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Abstract -- This paper presents a small-signal stability analysis 

tool for large-scale power systems with high penetration of 

inverter-based resources (IBRs). Firstly, a network transfer 

function matrix (NTFM), which represents the information of the 

system topology, transmission lines, loads, IBRs locations, etc., is 

derived to model the entire power system network. Secondly, 

small-signal perturbation method is applied to obtain the 

sequence impedance/admittance responses of IBRs considering 

the frequency cross-coupling effects. With the obtained NTFM as 

well as IBRs’ models, a multi-input, multi-output (MIMO) 

feedback system is constructed, and the generalized Nyquist 

criterion (GNC)-based stability method is employed to analyze 

the stability of the entire power system. Different testing cases 

based on a modified IEEE-14 bus system are leveraged to verify 

the proposed stability analysis tool. 

Index Terms--Black-box model, generalized Nyquist criterion 

(GNC), Inverter-based resources (IBRs), impedance/admittance 

model, stability analysis 

I. INTRODUCTION  

Modern power systems have a large shares of distribution 

energy resources (DERs), such as renewables, electrical 

vehicles, energy storage, etc. As most DREs are interfaced to 

grid by inverters, these resources are also referred as inverter-

based resources (IBRs). Due to the characteristics of the power 

electronics-based systems, such as low inertia as well as 

complex dynamics, the increased IBRs integrations could 

cause the stability issue of the entire power system. As 

described in [1], the IBRs may cause oscillations to the system 

with wide range of frequencies, which eventually challenges 

the entire system’s stable operation. 

In recent years, many efforts have been focusing on 

developing effective methods to analyze the stability of power 

systems with IBRs. Most existing work simplify the system to 

a point-to-point connection system, i.e., source-load system, 

and apply Nyquist criterion-based methods to analyze the 

system’s stability [2]-[4]. Y. Li et al. [5] proposed a stability 

analysis and location optimization method for multi-converter 

power systems.  W. Cao [6] proposed a component connection 

method to model multi-bus power systems and convert the 

system to a multi-input, multi-out (MIMO) for stability 

analysis.  

However, all the existing stability analysis methods need 

the open-box model of IBRs, i.e., having the knowledge of 

control schemes as well as all parameters of IBRs, to conduct 

the stability analysis [2-6]. While during the power system 

planning studies, manufacturers would only provide the black-

box models of IBRs and not disclose details on the control 

system architecture and parameters. Thus, it is necessary to 

develop a stability analysis tool which could be applied for the 

power systems studies with black-box IBRs.  

To fill the above-discussed technical gap, this paper 

presents the development of the small-signal stability analysis 

tool for bulk power systems with a high-level integration of 

IBRs. Furthermore, the proposed tool directly uses the 

measured impedance from black-box models instead of using 

analytical models, which reduces the implementation 

complexity and improves the feasibility of the system stability 

analysis. 

The remainder of this paper is organized as follows. Section 

II presents the detailed small-signal modeling of the power 

systems including the network transfer function matrix 

(NTFM) as well as the black-box models of IBRs (including 

models of grid-forming (GFM) and grid following (GFL) 

inverters). Sections III presents how the power system is 

converted to a MIMO feedback system and the GNC is applied 

to conduct the stability analysis. Section IV shows case study 

and validates the effectiveness of the proposed methods. 

Finally, Section V summarizes the paper and draws 

the conclusion. 
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Fig. 1. An example power system network with multiple IBRs. 

II. MODELING OF THE POWER SYSTME NETWORK 

A. Network Transfer Function Matrix 

To elaborate the development procedure of the system 

stability analysis tool, a modified IEEE-14 bus power system  
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Fig. 2. Flow chart of calculating NTFM Gnw. 

[7] with multiple IBRs is used an example, as shown in Fig. 1. 

In the system, there are three GFM inverters connected to Bus 

2, 3 and 4, respectively; one GFL inverter connected to Bus 9; 

and three ideal voltage sources (IVS) connected to Bus 1, 6 and 

8, respectively. 

