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ABSTRACT

Fast, accurate imaging of complex, oil-bearing ge-
ologies, such as overthrusts and salt domes, is the key
to reducing the costs of domestic oil and gas explo-
ration. Geophysicists say that the known oil reserves in
the Gulf of Mexico could be significantly increased if ac-
curate seismic imaging beneath salt domes was possible.
A range of techniques exist for imaging these regions,
but the highly accurate techniques involve the solution
of the wave equation and are characterized by large data
sets and large computational demands. Massively paral-
lel computers can provide the computational power for
these highly accurate imaging techniques.

A brief introduction to seismic processing will be
presented, and the implementation of a seismic-imaging
code for distributed memory computers will be dis-
cussed. The portable code, Salvo, performs a wave-
equation-based, 3-D, prestack, depth imaging and cur-
rently runs on the Intel Paragon and the Cray T3D.
It uses MPI for portability, and has sustained 22
Mflops/sec/proc (compiled FORTRAN) on the Intel

Paragon.

INTRODUCTION

A key to reducing the risks and costs of associated
with oil and gas exploration is the fast, accurate imaging
of complex geologies. Prestack depth migration gener-
ally yields the most accurate images, and one approach
to this is to solve the scalar wave equation using finite
differences. As part of an ongoing Advanced Computa-
tional Technologies Initative (ACTI) project, a finite dif-
fetence, 3-D prestack, depth migration code for a range
of platforms has been developed. The goal of this work is
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to demonstrate that massively parallel computer; (thou®
sands of processors) can be used efficiently for seismic
imaging, and that sufficient computing power exists (or
soon will exist) to make finite difference, prestack, depth
migration practical for oil and gas exploration.

Several problems have been addressed to obtain an
efficient code. These include efficient 1/0, efficient paral-
lel tridiagonal solves, and high single-node performance.
Furthermore, portability considerations have restricted
the code to the use of high-level programming languages
and interprocessor communications using MPI.

Efficient I/O is one of the problems that have been .
addressed. The initial input to our seismic imaging code
is a sequence of seismic traces, which are scattered across
all the raids in the I/O subsystem and may or may not
be in any particular order. The traces must be read,
Fourier transformed and redistributed to the appropri-
ate processors for computation. In Salvo, the input is
performed by a subset of the nodes, while the remaining
nodes perform the pre-computations in the background.

A second problem that has been addressed is the ef-
ficient use of thousands of processors. There are a couple
types of parallelism available in a finite difference solu-
tion of the wave equation for seismic imaging. The first
and most obvious is frequency parallelism; however, this
limits the available parallelism to hundreds of proces-
sors and restricts the size of problem that can be solved
in-core. Spatial parallelism addresses both of these prob-
lems, but introduces another issue. Specifically, an alter-
nating direction implicit (ADI) method (or a variant) is
typically used for the solution at each depth level, which
means that tridiagonal solves must be parallelized. Par-
allelizing individual tridiagonal solves is difficult, so the
problem has been handled by pipelining many tridiago-
nal solves.

The remainder of this paper describes in more detail
the algorithms and implementation used in Salvo and
presents some numerical results.
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IMAGING ALGORITHM

The following development is an industry-standard
approach [Claerbout 1985, Yilmaz 1987, Li 1991], and is
repeated here for reference. The equation used to model
the propagation of pressure waves through the earth is
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where P(z,y, z,1) is pressure, and v(z, y, z) is the acous-
tic velocity of the media. This equation is transformed
to a Helmholtz equation and then to the paraxial wave
equation,
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where w is the frequency of the propagating wave. The
positive and negative signs correspond to upcoming and
downgoing wave fields.

