo-
lution that operate on the graph data by propagating node
features across the graph. The output of each GCN layer
is passed through a non-linearity. The output captures the
graph structure and is used for the final task.

The update rule for each layer is given by the following trans-

formation.

𝐻 (𝑙+1) = 𝜎 (𝐴𝐻 𝑙𝑊 𝑙) (1)

where 𝐻 𝑙 is the input matrix to the l-th hidden layer with row 𝐻 𝑙
𝑖

consisting of a 𝑑-dimensional feature vector for node 𝑖 and𝑊 𝑙
is

the trainable weights for layer 𝑙 . 𝐴 is the normalized adjacency

matrix. This is passed through a non-linearity function 𝜎 (.), which
in this example is shown as 𝑅𝑒𝐿𝑈 (𝑧) = 𝑚𝑎𝑥 (0, 𝑧). The output of
the last layer denoted as 𝑍 = 𝐻𝑁 is then used for the final task. For

node classification, softmax(𝑧𝑛) is used and the output of that is a

matrix R𝑁×𝐶
, where 𝑁 is the number of nodes and𝐶 is the number

of labels and each row contains a score for each of the labels for

that node. In the case of graph classification task, the output of the

last layer is aggregated or pooled to summarize the entire graph

into a single representative node followed by the application of a

softmax given by softmax(Σ𝑛𝑧𝑛) [11]. The GCN parameters are

trained to minimize the cross-entropy error over labeled data.

4 APPROACH
Package management is a crucial aspect of software engineering

where compatible versions of packages and their dependencies need

to be chosen to ensure that software builds without errors. Current

approaches rely on experts with in-depth knowledge of packages

and constraints to identify compatible versions. In practice, users

often have to explore different choices of package versions to find an

appropriate one that builds successfully. Depending on the size of a

package dependency graph, this can be time-consuming and error-

prone. The problem is exacerbated by the fact that the search space

formed by the packages and their versions is large, and exhaustively

exploring it is impractical. To address this challenge, we want to use

Machine Learning to predict whether a given package dependency

graph, with specific versions, can successfully build. Furthermore,

we want to automatically come up with version constraints for

packages and integrate it with the version selection mechanism.

Automating this process can save time and resources for software

developers and package maintainers, ultimately resulting in faster

and more reliable software development.

4.1 Problem Definition
The package dependency graph is a directed acyclic graph (DAG)

that represents the dependencies between different packages. This

graph is represented as G = (V, E), where V is the set of nodes

representing the packages and E is the set of edges capturing the

dependencies. Classifying whether a given package dependency

graph builds or not is challenging due to the complicated interac-

tions between different packages.

We cast the build success prediction problem as a supervised

learning problem. Given a datasetD = {(G𝑖 , 𝑦𝑖)}𝑀
1

of𝑀 graphs G𝑖
and their corresponding build outcomes𝑦𝑖 ∈ {SUCCESS, FAILURE},
our goal is to train a prediction model 𝑓 (G;𝜃) parameterized by

the parameters 𝜃 . For a given graph G, our prediction model can

then be used to predict the build outcome 𝑦 = 𝑓 (G;𝜃). Supervised
learning corresponds to estimating the optimal parameters 𝜃∗ using
the given dataset D as following

𝜃∗ = arg min

𝜃

𝑀∑︁
𝑖=1

𝐿(𝑦𝑖 , 𝑓 (G𝑖 ;𝜃)) (2)

Here the loss function 𝐿(𝑦,𝑦) is a measure of the discrepancy be-

tween the ground truth label𝑦 and the predicted label𝑦. For discrete

prediction tasks, the loss function 𝐿 is typically chosen to be the

cross-entropy loss.

Graph Neural Networks (GNN) are ideally suited for this ap-

plication and we delve more into the modeling considerations in

section 4.2. Further, each sample (G𝑖 , 𝑦𝑖) in the dataset D can be

quite expensive to obtain as it requires building the entire graph.

As a result it is desirable to reduce the data requirements. We con-

sider self-supervised pre-training as a strategy for reducing data

requirements in section 4.3. Finally, we show in section 7 how the

model can be used to improve version constraints in two software

ecosystems and reduce the number of failed builds due to version

mismatches.

4.2 GNN model for Package Dependency Graph
Success or failure of a build depends upon the relationships between

the packages in the corresponding package dependency graph. To

make an accurate prediction for the entire graph G = (V, E), we
need to construct a model that can effectively capture and represent

the dependency relationships in the graph. In essence, this would

require looking at neighboring nodes for each node in the graph and

summarizing their interactions. Graph convolutional networks are

a promising modeling choice for this task because they iteratively

process each node and then aggregate information from neighbors

for each node. Note that a graph convolutional layer computes a

function of a node and its first order neighbors. To increase the

neighborhood, a GCN stacks several graph convolutional layers,

where each successive layer increases the order of neighborhoods

considered by one.