Without considering the IBRs or IVSs, NTFM Gnw(s) of the 

power system is derived in this section and the detailed 

procedure is shown as a flowchart in Fig. 2 [6], [8]. Firstly, the 

specification of the power system network, including power 

rating, voltage rating, loads, transmission lines, source on each 

bus, is imported and initialized from input files. Then, Ybus(s) is 

generated with a special order per the characteristic of the 

source on each bus. In this paper, the GFM and GFL inverters 

are modeled as Thevenin equivalent voltage sources and Norton 

equivalent current sources, respectively. While IVSs are 

modeled as an ideal voltage source. Thus, there is 

𝐈 = 𝐘bus(s) 𝐕                                    (1) 

where V is the bus voltage vector, V= [V1, V2, V3, V4, V6, V8, 

V9, V5, V7, V10, V11, V12, V13, V14]; I is the current vector, which 

represents the current injected to each bus and has the same 

order as V. Note that the load on the bus is converted to an 

admittance during obtaining the corresponding elements of 

Ybus(s).     

  Moreover, Ybus(s) should be expressed in a positive and 

negative sequence format to be compatible with the sequence 

impedance/admittance model of IBRs in the following section. 

There is 

𝐘bus(s) =

[
 
 
 
 
 
𝐘pp11 𝐘pn11 𝐘pp12 𝐘pn12 . . . . . .

𝐘np11 𝐘nn11 𝐘np12 𝐘nn12 . . . . .

𝐘pp21 𝐘pn21 . . . . . . . . . . . .

𝐘np21 𝐘nn21 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .]

 
 
 
 
 

       (2) 

where subscripts p and n denote the positive and negative 

sequence, respectively. Yppnn, Ypnnn, Ynpnn, and Ynnnn are the  
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Fig. 3. Schematic diagram of small-signal perturbation method to measure the 
black-box IBR model. 

positive and negative sequence components of the nnth element 

of Ybus, respectively. 

To eliminate the elements of Ybus related to the buses without 

source connected, Kron reduction needs to be conducted [6], [8] 

on Ybus. Firstly, equation (1) is rewritten as  

[
𝐈m
𝐈n

] = [
𝐘mm(s) 𝐘mn(s) 
𝐘nm(s) 𝐘nn(s) 

] [
𝐕m

𝐕n
]                (3) 

where subscripts m and n represent the buses with and without 

source, respectively. Thus, we have Vm= [V1, V2, V3, V4, V6, 

V8, V9] and Vn= [V5, V7, V10, V11, V12, V13, V14]. 

After conducting Kron reduction, there is 

𝐈m = 𝐘matrix(s) 𝐕m                                  (4) 

𝐘matrix(s) = 𝐘mm(s) − 𝐘mn(s) 𝐘nn (s)
−1𝐘nm(s)          (5) 

According to the characteristic of the source on each bus, 

equation (4) is rewritten as 

[
𝐈v
𝐈c

] = [
𝐘vv(s) 𝐘vc(s) 
𝐘cv(s) 𝐘cc(s) 

] [
𝐕v

𝐕c
]                    (6) 

where subscripts v and c represent the voltage- and current- 

controlled voltage sources, respectively. Thus, Vv= [V1, V2, V3, 

V4, V6, V8] and Vc= [V9]. 

Finally, Gnw(s) is obtained as 

[
𝐈v
𝐕c

] = 𝐆nw(s) [
𝐕v

𝐈c
]                          (7) 

𝐆nw(s) = [
𝐘vv  − 𝐘vc𝐘cc

−1𝐘cv 𝐘vc 𝐘cc 
−1

−𝐘cc 
−1𝐘cv 𝐘cc 

−1
]           (8) 

B. Black-box Model of IBRs  

As the IBRs in the power system network are mostly black 

boxes without detailed internal information, it is necessary to 

obtain their impedance/admittance model using measuring 

method. Fig. 3. shows the schematic diagram of the measuring 

method. In this figure, small-signal positive and negative 

voltage perturbations with different frequency is applied at the 

point of common coupling (PCC) between the IBR and its 

connecting bus.  

The current corresponding to the applied voltage 

perturbation can be measured, and then using fast Fourier 

transform (FFT) calculation, the impedance/admittance model 

of GFM/ GFL inverter can be obtained. Due to the space limit, 

the details of obtaining the measured model are not presented 

here, and more information could be referred to [9].  
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Fig. 4. Impedance model of a GFM inverter. 
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Fig. 5. Admittance model of a GFL inverter. 
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Fig. 6. Constructed MIMO feedback system of the whole system. 