The evaluation of the square-root operator is nu-
merically difficult, hence it is approximated by a se-
ries that has its origin in a continued fraction ex-
pansion [Claerbout 1985, p. 84] [Yilmaz 1987, p. 513].
The continued fraction expansion can be represented
by ratios of polynomials [Ma 1981] and the polyno-
mial coeflicients can be optimized for propagation an-
gle [Lee and Suh 1985]. With these approximations, the
paraxial wave equation can be written as

aP W ~ @S
5 =ty |t lTras| P ®)
where s an 5 ag
v? 8 v: 8
and « and f; are the expansion coefficients
[Lee and Suh 1985).
The terms of the expansion,
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are separated by the method of fractional steps
[Fletcher 1988] and a sequence of (m + 1) equations are
solved (i.e., one for each term on the right-hand side of
Eq. (5)). The solution from one step in the sequence is
fed into the next step until the last step produces the
solution at the next depth level.

The solution to the first equation,

is simply a complex exponential. The primary compu-
tational load is the solution of equations of the form
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Another operator splitting similar to the method of frac-
tional steps is performed but this time in the ¢ and y

directions. To convert the operator, S, to a linear com-
bination of S; and Sy, we write
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The operators in Eq. (6) are once again split by method
of fractional steps to produce the sequence of equations
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These equations produce tridiagonal systems that can be
solved efficiently.
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To correct for errors produced by neglecting
the last two terms in Eq. 6, a filter is used
[Graves and Clayton 1990]. This amounts to solving the
equation
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Finally we apply the absorbing boundary conditions
described in [Clayton and Engquist 1980].

1/0

Seismic datasets consisting of recorded pressure
waves are often large. Even if the computations can be
performed in-core, the time required to read the initial
seismic data, read the velocity models and write the im-
ages is substantial. In Salvo, the effect of the “I/O bot-
tleneck” is mitigated by performing preliminary compu-
tations and data redistribution using nodes not directly
involved in the I/0.




The trace dataset is distributed across many disks
to increase the total disk-to-memory bandwidth. A sub-
set of the available nodes is assigned to handle the I/0,
and each node in this subset, termed an I/O node, is
assigned to handle I/O from one file system.

The remaining nodes, termed compute nodes, can
complete computations and communications necessary
before the migration can begin. Each compute node
is assigned to an I/O node, and performs the pre-
computations on the data read by its I/O node. Cur-
rently the pre-computation comprises fast Fourier trans-
forms (FFTs), but other computations could also be per-
formed. If we assign a sufficient number of compute
nodes to each I/O node, the time to read a block of
seismic data will be greater than the time required to
compute the FFTs and distribute the frequencies to the
correct nodes for later computations. Thus, the compu-
tation time will be hidden behind the I/O time.

A model of the I/0 and pre-computations and com-
munications can be developed to determine the proper
balance between 1/O nodes and compute nodes. The
I/O node begins by reading a block of data from a disk
and distributing this data to a set of compute nodes.
The time required for this operation is approximately
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where ® is the disk bandwidth, b is the blocksize, « is
communication latency, 8 is the time to communicate
one byte, and ¢ is the number of compute nodes.

The time to compute the FFTs, 7, is machine and
library dependent. Because 7 can be measured easily
on most platforms, it is not further decomposed into
computational rates.

After completing an FFT, the compute node must
distribute each frequency to the processor assigned to
perform the seismic migration for that  and y location
and frequency. The time to evenly distribute the fre-
quencies of one trace is approximated by

e

where p,, is the number of nodes at a specific # and y
location, that is, the number of nodes in the frequency
decomposition, n is the number of words in a frequency
trace, g is the size of one word of data (g = 8 for single
precision, complex numbers). The total time required to
FFT the traces and redistribute frequencies for &/(cn g)
traces, (i.e., the number of traces which one compute
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Figure 1: The graph shows cop; as a function of p,,. Cir-
cles correspond to actual runs in which I/O nodes had
no idle time; squares correspond to actual runs in which
I/0 node were idle for part of the run.

node processes) is approximately

N

To determine the minimum number of compute
nodes for each I/O node, ¢,pt, the time required to read
and distribute a block of data must be equal to or greater
than the time required to FFT the time traces and re-
distribute frequencies. This yields
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All of the variables in the expression for c,p¢, ex-
cept p,,, are either machine constants or defined by the
problem size. Figure 1 shows the ¢,p: as a function of p,
and points indicating several “real” runs. We see that
the model does a good job of predicting whether the run
time is dominated by disk reads or by computation and
communication.