Our model architecture, shown in figure 4, consists of multiple

Graph Convolutional layers. The input to the model is a package

specification graph represented by its adjacency matrix𝐴 and node

features 𝑋 ∈ R𝑁×𝑑
where 𝑁 is the total number of packages being

considered and 𝑑 is the feature dimensionality. We choose 𝑑 to

be the maximum number of versions for any given package over

the set of all packages. Each layer of our model takes a matrix of

Learning to Predict and Improve Build Successes in Package Ecosystems Conference’17, July 2017, Washington, DC, USA

features along with the adjacency matrix as input, and outputs

another matrix with same number of rows as the input. The output

of the GCN layers undergoes normalization through a LayerNor-

malization layer, followed by the application of the ReLU activation

function introduce non-linearity. The output of the final residual

block is passed through a linear layer and subsequently pooled

globally to obtain a representation of the entire graph, which is

used to predict the build outcome. Following is a brief explanation

of various layers in our model:

Embedding Layer: This is the first layer of the model and it maps

the node indices to a node specific dense representation and com-

bines it with the version features 𝑋 . Node embeddings represent

graph nodes in a continuous vector space. They are a learned dictio-

nary 𝑍 ∈ R𝑁×𝑒
of 𝑒-dimensional embedding per node. The output

𝑋̃ ≡ [𝑍,𝑋] of the embedding layer is a concatenation of the learned

node embeddings 𝑍 and version features 𝑋 .

GCN: A graph convolutional layer as detailed in section 3.3.

Residual Blocks: The residual block is a composite building block

consisting of several layers and uses an identity shortcut to ef-

fectively train very deep neural networks [19]. Our model stacks

several residual blocks to construct a deep neural network that can

capture higher order neighborhoods.

LayerNorm: A normalization layer that has been found to be

effective for stable training of deep models [2].

ReLU: Pointwise non-linearity computed as ReLU(𝑥) ≡ max(𝑥, 0).
Pool Layer: This layer computes the average of all node features

as a representation for the entire graph.

Linear Layer: This layer computes a linear transform of its inputs

and optionally applies the ReLU non-linearity. The last linear layer

in the model outputs a two dimensional vector representing the

logits for the two possible outcomes {SUCCESS, FAILURE}.
Softmax: Computes the softmax function to yield probability val-

ues for the two outcomes.

4.3 Self-supervised Pre-training
The supervised learning of build outcomes requires significant

amounts of data that is expensive to collect. Moreover, while it is

resource intensive to collect the data, it is also inefficient to train

GNNs from scratch for every downstream task. Transfer learning,

which separates the training into two distinct steps: 1) pre-training

and 2) fine-tuning, has been shown to be very effective [38, 6]. Typi-

cally, the pre-training step is performed using any readily available

data that may be related to the final task, and does not require la-

bels. Pre-training yields an informative initialization for the model,

which can then be fine-tuned in the second step using the labels to

yield the final model. More recently, self-supervised pre-training

methods have been proposed, where a pretext task is constructed

using only the model input data, such that it encourages the model

to capture final task relevant characteristics of the data.

The task of predicting whether a package builds or not is based

on the compatibility relationship between packages. Therefore,

we construct a pretext task using only the input graphs (but not

requiring the labels) that encourages the model to capture these

relationships. Inspired by the success of masked token modeling

in large language models, such as BERT [6], we propose masked

build dependency graph modeling as a pretext task. Given a build

Embedding

GCN

× #

Linear

Pool

Linear

Softmax

BUILD
Yes/No

ReLU

LayerNorm

GCN

ReLU

GCN

LayerNorm

Residual
Block

Residual Block

Figure 4: Architecture of our GNN model. Our GNN model
is constructed by stacking multiple Graph Convolutional
layers in the form of residual blocks.

dependency graph, we “hide” a random subset of packages, and

train a model to predict the hidden packages. The intuition behind

this choice of pretext task is that the model will be forced to capture

the relationships between packages to accurately predict the hidden

package and reconstruct the full original dependency graph, given

the incomplete version of it. Note that our pretext task does not

require build outcomes but only valid dependency graphs, which

are much easier to generate.

GNN
[MASK]

[MASK]

Node
classification

Figure 5: Pretext task training using GNN. For a given build
dependency graph, we hide a certain fraction of nodes by
replacing their embeddings with a MASK token and train the
model to predict the hidden packages.

In practice, given a build dependency graph and a masking frac-

tion, we randomly sample the specific nodes to mask. The nodes

are then masked by replacing their node specific embeddings 𝑥 ∈ 𝑋̃
with a special MASK token embedding, which is also learned. The

model then predicts a package for each node. The model is updated

based on the loss for masked nodes. Once the model is trained, we

apply transfer learning on this pre-trained model to fine-tune for

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

the downstream task of build outcome prediction. This is done by

removing the last linear layer in the pretext task model, adding a

pooling layer followed by a linear layer and then fine-tuning the

model on the labeled data. Figure 5 shows the overview of our

pretext learning task and figure 6 shows a high level overview of

transfer learning.

