/W%a)
SANDIA REPORT

SAND96-8221 « UC-405
Unlimited Release
o« Printed March 1996

Preconditioning a Product of Matrices
Arising in Trust Region Subproblems

e
P

crmsrs

Mary E. Hribar and T. D. Plantenga

WWW me

" zﬂ{(/ﬁ“‘i lﬁmtuggulu} il %&E}i&é“HE}}“WMR&W&M“ﬂmn Hﬂﬂllsimm.,
Prepared b BT y -

i1 il

ﬁl%%dlﬁeNatYonﬁl L?ﬂoralwﬁé i i5 é};d“ﬁ lri‘r‘ﬂ(} Caliorgia 84551
rque, Ne exIco Y8 0[6 aliorpia ind
gL fﬁaeié’éf%&éé’éf“ wr e
Uﬂ?“ k] i K ‘g | free,
L I F
el A 1 k
\

Wi W%W$g o
A ﬂ“"lhu (e e

’ e 1 ' "Zt s 3
J ‘. H' tl,g‘ {/"’L h

s f’”tm

”m‘:d,ﬂuw‘:’/ _j}\'mm;i }(}
w*r‘;; ,j t‘~:,,

] . ;
o Al S5 3
K 23 Ay Py >
2 Liad hy £ ' i
ﬁx\. P ks E* ALt
o L | TR, £ R N
A iear T H o
1 iy .
% U
% Rl »'4.; it 3
Y e
. S = i L
g
\ §
g Rt ¢
[1 1. Y ‘j ,
NN o }
LS .

§1) Wiﬁﬁﬁ?‘(ﬁhm i
|

{ ot {
o Loy ge b e
} I en s, I
! b ,‘s,.'_:. 3 | 3:‘ '7“;&
= gt AR Mt
“}U);‘ { ;») ; ‘,m, ' afin

-ﬁm Rk

. j\“z f i
llllll i “"H gy

m','ﬂ dll

SF2900Q(8-

m

DISTRIBUTION OF THIS DOCIMENT IS UNLIRITED B3

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any
of the contractors, subcontractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process.disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof or any of their contractors or
subconractors. The views and opinions expressed herein do not
necessarily state or refiect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:
Office of Scientific and Technical Information
P. O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from:

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd.

Springfield, VA 22161

SAND96-8221 UC-405
Unlimited Release
Printed March 1996

Preconditioning a Product of Matrices Arising in Trust Region Subproblems

Mary E. Hribar and T.D. Plantenga
Scientific Computing Department
Sandia National Laboratories
Livermore, CA 94551-0969

ABSTRACT

In solving large scale optimization problems, we find it advantageous to use iterative methods to
solve the sparse linear systems that arise. In the ETR software for solving equality constrained
optimization problems, we use a conjugate gradient method to approximately solve the trust
region subproblems. To speed up the convergence of the conjugate gradient routine, we need to
precondition matrices of the form ZTW Z, which are not explicitly stored. Four preconditioners
were implemented and the results for each are given.

3/4

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

1 Introduction

This paper focuses on solving certain large scale linear systems efficiently. Solving a system
Az = b is a recurring problem in numerical methods. The specific linear system we will consider
is one which arises in solving optimization problems.

We are interested in solving large optimization problems of the form:

minimize f(z) (1.1)
subject to h(z) =0 (1.2)
g(z) <0, (1.3)

where 2 € R*, f: R* - R, h: R® —» R% and g : R® —» R}, and f,h,g € C! . In these
problems, n is large and each component function of f(z), h(z), and g(z) may be a function of
relatively few unknowns. Thus, the matrices of first and second derivatives are often sparse.

In many methods for solving (1.3), a linear system, which has the form ZTW Zd = —g, will
have to be solved at each iteration. The vector g is the gradient of the Lagrangian function
(defined in Section 1.1), the matrix W is an # x n matrix of exact or approximated second
derivatives of the Lagrangian, and Z is a basis for the tangent subspace of the constraints. These
Z and W matrices are large and the product ZTW Z is often dense. Thus, an iterative method,
such as conjugate gradients, which doesn’t require the explicit storage of ZTW Z, is usually used
to solve the system.

Our approach to solving (1.3), involves solving a quadratic problem at each iteration. We
are also using a trust region to limit our step size to guarantee global convergence. We solve the
quadratic problem by.decomposing it into two subproblems: a vertical suproblem and a horizontal
subproblem. It is the horizontal subproblem that contains the linear system of interest. We use
a conjugate gradient method to solve the linear system ZTWZd = g, subject to a scaled trust
region. The solution of this subproblem dominates the execution time of the code. We are
interested in improving this routine; thus we are looking for a preconditioner for ZTW Z.

