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Abstract—This paper presents a new modeling and analysis 

approach to address the small-signal stability issues among 
interconnected grid-forming (GFM) inverters. A novel phasor 
domain “power impedance” model is developed to capture the 
terminal characteristics of GFM inverters. Based on the developed 
models, a sum-type impedance stability criterion is proposed to 
analyze the power oscillations between GFM Inverters. The 
developed models are validated with EMT simulations and the 
stability analysis results using the proposed stability criterion can 
match both EMT simulations and eigenvalue analysis. In addition, 
the application of the developed model can be extended to the 
stability analysis of large-scale power system with high 
penetration of GFM inverters.  

Keywords— Droop control, grid-forming inverters, impedance 
modeling, power oscillations, small-signal stability 

I. INTRODUCTION 
Increased penetration of inverter-based resources (IBRs) is 

driving a paradigm shift in the electric power system. Various 
challenges for reliable grid operation [1] have emerged due to 
the transition from conventional synchronous generators to 
distributed generation resources with power electronics 
interfaces and less physical inertia. The reduction in stored 
kinetic energy resulting from increased IBR penetration can lead 
to frequency and voltage stability problems [2-3]. The majority 
of current IBRs is regulated by grid-following (GFL) control 
that follows the grid voltage and angle by a phase-locked loop 
and adjusts the current to meet the power commands. In contrast, 
grid-forming (GFM) control with the capability to 
independently regulates the inverter output frequency and 
voltage and it can also provide ancillary services to improve grid 
resilience. Droop control is a well-established method in GFM 
sources, and has been applied to many microgrid projects for 
operation of multi-paralleled sources [4-6]. 

With high penetration of GFM sources, power system 
engineers are concerned that the power oscillations could be less 
damped. Conventionally, the power oscillations in a power 
system with large generators mainly happen with inter-plant and 
intra-plant modes (about 0.1-3.0 Hz) and oscillation issues in a 
multi-paralleled GFL controlled inverter-based system could 
happen at both low frequency (less than 100 Hz) [7] and 

harmonic frequency (up to a few kHz) [8]. Recently, small-
signal stability and oscillation issues of power systems with 
GFM sources have been reported. The control parameters, 
especially P-f droop gains, have been found to influence 
microgrid stability significantly in [9]. In ref. [4], relationships 
between coupling reactance and stability margins have been 
identified and compared in single-loop and multi-loop droop 
controls, using state-space modal analysis. However, less work 
has been reported regarding the undamped oscillations among 
interconnected GFM sources for particular control parameter 
selections. In this paper, the regional power oscillation behavior 
over GFM sources will be studied to give insights for control 
challenges on systems with high penetration of GFM sources. 

As the aforementioned studies, the small-signal analysis is 
based on state-space models at certain equilibrium point and 
modal analysis. This requires detailed design parameters in each 
source. The computation should be reperformed as the system 
structure and the operating points change, making the analysis 
complicated and degrading the efficiency. On the other hand, the 
impedance-based approach has been proved to be an effective 
tool to study various oscillations between IBRs and the power 
grid [10-11]. In the conventional impedance modeling, the 
small-signal impedance of a three-phase inverter [12] is defined 
as the converter terminal input (or output) characteristics in 
terms of the ratio of voltage(V) perturbations over current(I) 
perturbations in the frequency domain. In the GFM inverter, 
however, the terminal characteristics could be dominated by the 
droop-based PQ control [6]. Therefore, the power impedance 
[13] which represents the terminal characteristics with the ratio 
of voltage perturbations over active power & reactive power 
perturbations, can provide more insights of the droop-based PQ 
control.  

In this paper, the small-signal impedance modeling 
technique is extended to power impedance in phasor domain 
[12] that can be applied to GFM sources. The model 
development details and discussions regarding the effects of 
control designs are presented. The oscillations between two 
GFM controlled IBRs are studied using the new phasor domain 
power impedance model. The power oscillations between GFM 
controlled IBRs are investigated with a new sum type of 
impedance-based stability criterion [14]. The advantage of 



 

 

impedance-based approach is that the impedance can be 
obtained through measurements and system stability analysis 
does not require detailed converter control information [15]. The 
MATLAB/Simulink-based simulations and state-space based 
eigenvalue analysis are presented to verify the proposed 
approach.     