More formally, our pretext task is a classification task. However,

instead of predicting the build success, our model now predicts the

correct package for each masked node. Given a graph G = (V, E)
where𝑉 is the set of packages with𝑁 = |𝑉 |, 𝐸 is the edges capturing
the dependencies between the packages, and 𝑋 ∈ 𝑅𝑁×𝐹

are the

node features, our model computes the embeddings 𝑋̃ for all the

nodes in the graph. A target fraction of nodes to mask are selected

as the set of nodes 𝑇 , computed as a fraction of total nodes in

the graph. Embeddings of the nodes in 𝑇 are replaced with the

embedding for the MASK token. Using these masked embeddings

as input, the rest of the model predicts a logit for each of the 𝑁

possibilities, corresponding to each masked node. The model is

trained using the following objective

¯𝜃∗ = arg min

¯𝜃

𝐾∑︁
𝑖=1

∑︁
𝑣∈𝑇𝑖

𝐿(𝑣, ¯𝑓𝑣 (G𝑖 ; ¯𝜃)) (3)

Here, we use the bar to differentiate between the pretext model

and its parameters from the final model and the corresponding

parameters. 𝐾 is the total number of graphs in the dataset and this

could potentially be much larger than the number of labeled graphs

𝑀 . The loss is computed only on the masked set of nodes included

in 𝑇𝑖 for the graph G𝑖 . Once the pretext model is trained, a subset

of the build success prediction model 𝑓 parameters 𝜃 are initialized

using the corresponding subset of parameters in
¯𝜃 . The reset of the

parameters in 𝜃 are randomly initialized.

5 EXPERIMENTAL SETUP
In this section, we will provide details of the dataset used in our

study and the specifics of the model employed for training on

package dependency graphs to predict build outcomes.

5.1 Dataset
We evaluated ourmodel on several packages from the Extreme-scale

Scientific Software Stack (E4S). E4S provides open source software

packages for developing, deploying and running scientific appli-

cations on high-performance computing (HPC) platforms. These

software packages are implemented in different programming lan-

guages such as C/C++, FORTRAN, Python, Lua, and others. E4S

uses Spack for managing software packages. We used the dataset

provided in [27] and use it to evaluate our prediction model. These

packages are accompanied by their dependency packages, resulting

in a total of 367 unique packages in our evaluation dataset. In total

we explore 45, 837 unique package builds. Many of these packages

have tens and hundreds of dependencies and some of them provide

100 different package versions.

5.2 Implementation
We use PyG (PyTorch Geometric), a library built upon PyTorch,

to implement our method. Our model uses Graph Convolutional

Embedding

GCN

×"

Linear

Pool

Linear

Softmax

BUILD
Yes/No

Residual
Block

Embedding

GCN

× #

Linear

Linear

Linear

Softmax

Node
prediction

Residual
Block

Parameter
transfer

Figure 6: Overview of transfer learning used in our model.
knowledge of the pre-trainedmodel is transferred to the final
model by initializing it with a subset of parameters from
the pre-trained model. This enables us to use the learned
representations from the pre-training stage to improve the
performance of the final model on the target task.

layers with LayerNorm normalization and RELU non linearity. We

train using the AdamW optimizer with a learning rate of 1𝑒 − 3

and a weight decay of 0.05. We also use a learning rate schedule

with a linear warmup of 50 epochs followed by a cosine decay

schedule. Each model is trained for 120 epochs on a single GPU,

unless otherwise stated.

6 EVALUATION
In this section we present an evaluation of the effectiveness of both

the base GNN model as well as the pre-training followed by fine-

tuning approach. We begin by evaluating the accuracy for build

prediction task and subsequently delve into the effects of different

characteristics of the proposed architecture.

6.1 Build Outcome Prediction Evaluation

RQ1 Can BuildCheck predict the build outcome of various
package configurations with high accuracy?

6.1.1 Effect of Model Size. We conducted evaluations using a vary-

ing number of GCN layers and analyzed their impact on the build

prediction accuracy. The results of our analysis for different frac-

tions of training data are shown in Table 1. In general, increasing

the number of GCN layers does not improve accuracy significantly

and in fact the model performs slightly better when fewer Graph

Convolution layers are used. When a GNN model with a single

GCN layer is used, the information is aggregated solely over its

immediate neighborhood. This means that the model considers

only the features of a node and its immediate neighbors to make

Learning to Predict and Improve Build Successes in Package Ecosystems Conference’17, July 2017, Washington, DC, USA

Training Data %

Layers 0.1% 1% 10% 20% 50% 80%

1 56.54 74.66 84.71 87.53 90.78 91.56

3 58.67 74.09 84.10 86.63 90.55 91.82
5 59.49 74.17 83.82 86.17 90.43 91.41

7 57.69 73.19 83.73 85.89 90.11 91.64

9 58.75 73.52 83.75 86.07 90.53 91.75

Table 1: Test accuracy with respect to different number of
GCN layers with a hidden dimension of 256. When only a
limited amount of training data is available, for instance at
0.1%, the increase in the number of layers helps the model to
perform better. In the absence of sufficient data, the model
is able to construct a better representation by relying on
information from farther away nodes.

its prediction. As the number of GCN layers in a model increases,

the information gets propagated further thereby capturing farther

relationships. However, our results suggest that capturing the re-

lationship with farther away nodes does not improve the model’s

accuracy. Based on this observation, we conclude that the build out-

come for the dataset under consideration is primarily determined

by pair-wise interaction between a package and its dependencies.