We will briefly describe this horizontal subproblem and then return to the discussion of pre-
conditioning conjugate gradients.

1.1 The Horizontal Subproblem Definition

We will consider the solution of the optimization problem with only equality constraints. We will
solve problems with inequalities by transforming them to equality constrained problems. Solving
(1.3) is equivalent to solving a series of equality constrained problems, with the addition of slack
variables to the inequality constraints and a log barrier term to the objective function.
This equality constrained problem is
minimize ¢(z) (1.4)
subject to ¢(z) = 0, (1.5)

where ¢ : R — R and ¢: R® — R™. The Lagrangian for this problem is
L(z,2) = ¢(2) — AT e().

Our approach to solving the optimization problem is to solve a sequence of quadratic prob-
lems, with a trust region for global convergence. Each problem involves minimizing a quadratic
approximation of the Lagrangian subject to a linearization of the constraints. There is also a
trust region constraint which limits the step to be within a region where we trust our quadratic
model to be accurate. The quadratic problem is:

1
minimize Ve(zx)Td + EdTI’V(zk, Ar)d (1.6)
subject to A(z)Td+ ¢(zr) = 0 (1.7)
lldll < Ag. (1.8)

whe1e A(z) = [Va(z),..., Ven(2)] contains the gradients of the constraints, and W(z,\) =
V2,.L(x,) contains the second derivatives of the Lagrangian, or some approximation to them.
Unfmtunately, the problem in (1.6) - (1.8) may not have any feasible solutions. So, our
approach, which is Byrd and Omojokun’s method [2, 7], decomposes the problem into two sub-
problems, the vertical subproblem and the horizontal subproblem, each of which is guaranteed to
have a solution.
The vertical subproblem finds the point closest to satisfying the linearization of the constraints,
while also staying within a fraction of the trust region radius. The vertical subproblem is:

minimize [JAF v + ci| (1.9)
subject to [|v|| < CAg, (1.10)

where A; = A(xx) and ¢x = c(zr). The relaxation parameter { may have any value in the interval
(0,1).

The horizontal subproblem finds the full step d which minimizes the objective function (1.6),
while not moving any closer to the feasible manifold than the solution to the vertical subproblem,
vk, does. The step d must also lie within the trust region radius. The formulation of the horizontal
subproblem is:

minimize Ve(zr)Td + —lidTI/V(:ck)d (1.11)
subject to A¥d = Afw (1.12)
lldll < A . (113)

Once the step d is found by solving the two subproblems, the remaining algorithm is a standard
trust region method. If the step provides good decrease, we accept the step and increase the trust
region. Otherwise, we reject the step and decrease the trust region.

The ETR software, (Equality constrained optimization using Trust Regions), is an imple-
mentation of Byrd and Omojokun’s method by Lalee, Nocedal, and Plantenga [5, 8]. The code
was written to solve large scale problems, so the subproblems are only approximately solved while
maintaining reasonable storage requirements. Computing the horizontal step dominates the exe-
cution time for many problems. We are, thus, currently interested in improving the efficiency of
the routines which solve the horizontal problem.

We can eliminate the equality constraints (1.12) in the horizontal problem by making a sub-
stitution for d. If we let Z; be a basis for the nullspace of Ag, we can define the step to be the
sum of two orthogonal components: d = v, + Zu. The solution to the vertical problem, vy is in
the range space of A;. We form a n X (n — m) matrix Z; which is a basis for the nullspace of A.
Now, the subproblem (1.13) can be rewritten as:

1
minimize g;{Zku + §uTZEW'kau (1.14)
subject to ||Zpull < Ay, (1.15)

where Wy, = W(ay), gr = (Vé(zk) + Wivk), and Ay = /A2 — |lvg|[2. This problem is now in the
form of a standard trust region problem: minimizing a quadratic objective subject to the trust
region constraint.

There are a couple of options for computing Z, so that A7 Z; = 0. One is to use the QR
factorization of Ax. However, this factorization may become dense, even if A, is sparse. So, we
use the direct elimination of Ay instead. We partition A7 into

AZ‘ = [By N (1.16)
and then define Zj, to be
=1 a7
Z = l —Bl} Ny] . (1.17)

To preserve sparsity, we only store the LU factors of Bi. So, Zj, is not explicitly stored, but the
products Z;u and Z;fa: can be computed.