TRIDIAGONAL SOLVES

At each depth step the algorithm solves a sequence
of tridiagonal systems. It is difficult to parallelize the
solution of a single tridiagonal system, but this difficulty
is offset becanse there are many such systems. Salvo
takes advantage of this by setting up a pipeline. That




is, in the first stage of the pipeline, processor one starts
a tridiagonal solve. In the second stage of the pipeline,
processor two continues the first tridiagonal solve, while
processor one starts a second tridiagonal solve. This
process continues until all processors are busy.

In the implementation of a pipeline, there are two
sources of parallel inefficiency. The first is communi-
cation between processors. This communication time
is dominated by the message latency since very small
amounts of data must be transferred. This can be offset
by grouping several tridiagonal solves into each stage of
the pipeline.

The second source of parallel inefficiency is proces-
sor idle time associated with the pipeline is being filled
or emptied. This is dominated by the computation time
of each pipeline stage. It can be reduced by reducing
the computation time, but it is increased by grouping
several tridiagonal solves in each stage of the pipeline.

The total parallel overhead can be minimized by
choosing how many tridiagonal solves are grouped into
each stage of the pipeline. The number of tridiagonal
solves to group is based on the following model. The
communication time is approximated by
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where N is the total number of tridiagonal solves, b is the
number to be grouped into each stage of the pipeline, «

is the communication latency, and S is time to commu-

nicate one byte. The pipeline idle time is approximated
by
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where W is the total number of floating point operations
required at each grid point, » is the number of points in
each stage of the pipeline, p is the number of processors
in the pipeline, and 7 is the computational time required
for one floating point operation.

The value of & that minimizes the total overhead,
bmin is computed by summing Teomm and Tpipe, differ-
entiating with respect to b, setting the result equal to
zero and solving for b. This yields
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We have found this model to be quite accurate, and
all results presented later in this paper use this value of
bmin to improve performance.
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Figure 2: Impulse response for a filtered migration. An
z-z section through the center of the migration is shown
in (a), and an z-y section through the 60° propagation
angle (b).

RESULTS

To validate Salvo, several tests were performed to
ensure accurate imaging of reflecting layers. The prob-
lems selected for the test cases include a simple impulse
response from a hemispherical reflector, the poststack
migration of the French Model [French 1974], and the
prestack migration of an SEG/EAEG-Overthrust-Model
section [Aminzadeh et el. 1994].

The impulse-response problem is a good initial
problem, because of the simple inputs and the simple
solution. The test can be described as a source impulse
which is initiated at the center of the hemispherical re-
flector. This impulse propagates into the earth as a
hemispherical wave. The reflected impulse coalesces at
the center of the hemispherical reflector, and is recorded
by a geophone. Thus, the inputs for this test are a source
trace with an impulse at some time, a receiver trace with
an impulse at some later time, and a constant velocity
field.

Figure 2 shows a typical output for this problem.
The parameters used for this run are

ny; = 101, Az =5m,

ny = 101, Ay =>5m,

n, =100, Az =5m,

ny = 128, At = 0.004 s,
n, = 63, v =3000m/s.

In Fig. 2(a), the shape of the hemispherical image
in comparison to the reflector is accurately determined
up to a propagation angle of 65 degrees. Beyond 65

degrees, the image curls back to the center of the domain.
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Figure 3: The French Model acoustic velocity (a) and
Salvo solution (b).

This structure is termed the cardioids of the solution
[Bunks 1995]. They are caused by the approximations
to the square-root operator in Eq. (3), where evanescent
energy has been introduced.

In Fig. 2(b), an z-y plane through the solution is
shown. The depth of the plane was selected so that the
60 degree propagation angle is located on the hemispher-
ical reflector. The cross-section of the hemispherical re-
flector is nearly circular, which should be the case since
this is within the 65 degree approximation limits. So
although a slight diamond shape remains, any further
refinements in the filter would add little value to the
solution.