When a package and its immediate dependency fails to build, the

package fails to build because its requirements cannot be satisfied.

We also evaluated themodel’s performance using varying amounts

of training data ranging from 0.1% to 80% of the entire dataset. We

reserved 20% of the entire data for testing. The results of the eval-

uation are shown in Table 1, which indicate that the accuracy is

heavily impacted by the quantity of training data. For instance,

when using only 0.1% data, which amounts to 40 examples, the

accuracy is notably low at around 59.5%.

Next, we examine the influence of the hidden dimensions on our

model. Table 2 shows the effect of the size of the hidden dimen-

sions of a GNN on the graph classification accuracy. If the hidden

dimensions are small, then the model may not be able to capture

the information and underfit. In contrast, if the hidden dimensions

are too large, then the model may overfit to the training data and

fail to generalize. Based on our evaluation, we determine that a

hidden dimension size of 256 provides an optimal balance between

model complexity and generalization performance.

6.1.2 Effect of Residual connections. While deep networks with

many GCN layers can capture complex interactions between far-

away nodes, it can be hard to train. As the input passes through

multiple layers, the gradient can become very small resulting in

the vanishing gradient problem. This can cause the model to train

poorly. Shortcut connections, also known as skip connections or

residual connections, are additional connections that bypass one or

more layers of the network allowing information to flow directly

from one layer to another without having to pass through inter-

mediate layers. Figure 7 shows the impact of the residual block for

different number of layers when trained on 80% of the dataset.

Training Data %

#dim 0.1% 1% 10% 20% 50% 80%

32 52.8 71.26 82.85 85.46 88.98 90.99

64 59.51 73.07 83.98 86.37 89.97 90.97

128 57.13 74.21 83.89 86.77 90.42 91.38

256 58.67 74.09 84.10 86.63 90.55 91.82
512 57.74 74.63 83.45 86.03 90.95 91.57

Table 2: Test accuracy with respect to different dimensions
for 3 GCN layers architecture. For small hidden dimensions,
the model is unable to capture the information resulting in
underfitting. For large hidden dimensions, the model is un-
able to generalize resulting in a decrease in testing accuracy.

1 3 5 7 9
layers

88.5

89.0

89.5

90.0

90.5

91.0

91.5

Ac
cu

ra
cy

w/o Shortcuts
With Shortcuts

Figure 7: Evaluation of the effect of shortcut or residual con-
nections. Using an architecture with shortcut connections
enables the deep models to train better and improve the ac-
curacy by over 3% in the case of a 9 layer model.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

BuildCheck (AUC = 0.95)
Random Guess (AUC = 0.5)

Figure 8: ROC curve showing True Positive and False Positive
rate at different classification thresholds. Ourmodel achieves
very good AUC of 0.95.

6.1.3 False Positive and False Negative. While false positives result

in long, expensive builds that eventually fail, false negatives result

in not attempting builds that would succeed. Typically, the set of

constraints in a package is incomplete. The constraints are either

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

too narrow, missing versions that could be built, or too broad such

that when the solver comes up with a valid solution it might not

build. When the constraints are too narrow, our preference lies in

minimizing false negatives and when the constraints are broad our

aim is to minimize false positives. In fig. 8, the ROC curve plots the

true positive rate (Number of True Positives to Number of Actual

Positives) against the false positive rate (Number of False Positives

to Number of Actual Negatives) at various classification thresholds

between 0 and 1. The model has a high Area Under Curve (AUC) of

0.95 indicating that it is capable of distinguishing between positive

and negative outcomes.

6.2 Evaluation of Pretext training and
fine-tuning

RQ2 Can self-supervised pre-training be used to reduce the
need of expensive build data to train the model?

We first evaluate the efficacy of the pretraining task and then

evaluate the effect of various hyperparameters of the pretext task

on the final task after fine tuning.

6.2.1 Effect of Pre-training task. Figure 9 shows the comparison

of prediction accuracy between a baseline model and a fine-tuned

model using the pre-trained model. The pre-trained model outper-

forms the baseline model when the training dataset is small. This

suggest that using a pre-trained model for fine-tuning on the down-

stream task using transfer learning can compensate for the limited

availability of training data to improve model accuracy. Although

the gains become less as the size of the training data increases, it

still allows the model to learn faster. Figure 10 shows the training

loss of both the models. Since the pre-trained model has already

learnt relevant representation, the fine-tuned model starts off with

a better initialization, thereby rapidly decreasing the training loss

and enabling faster convergence.