We will use Steihaug’s method [9], which is a modification to the conjugate gradient method
to solve trust region problems, to solve the horizontal problem (1.14) - (1.15).

2 Solution of Horizontal Problem

Since the reduced Hessian, Z{ W}, Zy, is not explicitly stored, we need to use an iterative method to
approximately solve the horizontal problem. However, we need to allow for the reduced Hessian to
be indefinite and for the trust region constraint. Steihaug’s method uses the conjugate gradient
iteration, but has three termination tests, instead of one [9]. If the minimizer of (1.14) lies
within the trust region, the method will terminate at this answer. However, the ‘method will
also terminate when an iterate violates the trust region bound or when a direction of negative
curvature is detected. In either of these cases the step is truncated to the length of the trust
region.

Steihaug’s method gives only an approximate solution to the trust region problem. It uses the
steepest descent direction as the first direction. The first iterate is the point where the quadratic
objective function is minimized along the steepest descent direction, subject to the trust region
constraint, which is the Cauchy point. All of the iterates after this point will decrease the
objective function. Since the solution found by Steihaug’s method is as much as a fraction of the
decrease from the Cauchy point, we are guaranteed global convergence of the entire algorithm.

~1

In addition, this method will take Newton steps, if the trust region is big enough, guaranteeing
local quadratic convergence.

The trust region constraint in (1.15) is scaled. Figure 1 contains the details of Steihaug’s
method to solve this scaled trust region problem. We will refer to this algorithm as the correct
Steihaug.

Given €, € > 0
(Zu)o = 0; 70 = —ZF Gk; to = (ZF Z1) ro; (ZP)o = Zxto; 5 = 0;
If \/Tg‘io < €
Then return the step (Zu) =0
Loop
If (Zp)TWi(Zp); < 0
Then find 7 such that (Zu) = (Zu); + 7(Zp); minimizes (1.14),
(Zw)|l2 = Ag. Return (Zu).
a; = r]t;/(Zp)TWi(Zp);
(Zu)j41 = (Zu); + a;(Zp);
I |(Zu)jslle > Ak
Then find 7 > 0 such that (Zu) = (Zu); + 7(Zp);,
[1(Zw)]|2 = Ak. Return (Zu).
ris1 = 15 = 0; 2 Wi(Zp);
tiv1 = (2§ Zk) i
If \/ Tyt < e\/ rd'to Then return (Zu);41
Bit1 = 7‘JT+1tj+1 / 7',1%.1'
(Zp)js1 = Zitjpr + Bix1(Zp);
j=j+1
Continue

Figure 1: The correct Steihaug routine to solve horizontal problem.

At each iteration, the solution of the linear system ZZ'Zktj.{_l = 7j41 is computed approx-
imately, using conjugate gradients. Solving this linear system can become very costly. If we
eliminate solving this system at each iteration, we are then solving the trust region problem with
an unscaled trust region constraint:

1
minimize §} Zpu + §uTZEWkau (2.18)
subject to |ju|| < A, (2.19)

When the solution of (2.19) lies within the trust region and satisfies || Zu|| < Ay, that solution
also solves the scaled horizontal problem (1.14)- (1.15). So, if we suspect that we will be taking
a Newton step, we can eliminate the scaling matrix (ZF Z;)™! from the algorithm. (We call this

unscaled Steihaug the deconditioned Steihaug.) We don’t want to eliminate the scaling altogether
since we need to use the accurately scaled Cauchy step as the solution when the trust region gets
small.

This scaling matrix (Z{ Z)™" acts also like a preconditioner. So, using the correct Steihaug
will often converge in less iterations than the deconditioned Steihaug. However, the cost is
great. So, the first improvement we made to the horizontal problem was to use the deconditioned
Steihaug all of the time. Only when the initial direction lies outside of the trust region do we
use the correct Steihaug routine, so that the correctly scaled Cauchy step will be taken when
the trust region is small enough. This proves to be robust and to reduce the execution time to
compute the horizontal step.