II. OSCILLATIONS BETWEEN GFM INVERTERS 

A. System Studied 
A two-source inverter-based system, as presented in Fig. 1a), 

is studied to demonstrate the application of the proposed phasor 
domain impedance-based modelling and to investigate the 
impact of control designs on system stability. These two droop-
controlled GFM inverters are connected in parallel to support a 
100 kW resistive load. They are identical with the rated capacity 
of 100 kW, the rated frequency of 60 Hz, and the rated ac voltage 
of 480 V. The P-f droop control in Fig. 1b) is used to regulate 
the inverter output frequency command 𝜔∗ , where 𝑃$  is the 
filtered active power, 𝑃%&'  is the power setpoint, and 𝜔%&'  is the 
rated grid frequency. The Q-V droop in Fig. 1b) regulates the 
terminal voltage magnitude through 𝑉)&$  as a function of 
inverter reactive power Qf and 𝑉%&'  is the voltage setpoint. A PI 
regulator is used to regulate the inverter terminal voltage Vf to 
the commanded value. Active and reactive power sharing 
among these two inverters are achieved by the sloped droop 
curves. The values of circuit and control parameters are listed in 
Table I. It should be pointed out that the droop gains are tuned 
to be relatively high in order to explore the potential small-signal 
instabilities that may occur under this condition. 

 

  
a) 

  
b)  

 

Fig. 1. a) One-line diagram of the studied two-source system; b) Block 
diagram of GFM control, including P-f droop and Q-V droop. 

TABLE I.  MAIN CIRCUIT AND CONTROL PARAMETERS 

L1 R1 Mp Mq Kiv 

0.428 mH 0.04 Ω 9.9 % 5 % 5.86 pu/s 

B. Inter-Inverter Oscillation  
The objective of the droop control is to regulate the output 
frequency and voltage magnitude following the predefined 
droop characteristics in steady state and share the P/Q load 
proportionally. Fig. 2 shows simulation results when the P-f 
droop gain is specifically chosen at the small-signal stability 
boundary between stable and unstable conditions to explore the 
oscillation mode caused by the interactions between GFM 
inverters. Before the event, each inverter with the identical 
settings evenly shares the 100 kW load. At t = 0.2 s, 𝑃%&'  in GFM 
#2 is adjusted from 0.5 pu to 1 pu while 𝑃%&'  in GFM #1 is kept 
at 0.5 pu. Since the system is marginally stable, there are 
significant sustained oscillations after the disturbance, as shown 
in Fig. 2(a). Fig. 2(b) shows that DC components in the output 
active power and reactive power are rebalanced based on 
predefined droop characteristics. Between two inverters, 31 Hz 
low frequency oscillations components in active and reactive 
power have similar amplitudes and are 180 degrees out of phase 
indicating that two inverters are oscillating against each other. 

 
 

a) 

 
b) 

Fig. 2. Simulated power oscillations between two GFM inverters: a) time 
domain waveforms; b) FFT results of the PQ oscillations. 

III. PHASOR DOMAIN MODELS FOR GFM INVERTERS 
This section will develop a new phasor domain impedance 

model for GFM inverters. Conventionally, the small-signal 
impedance of a three-phase converter, either in sequence domain 
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or dq domain, is defined as converter terminal input (or output) 
characteristics in terms of the relationship between voltage (V) 
and current (I) perturbations. For GFL inverters which are 
mostly operated with a current controller, such V-I 
impedance/admittance models, can better represent the control 
impacts on the impedance responses or converter terminal 
characteristics. However, in the GFM inverter, the terminal 
characteristics are dominated by the droop-based PQ control, as 
shown in Fig. 3. Therefore, a terminal characteristics model in 
terms of voltage (V) vs. active power and reactive power (P & 
Q) perturbations, could provide more insights into the control. 
In GFM control, the controller directly outputs voltage 
amplitude and angle. And hence, the phasor domain approach 
[12], which directly imposes the perturbations on the voltage 
amplitude and angle, provides a good mathematical tool to 
simplify the modeling process. 

 
Fig. 3. Generic GFM inverter for impedance modeling. 