6.2.2 Effect of Masking ratios. Figure 11 shows the impact of the

masking ratio, which represents the percentage of tokens that are

masked during the pre-training of the GNN model. For larger train-

ing datasets, a wide-range of masking ratios, from 0.3 − 0.8 work

well. For smaller training dataset, the effect of masking ratio is more

pronounced. As the masking ratio increases from 0.1 to 0.6, the

performance of the model increases, which suggest that masking

a large portion of the tokens during the pre-training enables the

model to learn a meaningful representation. The model relies on the

remaining unmasked token to learn a representation that captures

the neighborhood to predict the masked token accurately. How-

ever, beyond a 0.6 masking ratio, the model’s performance starts to

degrade as it lacks sufficient information from unmasked token to

learn an effective representation leading to decreased performance.

0.05 0.1 1 10 20 50 80
Training Data (%)

60

70

80

90

A
cc

ur
ac

y

Base

Pre-trained + Fine-tuned

Figure 9: Comparison of the base model with pre-trained +
fine-tuned model. The model that has been initialized with
the parameters from the pre-trained task performs better
than the base model when training dataset is small. For the
case of 0.1% and 0.05% of the dataset, which amounts to 45
and 22 examples respectively, the fine-tuned model gives a
performance improvement of 3% over the base model.

Figure 10: Comparison of loss for the base model and pre-
trained + fine-tuned model when trained on 80% of the
dataset. Although fine-tuned model does not improve the
overall accuracy in the presence of abundant data, it expe-
dites convergence, evidenced by the reduction in training
loss in the initial epochs.

7 USING THE GNN OUTPUTS TO SELECT
VERSIONS IN SPACK

RQ3 Can the outputs of BuildCheck be used to select pack-
age versions and increase build success rate?

In this section we discuss how the outputs of the GNNmodel can

be integrated into the Spack package manager. We further demon-

strate how this integration can improve the number of overall

successful builds in Spack.

Learning to Predict and Improve Build Successes in Package Ecosystems Conference’17, July 2017, Washington, DC, USA

0.2 0.4 0.6 0.8
Masking Ratio

60

70

80

90

A
cc

ur
ac

y

0.1

1

10

20

50

80

Figure 11: Evaluation of the effect ofmasking ratio. For larger
training dataset, masking ratios don’t impact the prediction
accuracy. However, when training on small amount of data,
masking ratio of 0.40 and above help the model learn mean-
ingful representation that capture the neighborhood tomake
improved prediction on the final task.

7.1 Integrating Build Probabilities into Spack’s
Concretizer

Spack’s concretizer is responsible for resolving abstract package

requirements into concrete dependencies, versions, and build set-

tings. It uses an Answer Set Programming (ASP) solver to find valid

configurations given the package and environment requirements.

Since there may be a number of valid configurations, Spack also

uses several optimizations to find the most optimal configuration.

For package versions this involves choosing the package version

with the lowest package version weight. Packages are weighted 0 for
the most recent version, 1 for the second most recent version, etc.

Thus, the solver will pick the most recent version of all valid ver-

sions for a package. Spack may also select older versions if the user

flags the concretizer to reuse existing binaries from the machine or

public build cache.

To incorporate the outputs of the GNN model we modify the

existing version selection optimization to be a weighted sum of the

package version weight and package version pair weight. The package
version weights are included in the optimization for packages that

are present in valid configuration. Likewise package version pair
weights are included for parent-child package pairs when they are

present in the valid configurations in the solver. Assigning the

package version pair weights a larger weight in the weighted sum

gives the behavior of favoring versions from more likely to build

pairs, while falling back to the existing version preferences. For our

experiments we found 0.35 and 0.65 to work well for the package
version and package version pair weights, respectively.

The package version pair weights are computed as an ordinal

encoding of the pairwise build probability of each package pair.

Package build probabilities are computed for each parent-child pair

for all versions by inputting them as 2 node, 1 edge graphs into the

GNN and using the softmax output as its build probability. Then

for each pair, all the build probabilities are sorted and assigned an

integer encoding based on their index in the sorted list where the

pair with the highest build probability is 0. When newer versions of

a package exist that are not in the data set we use the probabilities

from the nearest pair (based on version distances).

Changing the concretizer to use the weighted sum of version

weights is accomplished by a simple change to the minimization

criteria in Spack’s ASP solver. The package version pair weights are
incorporated via a separate “facts” file that is included in the solver.

This can be generated offline and used across many different installs.

It can also be changed between systems to account for potentially

different build probabilities on different architectures and OS’s.

7.2 Packages for Concretizer Evaluation
We evaluate the new concretizer by building a set of packages from

E4S (see Section 5.1). We build each package at all of its available

versions in Spack with its default settings. This is done with both

Spack’s current concretizer and the new one proposed in Section 7.1.

Based on these builds we can compare the number of packages suc-

cessfully built between the two concretizers. Additionally, we can

investigate if any packages do not build under the new concretizer

that do with Spack’s default concretizer.