Figs. 4 and 5 show the measured sequence impedance model 

of a GFM inverter and the measured sequence admittance 

model of a GFL inverter, respectively. Thus, the measured 

black-box model of GFM and GFL inverters can be expressed 

as 

𝐙v(s) = [
𝐙pp 𝐙pn

𝐙np 𝐙nn
]                                  (9) 

𝐘c(s) = [
𝐘pp 𝐘pn

𝐘np 𝐘nn
]                                (10) 

where Zpp(Ypp), Zpn(Ypn), Znp(Ynp), and Znn(Ynn) are the 

corresponding positive and negative sequence impedance 

(admittance) components, respectively. 

III. GNC-BASED STABILITY ANALYSIS 

With the obtained system network model Gnw(s) as well as 

all the IBRs’ models, a MIMO feedback system is constructed 

as shown in Fig. 6. In the figure, Gvn(s) (n=1, 2, 3, 4, 6, 8) and 

Gcm(s) (m=9) are the closed-loop gain of the GFM inverter and 

GFL inverter based IBRs, respectively. Moreover, Zvn(s) (n=1, 

2, 3, 4, 6, 8) and Ycm(s) (m=9) represent the measured output 

impedance of GFM inverter and the measured output 

admittance of GFL inverter, respectively. 

Writing all the measured models of the IBRs as a matrix, 

there is  

𝐆cd(s) = diag[𝐙v1,𝐙v2,𝐙v3,𝐙v4,𝐙v6,𝐙v8,𝐘c9]      (11) 

Moreover, to conduct stability analysis of the MIMO 

feedback system, the return-ratio matrix L(s) and the return-

difference matrix F(s) are defined as 

𝐋(s) = 𝐆cd(s) 𝐆nw(s)                            (12) 

𝐅(s) = 𝐈 + 𝐋(s)                                (13) 

According to the GNC, the stability of the constructed 

MIMO system can be analyzed by two methods, one is the 

determinant-based method, and the other is the eigenvalue-

based method.   
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(a)  Control scheme of a GFL inverter 
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(b)  Control scheme of a GFM inverter 

Fig. 7. Control scheme of IBRs in the power system 

Defining that Z is the number of zeros of F(s), P is the 

number of right-half-plane (RHP) poles of L(s), and N is the  

number of clockwise encirclements of the critical point ((0, j0) 

for determinant-based method and (-1, j0) for eigenvalue-based 

method), according to the GNC [6], [10], there is  

𝒁(𝐅) = 𝑷(𝐋) + 𝑵(𝐋) or 𝒁(𝐅) = 𝑷(𝐋) + 𝑵(det(𝐅))    (14) 

As the power system network consists only passive 

components, there is no RHP poles on Gnw(s). Moreover, all the 

IBRs are designed to operate stably with ideal conditions, so 

there is no RHP poles on Gcd(s). Therefore, L(s) does not have 

any RHP poles, i.e., P(L)=0. Thus, the system is stable if and 

only if 

1) the Nyquist plot of det(F(s)) does not encircle critical 

point (0, j0) clockwise. 

2) the Nyquist plots of all the eigenvalue of L(s) do not 

encircle critical point (-1, j0) clockwise. 

 
TABLE I 

SYSTEM PARAMETERS 

 Symbol Value 

GFM/GFL inverter power rating Prated 100 MW 

GFM/GFL inverter rated voltage Vrated 138 kV 

GFM/GFL inverter circuit parameters 
Rc 0.367 Ω 

Lc 0.05 H 

P-f droop gain Mp 0.05 p.u. 

Q-V droop gain Mq 0.05 p.u. 

GFL inverter PLL 

Case1 
kppll 30 

kipll 400 

Case2 
kppll 30 

kipll 165 

GFL inverter current PI controller  
kpc 0.05 

kic 12.5 

GFM inverter voltage PI controller  
kpv 0.05 

kiv 1 

 



 

 

IV. CASE STUDY 

A modified IEEE-14 bus system with multiple IBRs shown 

Fig. 1 is used to verify the proposed stability analysis tool. For 

easy implementation, GFM and GFL inverters are built in 

PSCAD with adjustable parameters, and the control schemes 

of the GFL and GFM inverters are shown in Fig. 7, 

respectively. Moreover, the corresponding sequence 

impedance/admittance models of the GFL and GFM inverters 

are measured using the method discussed in Section II.B. Two 

different cases are studied in this section and the system 

parameters are shown in Table I. 