 
The overall modeling process can be summarized into two 

steps: modeling of power stage and modeling of control loop, as 
shown in Fig. 4. The control model takes the converter voltages, 
currents as inputs and its output is the modulation signal or phase 
leg output voltage. The power stage model takes the control 
model output as input and the model output will be the converter 
currents and voltages.  

 

 
 

Fig. 4. Block diagram of impedance modeling process. 
 

A. Phasor Domain Power Impedance Model  
Assume that inverter terminal voltage is perturbed in both 

amplitude and angle as defined below, 

𝑣+ = 𝑉-.1 + ∆2cos6𝜔7𝑡 + 𝜑2:; ∙ cos	[𝜔-𝑡 + 𝜑-														 

+		∆?cos6𝜔7𝑡 + 𝜑?:]                                             (1) 

where 𝑣+  is the phase a voltage, 𝑉-  is the steady-state 
fundamental voltage amplitude, 𝜔-  is the angular speed of 
fundamental frequency 𝑓- , 𝜑-  is the phase angle of phase a 
voltage, ∆2  is the perturbation in voltage amplitude, 𝜔7 is the 
angular speed of the perturbation with the frequency 𝑓7, 𝜑2  is 
the phase angle of amplitude perturbation, ∆?  is the 
perturbation in voltage angle, and 𝜑?  is the phase angle of 
angle perturbations. The phase b voltage (𝑣B ) and phase c 
voltage (𝑣C) can be described by delaying phase angle 𝜑-  by 
2𝜋 3⁄  and 4𝜋 3⁄ , respectively. In the frequency domain, the 
voltage amplitude and angle perturbation can be written as, 

∆2IIII⃗ [𝑓] = ∆2𝑒±MNO 2⁄ , ∆?IIII⃗ [𝑓] = ∆?𝑒±MNQ 2⁄     (2) 

where 𝑓 = ±𝑓7 . Three phase currents ( 𝑖+ , 𝑖B , and 𝑖C ) with 
perturbations can be derived and in the frequency domain the 
current perturbation can be defined as, 

∆SIII⃗ [𝑓] = ∆T𝑒±MNUV 2⁄ , ∆S?IIIII⃗ [𝑓] = ∆T?𝑒±MNVQ 2⁄      (3) 

where 𝑓 = ±𝑓7. To represent the perturbations in the output 
active power 𝑃 and reactive power 𝑄, they can be written as 

𝑃 = 𝑃Y.1 + ∆7cos6𝜔7𝑡 + 𝜑7:; 

𝑄 = 𝑄Y.1+ ∆Zcos6𝜔7𝑡 + 𝜑Z:;                    (4) 

where 𝑃Y and 𝑄Y are the steady-state active and reactive power, 
respectively. ∆7  and ∆Z  are perturbation amplitudes; and 𝜑7 
and 𝜑Z  are perturbation angles. In the frequency domain, the 𝑃 
and 𝑄 perturbations are 

𝑃I⃗ [𝑓] = ∆7𝑒±MN[ 2⁄ , 𝑄I⃗ [𝑓] = ∆Z𝑒±MN\ 2⁄           (5) 

where 𝑓 = ±𝑓7. It should be noted that in (4), the 𝑃 and 𝑄 are 
instantaneous active power and reactive power.  Based on the 
definition from (1)-(5). The phasor domain small-signal power 
impedance matrix J(s), representing the inverter terminal 
characteristics, can be defined as below, 
 

]∆2
IIII⃗ (𝑠)
∆?IIII⃗ (𝑠)

a = 𝑱(𝑠) ]𝑄
I⃗ (𝑠)
𝑃I⃗ (𝑠)

a	and 𝑱(𝑠) = ]
𝐽2Z(𝑠) 𝐽27(𝑠)
𝐽?Z(𝑠) 𝐽?7(𝑠)

a  (6) 

 

In addition, the relationship between P and Q perturbations 
and voltage and current perturbations can be obtained as below, 

   ]𝑄
I⃗
𝑃I⃗
a = 	 d𝑄Y 𝑃Y

𝑃Y −𝑄Y
f]∆2
IIII⃗

∆?IIII⃗
a + d𝑄Y −𝑃Y

𝑃Y 𝑄Y
f ] ∆S

III⃗

∆S?IIIII⃗
a          (7)                               

 
It is also important to model the voltage, and PQ phasor 

across the inverter phase reactor L as shown in Fig. 5. The 
equation is developed by converting a sequence domain inductor 
current and voltage equation to the phasor domain [13], and  



 

 

 
Fig.5. Phasor model of inverter phase reactor. 