7.3 Concretizer Evaluation

Figure 12: Comparison of build rates between the two con-
cretization methods. The weighted opt. concretizer, using the
outputs of the GNN, improves the ratio of packages that build
from 89% to 96%.

Figure 12 compares the ratio of packages that build successfully

for each concretizer. This is the ratio of packages that build success-

fully to the total number of attempted builds. The new concretizer

improves the number of packages that build from 89% to 96% for

E4S. The packages that still do not build successfully with the new

concretizer are due to compiler vendor/version errors, package

definition errors, deprecated dependencies, and unknown linking

errors. We removed any results that had errors due to the source

repository being taken offline. Additionally, all of the packages that

built successfully with the original concretizer built successfully

with the new one meaning no new errors were introduced.

8 THREATS TO VALIDITY
Internal Validity:A threat to the internal validity of the studymay

arise from the GNN model simply correlating entire build graphs

or single packages with build success and not understanding how

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

Figure 13: An example improvement using the new con-
cretizer. Changing the setuptools version, which further
propagates version changes to other Python packages, leads
to a successful build (on the right).

complex packages interplay to create incompatibilities. This threat

is first addressed by the training validation tasks. It is also addressed

by using independent parent-child pairs inputted into the model to

inform actual successful builds in the concretizer.

Dataset quality and specificity may introduce further threats, as

build errors may be due to factors beyond version incompatibilities,

such as compilers and systems software, and it might not represent

broader build errors. To address this and improve model’s efficacy

for unseen software ecosystems, fine-tuning with a limited number

of samples can be performed. Since the model is trained on a sub-

stantial dataset of more than 45, 000 unique package builds from

the E4S software ecosystem, the model is likely to perform well

when tested on previously unseen configurations. This is possible

because the dependency graph of new recipes will include some

packages encountered during the training phase.

External Validity: A threat to the generalizability of BuildCheck is
that it is only applicable to scenarios where package managers pro-

vide support for compiling on a target system. Unlike using a stan-

dard Linux package manager, where we are choosing among pre-

existing builds that are known towork, in ourwork, we are choosing

configurations to build, some of which may be new untested config-

urations. Our technique could be applied to maintaining software

distributions, such as Debian, RPM, and Redhat.

There is sampling bias present in the selection of packages used

for training the GNN.While we believe E4S to contain dependencies

representative of all Spack packages, it is possible that the proposed

methodologies do not extend to new package sets or package man-

agers. Additionally, the methodology applied to the current data

set, which only varies versions, may not produce the same results

when different package metadata, such as the compiler, is varied.

9 RELATEDWORK
In the 1990s, package management systems emerged as a solution

for software installation and management [42], providing mecha-

nisms for downloading, installing, updating, and resolving depen-

dencies. Early package management systems included RPM [12]

for Linux, dpkg for Debian-based systems, and apt [17]. Over time,

package managers evolved to include sophisticated dependency

resolution algorithms. Since the version compatibility problem is

NP-complete, the version resolution can be encoded as SAT or Con-

straint Programming problems [7, 26, 16, 28], an approach that has

been adopted by various main-stream package managers [36, 3, 44].

Constraints to the solver are still provided by package main-

tainers who rely on knowledge regarding version dependencies

among packages to detect possible conflicts. Although semantic

versioning (semver) [35] is commonly used to determine package

compatibility based on the version numbers [5, 9], its complex rules

are not fully understood [8] resulting in package build breaks [33].

Consequently, developers may switch to using fixed versioning

approach, but this can also result in version conflicts and build

failtures [13]. Additionally, the study by Kula et al. [24] found that

package maintainers are often hesitant to update their dependen-

cies due to the complex inter-dependency relationship, resulting in

software systems with known vulnerabilities.

There are several approaches to identify compatible versions

of packages. One of the approaches used by maintainers is called

the wisdom of the crowd [29], where the most popular or highly

used version of a library is chosen. This can prevent build errors

to some extent. Some researchers have proposed techniques that

automatically change the code to fix the conflicts introduced by

their dependencies [45]. Others have proposed tools that identify

incompatibilities between different versions of libraries at the bi-

nary level [4]. Additionally, there are several works [34, 40, 31, 30,

32, 20] that focus on recommending third-party libraries for use

in projects. These amount to adding new dependencies and not

necessarily suitable for finding compatible package versions for

a given dependency graph. Our goal is to design an entirely data

driven method that automatically learns to capture the relevant

relationships between the packages that are useful for predicting

whether a given package dependency graph builds or not.

A recent work [27] uses Bayesian Optimization to suggest pack-

age versions that are likely to build. While that work is useful for

picking a configuration that is highly likely to build, it lacks support

for reproducible builds and a mechanism to predict success of a

specific configuration of interest. In contrast, our approach focuses

on predicting whether a given configuration can successfully build,

which is a common scenario for package upgrades. Furthermore,

the rules derived from BuildCheck are incorporated into Spack’s

concretizer solver, which is used to resolve package contraints,

and the solver ensures that it finds an optimal configuration that

satisfies minimization criteria, leading to reproducible builds.