A. Case1: (unstable system) 

In this case, the IEEE-14 bus power system is simulated in 

PSCAD with the parameters shown in Table I. The system is 

unstable and presents oscillations in the entire system. Fig. 8 

shows the performance of the GFL inverter on Bus 9. The d- 

and q-axis currents of the GFL inverter are shown in Fig. 8 (a), 

respectively, in which the obvious oscillations around 5 Hz can 

be observed. Fig. 8 (b) shows the voltage and current at PCC, 

which also demonstrates that the system is unstable. 

Fig. 9 shows the performance of the GFM inverter on Bus 

4. Fig. 9 (a) shows the real and reactive powers of the GFM 

inverter, respectively. The powers also present obvious 

oscillations around 5 Hz. Fig. 9 (b) shows the unstable voltage 

and current at PCC.  

Figs. 10 and 11 show the stability analysis results with the 

determinant- and eigenvalue-based methods, respectively.  

Fig. 10 shows that the Nyquist plot of det(F) encircles the 

critical point (0, j0) clockwise once, which indicates that the 

system is unstable. Due to the space limit, only one Nyquist 

plot of a critical eigenvalue of L is shown in Fig. 11. The figure 

not only shows that the Nyquist plot encircles the critical point 

(-1, j0) clockwise once, which indicate the system is unstable; 

but also displays that the plot crosses the unit circle at around 

5 Hz and indicate the system will have oscillations around 5 

Hz. 

B. Case2: (stable system) 

In this case, only the parameters of the phase-locked loop 

(PLL) of the GFL inverter are changed as shown in Table I, 

and all other parameters keep the same as case 1. With the 

modified parameters, the power system can operate stably. 

Fig. 12 shows the performance of the GFL inverter on Bus 

9. Fig. 12 (a) shows the d- and q-axis current of the GFL 

inverter, respectively. All the currents can track their 

references after a small period of oscillations. Fig. 12 (b) shows 

the voltage and current at PCC and indicates that the system 

could operate stably.  

Fig. 13 shows the performance of the GFM inverter on Bus 

4. Fig. 13 (a) shows the real and reactive powers of the GFM 

inverter, respectively, which indicates that the GFM inverter 

can provide constant powers in this case. Fig. 13 (b) shows the 

voltage and current at PCC, which also presents that the system 

is stable.  

  
(a) d- and q-axis currents.                      (b) Voltage and current at PCC. 

Fig. 8. PSCAD simulation result of the GFL inverter on Bus 9. 
 

 
(a) Real and reactive powers.                (b) Voltage and current at PCC. 

Fig. 9. PSCAD simulation result the GFM inverter on Bus 4. 

 

  
             (a) Nyquist plot of det(F).                            (b) Zoomed-in view. 

Fig. 10 Stability analysis result with determinant-based method. 

 

 
    (a) Nyquist plot of the eigenvalue of L.              (b) Zoomed-in view. 

Fig. 11. Stability analysis result with eigenvalue-based method. 

Fig. 14 shows the determinant- and eigenvalue-based 

stability analysis results, respectively. The figure shows that 

neither the Nyquist plot of det(F) nor the Nyquist plot of the 

eigenvalue of L encircles their critical points, which indicates 

the system is stable.  

V. CONCLUSION 

The impedance stability analysis tool using black-box 

model is developed in this paper to analyze bulk power systems 

with high level penetration of black-box IBRs. The procedure  

 



 

 

 
    (a) d- and q-axis currents.                      (b) Voltage and current at PCC. 

Fig. 12. PSCAD simulation result of GFL inverter on Bus 9. 
 

 
   (a) Real and reactive powers.                (b) Voltage and current at PCC. 

Fig. 13. PSCAD simulation result of the GFM inverter on Bus 4. 

 

 
             (a) Nyquist plot of det(F).            (b) Nyquist plot of eigenvalue of L.                                  

Fig. 14. Analysis result with determinant- and eigenvalue-based methods. 

 

of conducting stability analysis of the power system network 

is presented in detail. Different cases based on a modified 

IEEE-14 bus power system are studied to validate the 

effectiveness of the proposed methods. The testing results 

show that both methods could determine if the system can 

operate stably with the connections of IBRs; moreover, the 

eigenvalue-based method could further predict the system’s 

oscillation frequency if the system is unstable.  
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