The following figures show the results of this change on ten test problems, which are taken from
the CUTE (Constrained and Unconstrained Testing Environment) [1]. A table giving a brief
description of the problems is given in Appendix A. Figure 2 shows a graph of the percent change
in the time to solve the horizontal subproblem, the number of conjugate gradient iterations, and
the total number of function evaluations when using the deconditioned Steihaug all of the time
instead of the correct Steihaug. For almost all of the problems, it took half the time to solve
the horizontal step even though for several of the problems, the number of conjugate gradient
(CG) steps increased. Without the scaling, often more conjugate gradient iterations are needed
to solve the trust region problem. since these iterations are cheap, the total time to find a solution
still decreased. Also, the approximate solutions found by the deconditioned routine are not as
good as those found by the scaled routine for convergence of the entire algorithm. So, more
outer iterations of ETR are needed and the number of function evaluations increases, which is
also demonstrated in Figure 2. The only problem in which the time to compute the horizontal
step did not decrease was the OM problem. In this problem, using either the deconditioned
routine or the scaled routine resulted in only Cauchy steps. So, the deconditioned routine added
the overhead of trying the deconditioned step first, doubling the number of conjugate gradient
iterations.

Figure 3 shows the percent change in the total time for the entire algorithm to terminate
when the deconditioned routine is always used instead of the scaled routine. For most of the
problems, the time decreased. As expected, the OM problem took slightly more time. The R1
problem, for which the time to solve the horizontal problem decreased, overall took longer to
solve. The added conjugate gradient iterations and function evaluations, for this problem, proved
to be costly. Overall, this change to using the cheaper deconditioned routine all of the time,
served to decrease the running time of the algorithm by about a third for most of the problems.

Now, we would like to decrease the number of deconditioned Steihaug steps. So, we will
attempt to precondition Z{Wka.

3 Preconditioners for Z{ W, Z,

Using the conjugate gradient method to solve the system Az = b works well when A is well
conditioned or has few distinct eigenvalues. So, we would hke to use conjugate gradxent routine
on a preconditioned system A% = b, where A = C~ 5AC™ 2 &= Chzand b= C~%b. We want

Deconditioned Steihaug

200.0 T T T i T T 1 1 T T
" time to compute hstep
CG iters
3 func evals
100.0 -

Percent increase
1
I
.
w- —

0.0 - - w3 E
_ IR

PR pT———
”

__1 O0.0 1] 1 i 1 []]] 1 1
DX H4 OB OM Rt SV T1 D2 D3 OA
Problems .

Figure 2: Plot of the percent change in time to compute horizontal step, number of CG iterations,
and total number of function evaluations when using the deconditioned Steihaug at each inner
iteration instead of correct Steihaug

10

Percent increase in total time

Deconditioned Steihaug

Total time
1 0.0]] i 1 1]] T 1 T

0.0 F ,*’-3 -

H
N
i

NN
PRARIEN
)
3,

-10.0

B

-20.0

-30.0 | 4k .

-40.0 # .

”

-50.0

DX H4 OB OM R1 SV T1 D2 D3 OA
Problems

Figure 3: Plot of the percent change in total time when using the deconditioned Steihaug at each
inner iteration instead of correct Steihaug

11

to use a preconditioner C' ~ A so that 4 is close to the identity matrix; thus ensuring rapid
convergence. The preconditioner C must be positive definite and easily invertible.

The matrix which we are preconditioning is ZI W2, which is not explicitly stored. The
matrix W, may be stored, but, as mentioned earlier, Z; is not. Finding a preconditioner
C ~ ZFW, 2, is difficult. For instance, neither the diagonal of the matrix nor approximate
factorizations are readibly available, which are two common preconditioners. Others have sug-
gested preconditioners for this problem. In both [6, 3], the authors suggest preconditioners based
on the following formula:

(ZEWiezi) ™ = YWY - YW AT (AW Al 4wy, (3.20)

where Yy is a left inverse for Z. In [6], Nash and Sofer suggest approximating (8.20) with a
power series. In [3], Conn, Gould and Toint suggest using (3.20) with a symmetric approximation,
W), ~ W, which is easily invertible. In both of these approaches, the preconditioner can be very
expensive to use. The first approach requires eigenvalue information from relevant madtrices, and
the latter requires the computation of (A; Wy A7)~!.

We implemented four different preconditioners. Three of them had similar results, so we
will discuss these first. The first is the exact diagonal of the matrix ZZ'VV;;Z,C. To form this
preconditioner, the algorithm must do n — m multiplies by Z;, which will prove to be a very
costly operation to execute for each horizontal problem we solve. The second preconditioner is
an estimate of the diagonal. This preconditioner is C = diag(Z] W) Z},), where

- _ [~(diag(B1)) 1N,
Zr = T

For both of these preconditioners, the diagonal elements are forced to be positive by using the
absolute value of the actual diagonal entries. The third preconditioner is the tridiagonal of
Z{l'T’ka. This preconditioner is made to be positive definite by modifying the diagonal elements
so that they are a small fraction greater than the sum of the off-diagonal elements. The tridiagonal
preconditioner also requires n — m Zj multiplies.