The French Model [French 1974] is a velocity model
with trace data generated from an exploding reflector
algorithm. The velocity model has 111 x 111 x 250 grid
points with a grid spacing of 100 ft. x 100 ft. x 20 ft.
Therefore, the total velocity-model volume is 11,000 ft
x 11,000 ft x b000 ft. A 2-D section through the 3-D
velocity model is shown in Fig. 3(a). There are several
constant velocity layers at different dip angles and two
dome structures. (Only one dome is shown in the figure.)
All the flat dipping reflectors are angled into the page so
that the worst case, reflectors along the line y = %=z, is
tested.

(b)

(a)

Figure 4: SEG/EAEG Overthrust 2-D Section: velocity
model (a) and Salvo solution (b).

The trace dataset is generated by an exploding re-
flector algorithm and requires poststack migration. With
a slight modification, the Salvo code can handle post-
stack data and perform the poststack migration. A cal-
culated solution is shown in Fig. 3(b) using the French
velocity model and the poststack traces. Good agree-
ment with the velocity model is seen.

Finally, a small region of the synthetic SEG/EAEG
Overthrust Model was used to evaluate the Salvo code.
This model has more variations in velocity, both in depth
and in the horizontal directions. The velocity model for
the entire Overthrust Model has 801 x 801 x 187 grid
points with 25 m spacing in each direction. The selected
subvolume has 100 x 100 x 150 grid points, and a 2-D
slice of this subvolume is shown in Fig. 4(a).

The trace dataset was generated with the original
SEG acoustic-wave-propagation code and used as input
to the Salvo code. The trace dataset was used in its
raw form and did not have deconvolution performed or
first arrivals removed. The latter caused noise near the
surface. The 2-D section of the 3-D Salvo solution is

-shown in Fig. 4(b), and again, good agreement with the

velocity model is evident.

We are continuing to test and validate Salvo.

PERFORMANCE

To test the computational performance of Salvo, the
sample impulse problem was used. The spatial size of the
impulse problem has been adjusted so that each proces-




Pz X Py X po | Runtime (sec.) Efficiency (%)
Spatial Parallelism

Ix1x1 84.1 100.0
2x1x1 92.4 91.0
2x2x1 103.2 81.5
3x3Ix1 108.7 774
4x4x1 108.9 77.2
5xbxl 112.2 75.0
6x6x1 114.8 73.3
TxTx1 115.6 72.8
8x8x1 116.2 72.4
Frequency Parallelism

I1x1x1 84.1 100.0
1x1x2 42.21 99.6
1x1x4 21.19 99.2
1x1x8 10.63 98.9
1x1x16 5.3 98.2
1x1x32 2.71 97.0
1x1x64 1.40 93.8

Table 1: Timings for a sample impulse problem for spa-
tial, frequency, and mixed parallelism. Single processor
times are estimated. All other times are measured.

sor has approximately a 101 x 101 spatial grid. Sixty-four
frequencies have been retained for the solution indepen-
dent of how many frequency processor were used.

Timings for the sample impulse run are shown in
Table 1. From these numbers, we can make a few state-
ments about the parallelism of the migration routine.
First, the spatial parallelism is very efficient as soon as
the pipeline is fully utilized (after 3 x 3 x 1 processor
mesh). However there is a penalty for introducing the
pipeline in each direction, which is about 10% for each
(ie, 1x1x1at 100% to 91% for 2 x 1 x 1, and to
81% for 2 x 2 x 1). The origins of this “overhead” is still
under investigation. ‘

Second, the frequency parallelism is very efficient,
staying in the upper 90’s for most of the problems. This
is expected, since frequency parallelism requires little
communication during the solve. The primary communi-
cations are a broadcast of velocity data at the beginning
of each depth step and a summation to produce an image
at the end of each depth step.

CONCLUSIONS

In this paper, an implementation of a wave-

equation-based, finite difference, prestack, depth migra-
tion code for MPP computers has been presented. The

results of several test runs were presented to show the ac-
curacy of the code. Also, timing results and performance
models have been presented to show that the code can
be tuned to run efficiently on MPP computers.
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