 

substituting (7) to replace the current phasor with PQ phasor. It 
can be obtained as below, 

]𝑄
I⃗
𝑃I⃗
a = gd𝑄Y 𝑃Y

𝑃Y −𝑄Y
f − 𝑉-h𝒀j(𝑠)k ]

∆2IIII⃗

∆?IIII⃗
a +

																																				𝑉-𝑉j𝒀l(𝑠) ]
∆2jIIIIIII⃗

∆?jIIIIIIII⃗ a                       (8) 

where 𝑉j is the averaged amplitude of inverter phase leg output 
voltage and 

𝒀j(𝑠) =
3
4]
−𝑗[𝑌o(𝑠) − 𝑌7(𝑠)] −𝑌o(𝑠) − 𝑌7(𝑠)
𝑌o(𝑠) + 𝑌7(𝑠) −𝑗[𝑌o(𝑠) − 𝑌7(𝑠)]

a 

𝒀l(𝑠)

=
3
4]
𝑗[𝑒pMq𝑌7(𝑠) − 𝑒Mq𝑌o(𝑠)] −𝑒pMq𝑌7(𝑠) − 𝑒Mq𝑌o(𝑠)
𝑒pMq𝑌7(𝑠) + 𝑒Mq𝑌o(𝑠) 𝑗[𝑒pMq𝑌7(𝑠) − 𝑒Mq𝑌o(𝑠)]

a 

where d is the angle difference between grid voltage (va) and 
phase leg output averaged voltage (vam). 𝑌7(𝑠)  and 𝑌o(𝑠) 
represent the admittance of phase inductor 𝑌r(𝑠)  shifted by  
±𝑗2𝜋𝑓-  respectively and, 

𝑌7(𝑠) = 𝑌r(𝑠 + 𝑗2𝜋𝑓-), 

𝑌o(𝑠) = 𝑌r(𝑠 − 𝑗2𝜋𝑓-). 

B. GFM Control Modeling 

The voltage phasor 6∆2jIIIIIII⃗ ∆?jIIIIIIII⃗ :s in (8) represents the 
small-signal voltage perturbations in the inverter output 
voltages, which are determined by the feedback control loop. In 
this section, the control model will be developed based on the 
generic GFM controller presented in Fig. 1 b) and Fig. 3. The 
same approach can be applied to other control variations as well. 

In Fig. 5, the angle perturbation ∆?jIIIIIIII⃗   of the output voltage 
is determined by the active power feedback and P-f power 
frequency control; the amplitude perturbation ∆2jIIIIIII⃗  is the output 
of a dual-loop control, including both voltage regulation and Q-
V droop control. From Fig. 3, the perturbations in voltage phasor 
6∆2jIIIIIII⃗ ∆?jIIIIIIII⃗ :s can be derived as, 

]∆2j
IIIIIII⃗

∆?jIIIIIIII⃗ a = ]
𝑇rZ(𝑠) 0
0 𝑇r7(𝑠)

a ]𝑄
I⃗
𝑃I⃗
a + v𝑇r2(𝑠) 0

0 0w]
∆2IIII⃗

∆?IIII⃗
a		(9) 

where 𝑠 = 𝑗2𝜋𝑓7. The voltage loop feedback loop gain can be  
written as 𝑇r2(𝑠) =  𝑉-	𝐺2(𝑠)𝑇2(𝑠)𝐾j; reactive power feedback 
loop gain can be written as  𝑇rZ(𝑠) = 𝐺Z(𝑠)𝑇2(𝑠)𝑇Z(𝑠)𝐾j; and 
the active power feedback loop gain can be written as 𝑇r7(𝑠) =
𝑇7(𝑠)/𝑠. 𝐾j is the modulation gain and  𝐾j = {|}

h{~
.  