GNNs employs message passing across the nodes to learn the

structure of the graph dataset. There are various types of GNNs,

such as Graph Convolutional Networks [23], Graph Attention Net-

work [43], and GraphSAGE [18], graph autoencoders [39] etc. [22]

developed a method for self-supervised pretraining of GNNs. More

recently, [37] proposed GCC, a generative pre-training that used

contrastive learning and transfers the learnt knowledge to down-

stream tasks. Masked language modeling, such as BERT [6], has

shown to be highly successful for pre-training tasks in Natural

Language Processing (NLP) domain. Other self-supervised learning

approaches, including GPT [38], have seen a lot of interest with

a wide variety of pre-text tasks. However, the use of GNNs and

pre-training strategies on Package dependency graph to predict the

build outcome has not been done before.

10 CONCLUSION
We have demonstrated how to combine the capabilities of Graph

Neural Networks and advanced package management technologies

to offer practical solutions for managing package dependencies. Our

tool, BuildCheck, evaluated on E4S software ecosystem consisting

of 45, 837 data points can predict build outcomes with 91% accuracy

Learning to Predict and Improve Build Successes in Package Ecosystems Conference’17, July 2017, Washington, DC, USA

eliminating very expensive trial-and-error exercise to find working

builds. Furthermore, our novel self-supervised pre-training method

using masked modeling was shown to improve the prediction accu-

racy when only a limited amount of data is available. The results

of BuildCheck make it ready to be used in production for much

more reliably successful builds. We use the results from the GNN

model with the optimization phase of Spack’s concretizer which

enables it to steer each solve towards solutions that are more likely

to build. We showed that using this for building E4S can help de-

velopers and package maintainers to avoid broken configurations

and superfluous builds. In conclusion, our results show that using

GNNs for predicting build outcomes in conjunction with a package

dependency solver can significantly improve software development

practices.

11 ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344 (LLNL-TR-857729). Work at LLNL

was funded by the Laboratory Directed Research and Development

Program under project tracking code 21-SI-005.

REFERENCES
[1] Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques Silva, and Pascal

Rapicault. 2010. Solving linux upgradeability problems using boolean opti-

mization. In Proceedings First International Workshop on Logics for Component
Configuration, LoCoCo 2010, Edinburgh, UK, 10th July 2010 (EPTCS). Inês Lynce
and Ralf Treinen, (Eds.) Vol. 29, 11–22. doi: 10.4204/EPTCS.29.2.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normal-

ization. arXiv preprint arXiv:1607.06450.
[3] 2014. Cargo: The Rust packagemanager. Online. https://github.com/rust-lang/cargo.

(Mar. 2014).

[4] Bradley E Cossette and Robert J Walker. 2012. Seeking the ground truth: a

retroactive study on the evolution and migration of software libraries. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 1–11.

[5] Alexandre Decan and Tom Mens. 2019. What do package dependencies tell us

about semantic versioning? IEEE Transactions on Software Engineering.
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.
[7] Roberto Di Cosmo. 2005. EDOS deliverable WP2-D2.1: Report on Formal Man-

agement of Software Dependencies. Tech. rep. hal-00697463. INRIA, (May

2005).

[8] Jens Dietrich, Kamil Jezek, and Premek Brada. 2016.What java developers know

about compatibility, and why this matters. Empirical Software Engineering, 21,
3, 1371–1396.

[9] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.

2019. Dependency versioning in the wild. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 349–359.

[10] P. F. Dubois, T. Epperly, and G. Kumfert. 2003.Why johnny can’t build [portable

scientific software]. Computing in Science Engineering, 5, 5, 83–88.
[11] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional

networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems, 28.

[12] Marc Ewing and Erik Troan. 1995. RPMTimeline. Online. https://rpm.org/timeline.html.

(1995).

[13] Todd Gamblin. 2021. Software integration challenges. Tech. rep. Lawrence

Livermore National Lab.(LLNL), Livermore, CA (United States).

[14] Todd Gamblin, Massimiliano Culpo, Gregory Becker, and Sergei Shudler. 2022.

Using Answer Set Programming for HPC Dependency Solving. In Supercom-
puting 2022 (SC’22). LLNL-CONF-839332. Dallas, Texas, (Nov. 2022).

[15] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam

Moody, Bronis R De Supinski, and Scott Futral. 2015. The spack package man-

ager: bringing order to hpc software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
1–12.

[16] Martin Gebser, Roland Kaminski, and Torsten Schaub. 2011. Aspcud: a linux

package configuration tool based on answer set programming. Electronic Pro-
ceedings in Theoretical Computer Science, 65, (Aug. 2011), 12–25.

[17] JasonGunthorpe. 1998. APTUser’s Guide. Online. https://www.debian.org/doc/manuals/apt-

guide/. (1998).