Substitute (9) into (8) and eliminate 	6∆2jIIIIIII⃗ ∆?jIIIIIIII⃗ :s , the 
phasor domain power impedance model can be obtained as, 

𝑱(𝑠) = ]
𝐽2Z(𝑠) 𝐽27(𝑠)
𝐽?Z(𝑠) 𝐽?7(𝑠)

a = 

					gd𝑄Y 𝑃Y
𝑃Y −𝑄Y

f − 𝑉-h𝒀j(𝑠) + 𝑉- v
𝑇r2(𝑠) 0
0 0

wk
p-

 

∙ �𝟏 − 𝑉-𝑉j𝒀l(𝑠)]
𝑇rZ(𝑠) 0
0 𝑇r7(𝑠)

a�														(10)  

C. Model Validation 
The model is validated with point-by-point circuit 

simulation and the results are plotted in Fig. 6. To simulated the 
power impedance response, the voltage perturbations are 
superimposed to the inverter terminal as in (1), resulting P and 
Q perturbation are measured to calculate each element of J(s)  in 
(10). The calculated results are compared with the analytical 
model in (10) and it can be observed that the model prediction 
matches simulation results well. In Fig. 6, the regions with ±5% 
error of the magnitude of each element in J(s) are plotted and 
they are 0.423dB above and 0.446dB below the model 
prediction, respectively; in phase responses, the regions with ±5º 
of error are plotted as well. It can be observed that both 
magnitude and phase response from the simulation results stay 
within regions. 

IV. SYSTEM STABILITY  
In this section, the developed power impedance model will 

be used to analyze the power oscillation presented in previous 
section (Fig. 2). Several impedance-based stability criteria have 
been proposed to address the small-signal stability issues of 
interconnected converters. Most of the impedance-based 
stability analysis are applying either Nyquist or Generalized 
Nyquist Criterion (GNC) to the impedance ratio of the 
subsystems. Depending on different types of interconnected 
system, such impedance ratio 𝑇j is defined as the ratio of source 
impedance (𝑍%) over load impedance (𝑍�) or load impedance 
over source impedance as follows, 

     𝑇j = 𝑍% 𝑍�⁄  or 𝑇j = 𝑍� 𝑍%⁄      (11) 

 Similarly, GNC can also be applied to return ratio matrix in 
the three-phase converter systems where the impedance 
matrices are necessary to represent the converter terminal 
characteristic. However, such impedance ratio analysis typically 
requires each part of the interconnected converter systems to 
have different characteristics, such as “load” vs. “source” and 
“current control” vs. “voltage control” . This could cause failure 
in the stability analysis of the case study in the previous section, 
where two GFM inverters have identical circuits and control 
designs. Both inverters are regulating the voltage and sharing 
partial load power while the only difference is the power output 



 

 

power setting. In such cases, it is difficult to differentiate 
between “load” and “source” to form the impedance  ratio. 
Therefore, this paper will study a more suitable stability  
criterion using the impedance sum [14].   

A. System Stability Criterion  
As discussed in Section II, the oscillation mainly occurs 

between two GFM inverters operating at different output power 
levels and the oscillating power flowing into the load is 

𝐽2Z(𝑠) 

𝐽?7(𝑠) 

𝐽27(𝑠) 𝐽27(𝑠) 
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𝐽2Z(𝑠) 

𝐽?7(𝑠) 

Fig. 6. Validation of phasor model J(s). Blue dot-dashed lines: model prediction; purple dots: point-by-point impedance sweep; red solid lines: error boundaries. 
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neglectable. Therefore, in the system model, the load can be 
treated as an open circuit. The small-signal representation of 
interconnected system can be modeled for the stability study as 
in Fig. 7. Power system ac load flow is nonlinear system, 
considering the node voltages, P and Q. However, the small-
signal model J(s) is developed as a linearized model in terms of 
6∆2IIII⃗ ∆?IIII⃗ :

s
 and 6𝑄I⃗ 𝑃I⃗ :

s
. In addition, as the power oscillations 

are between two GFM inverters, the system stability can be 
determined by the sum of two power impedances as below,   

𝑱𝟏(𝑠) + 𝑱𝟐(𝑠)   (12) 