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems,
30.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 770–778.

[20] Qiang He, Bo Li, Feifei Chen, John Grundy, Xin Xia, and Yun Yang. 2020.

Diversified third-party library prediction for mobile app development. IEEE
Transactions on Software Engineering.

[21] K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt. 2012. Easybuild: build-

ing software with ease. In 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, 572–582. doi: 10.1109/SC.Companion.2012.81.

[22] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay

Pande, and Jure Leskovec. 2019. Strategies for pre-training graph neural net-

works. arXiv preprint arXiv:1905.12265.
[23] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In International Conference on Learning Repre-
sentations (ICLR).

[24] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Kat-

suro Inoue. 2018. Do developers update their library dependencies? Empirical
Software Engineering, 23, 1, 384–417.

[25] G Kumfert and T Epperly. 2002. Software in the DOE: The Hidden Overhead

of “The Build”. Tech. rep. UCRL-ID-147343. Lawrence Livermore National

Laboratory, (Feb. 2002).

[26] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and R.

Treinen. 2006. Managing the complexity of large free and open source package-

based software distributions. In 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE’06), 199–208.

[27] Harshitha Menon, Konstantinos Parasyris, Tom Scogland, and Todd Gamblin.

2022. Searching for high-fidelity builds using active learning. In Proceedings
of the 19th International Conference on Mining Software Repositories (MSR ’22).

Association for Computing Machinery, Pittsburgh, Pennsylvania, 179–190.

isbn: 9781450393034. doi: 10.1145/3524842.3528464.

[28] Claude Michel and Michel Rueher. 2010. Handling software upgradeability

problems with MILP solvers. In Proceedings First International Workshop on
Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th July
2010 (EPTCS). Inês Lynce and Ralf Treinen, (Eds.) Vol. 29, 1–10. doi: 10.4204

/EPTCS.29.1.

[29] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas

Zeller. 2009. Mining trends of library usage. In Proceedings of the joint interna-
tional and annual ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops, 57–62.

[30] Phuong T Nguyen, Juri Di Rocco, and Davide Di Ruscio. 2018. Mining software

repositories to support oss developers: a recommender systems approach. In

IIR.
[31] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.

2020. Crossrec: supporting software developers by recommending third-party

libraries. Journal of Systems and Software, 161, 110460.
[32] Phuong T Nguyen, Juri Di Rocco, Riccardo Rubei, Claudio Di Sipio, and Davide

Di Ruscio. 2021. Recommending third-party library updates with lstm neural

networks.

[33] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. 2021.

Breaking bad? semantic versioning and impact of breaking changes in maven

central. arXiv preprint arXiv:2110.07889.
[34] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M

German, and Katsuro Inoue. 2017. Search-based software library recommenda-

tion using multi-objective optimization. Information and Software Technology,
83, 55–75.

[35] Tom Preston-Werner. 2013. Semantic versioning 2.0. 0. (2013).

[36] Python Software Foundation. 2020. New pip resolver to roll out this year.

Online. https://pyfound.blogspot.com/2020/03/new-pip-resolver-to-roll-out-

this-year.html. (Mar. 2020).

[37] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming

Ding, Kuansan Wang, and Jie Tang. 2020. Gcc: graph contrastive coding for

graph neural network pre-training. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, 1150–1160.

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. 2019. Language models are unsupervised multitask learners.

OpenAI blog, 1, 8, 9.
[39] Arindam Sarkar, Nikhil Mehta, and Piyush Rai. 2020. Graph representation

learning via ladder gamma variational autoencoders. In Proceedings of the AAAI
Conference on Artificial Intelligence number 04. Vol. 34, 5604–5611.

https://doi.org/10.4204/EPTCS.29.2
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1145/3524842.3528464
https://doi.org/10.4204/EPTCS.29.1
https://doi.org/10.4204/EPTCS.29.1

Conference’17, July 2017, Washington, DC, USA Menon and Nichols et al.

[40] Zhensu Sun, Yan Liu, Ziming Cheng, Chen Yang, and Pengyu Che. 2020. Req2lib:

a semantic neural model for software library recommendation. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 542–546.

[41] Chris Tucker, David Shuffleton, Ranjit Jhala, and Sorin Lerner. 2007. OPIUM: op-

timal package install/uninstall manager. In International Conference on Software
Engineering (ICSE).

[42] Andre Van Der Hoek, Richard S Hall, Dennis Heimbigner, and Alexander L

Wolf. 1997. Software release management. ACM SIGSOFT Software Engineering
Notes, 22, 6, 159–175.

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat, 1050, 20, 10–
48550.

[44] NatalieWeizenbaum. 2018. PubGrub: Next-Generation Version Solving. https://medium.com/@nex3/pubgrub-

2fb6470504f. (Apr. 2018).

[45] Shengzhe Xu, Ziqi Dong, andNaMeng. 2019.Meditor: inference and application

of api migration edits. In 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC). IEEE, 335–346.