  
Based on the Generalized Nyquist Criterion [5], the stability of 
(12) can be determined by following steps: 

1. Define N as the number of clockwise encirclements of 
the orign by the Nyquist plot of  𝑑𝑒𝑡[𝑱𝟏(𝑠) + 𝑱𝟐(𝑠)], and 
N will be  negative if encirclements of the orign are 
counter-clockwise;  

2. Define Pop as the number of unstable poles of 𝑱𝟏(𝑠) +
𝑱𝟐(𝑠); 

3.  The number of close-loop system unstable poles R = N+ 
Pop or the system is stable if and only if N = - Pop. 

B. GFM System Stability Analysis 
From the analytical model developed in (10), the poles of 

𝑱𝟏(𝑠) + 𝑱𝟐(𝑠)  can be identified as {-22030.4, -100, -
4.46302*10-6, 21843.5}, and there is one right half plane pole 
(RHP) which makes Pop = 1. The Nyquist plot of  𝑑𝑒𝑡[𝑱𝟏(𝑠) +
𝑱𝟐(𝑠)] is plotted in Fig. 8 a) as it can be seen that the Nyquist 
plot moves very close to the origin but does not encircle it and 
hence N = 0. As a result, the number of the close-loop system 
poles is R = 1 and the system is unstable. By slightly reducing 
the P-f droop gain Mp in Table I from 9.9% to 8%, the poles of  
𝑱𝟏(𝑠) + 𝑱𝟐(𝑠) remain the same. In Fig. 8 b), the Nyquist plot 
starts to encircle the origin counterclockwise which makes N = 
-1 and R = 0 and hence the system is stable. In addition, 
Matlab/Simulink simulation result in Fig. 9 shows the two 
converters are stable without sustained oscillations. It should be 
noted that the focus here is to validate the stability analysis 
instead of performance improvement. 

C. Eigenvalue Analysis 
Eigenvalue analysis of the linearized state-space model of 

this system has also been carried out to verify the proposed 
power impedance model. The differential equations are 
linearized around the operating point. With participation factor 
analysis, three states are identified to contribute to the 
eigenvalue pair that is marginally stable at the chosen P-f droop  

 
 

a) unstable case 
 

 
 

b) stable case 
 

Fig.8. Nyquist plot of 𝐉𝟏(s) + 𝐉𝟐(s). 

 

 
Fig. 9. Simulation result of the same test case as in Fig. 2. Mp = 8%. 

 

gain, which are provided in TABLE II. q-h  is the angle 
difference between these two GFM inverters. It can be seen that 
this power oscillation mode is mainly associated with power 
state variables and the angle difference which are mainly 
controlled by the P-f droop gain. Therefore, the adjustment of 
the droop gain value affects this mode. 

 



 

 

TABLE II.  DOMINANT EIGENVALUES 

Mode Dominant 
States 

Participation 
Factor 

± j195 

P1f 0.238 

P2f 0.241 

q12 0.538 

 

When the rest of control and circuit parameters remain 
unchanged, the migration of this pole pair resulting from 
increasing the droop gain is shown in Fig. 10. The system is 
stable with Mp = 8%. With the gain increasing, the pole pair 
gradually gets closer to the imaginary axis. The system purely 
oscillates at the oscillation frequency of 31 Hz when Mp is 
increased to 9.9%. The pole pair will move to the RHP and the 
system will be unstable as Mp continues to increase. This result 
matches with the stability analysis with the proposed model. 

 

 
 

Fig.10. Root trajectory of the system with increase in Mp. 7.8%< Mp < 10%. 
 

V. SUMMARY 
In this paper, a phasor domain power impedance model is 

developed and applied to power oscillation studies of two GFM 
inverters. The model and analysis are validated with circuit 
simulations and state-space model eigenvalue analysis. It is 
found that the P-f droop-gain has significant impacts on the 
power oscillations. The developed impedance models are used 
for a small-scale system in this paper. However, the models can 
also be used for the stability analysis of large power systems 
with multiple converters and generators. When used for the large 
system studies, the phasor impedance model of the 
interconnected network should be developed and the system 
stability criterion for different source will be applied.   
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