The following graphs show the change in the performance of code when the three precondi-
tioners were used in the deconditioned Steihaug routine. The bars represent the percent increase
in iterations, function evaluations, or time when each of the preconditioners was used compared
with the deconditioned Steihaug with no preconditioner. (The negative bars represent, decrease.)
Figure 4 shows the percentage of change in the number of conjugate gradient iterations. For three
of the problems, all of the preconditioners caused a decrease in the number of CG iterations. For
three more problems, using the exact diagonal and the tridiagonal preconditioners resulted in
fewer conjugate gradient steps. The estimated diagonal was not as effective in reducing the con-
jugate gradient steps. For problem D2, the algorithm did not converge when using the estimated
diagonal preconditioner. Figure 5, shows the percentage change in the number of function evalu-
ations when using the three preconditioners. A few problems have relatively small changes in the
number of evaluations. Most have no change. Only one problem, OA, demonstrates a significant
increase in function evaluations.

12

Percent increase in CG iters

500.0

400.0

300.0

200.0

100.0

0.0

-100.0

Figure 4: Plot of the percent change in number of CG iterations when using the three precondi-

tioners

Three preconditioners

Change in CG iterations

I T i 1) T T

-

| &

| A L—

exact diagonal
estimated diagonal
tridiagonal

DX H4 OB OM R1 SV T1
Problems

13

D2 D3 OA

Percent increase in func evals

Three preconditioners

Change in function evaluations

50-0 T T T T T] T 1 I T
exact diagonal
40.0 _ estimated diagonal i
’ 7 .3 tridiagonal

30.0 |
20.0 | -
10.0 ; B
00} — - =3 o _. |
-10.0 |

-20.0 1 ! 1 1 ! ' 2 ! 1 1

DX H4 OB OM R1 SV T1 D2 D3 OA .

Problems

Figure 5: Plot of the percent change in function evaluations when using the three preconditioners

14

Even though the number of conjugate gradient steps decreased and the number of function
evaluations didn’t increase significantly, these preconditioners still proved to be ineffective. As
shown in figure 6, the time to compute the horizontal step increased dramatically because the
expense of computing the preconditioners was too costly. The two problems, D3 and OA which are
missing from this graph, are even more expensive. Also, when using the preconditioners, the more
expensive scaled routine is used more often. Often, in the first iteration of Steihaug’s method the
initial preconditioned direction will violate the trust region constraint when the unpreconditioned
direction would not. Finally, figure 7 shows the increase in the total time of the algorithm.

These three preconditioners proved to be too costly to use for each horizontal problem. Thus
we tried using them only when a Newton step was expected. As a result, only a few horizontal
problems were preconditioned and any improvements in performance were negligible.

/
4 Lanczos preconditioner

Another idea for a preconditioner is to estimate the reduced Hessian matrix in iteration k by
an estimate of the reduced Hessian in iteration & — 1. If the steps in the algorithm are small,
we don’t expect Z[Wka to change drastically from iteration to iteration. By storing the a, 3,
and residual vectors generated in the congugate gradient routine in the previous iteration, we
can form a preconditioner C = ZE_IW;;_l Zg—1. which requires only a tridiagonal solver to solve
Ct=r.

Using conjugate gradients to solve the system Az = b has a very close connection to the
Lanczos method, which estimates the extremal eigenvalues of A by generating a sequence of
tridiagonal matrices T} [4]. The method involves iteratively generating orthonormal directions g;
such that T; ~ Q}‘AQJ', where Q; = [¢1...¢;] and

n & e 0
b 12 :
Tj=)
. T T
[0 - O-1 Vi |

The conjugate gradient method can also generate @Q; and T;. In the conjugate gradient
routine, from the equations p; = r;_; + B;p;j—1, we can set R; = P;B;, where R;j = [ro,...,7j-1],
P; = [p1,...p;], and

1 _ﬂ2 0
1 83 :
Bj = *
. --,Bj
e 0 1 -l

Three preconditioners

Change in time to compute hstep

ime

t

increase in

Percent

3000.0 T] T T I i T]
. . .5 exactdiagonal
estimated diagonal
I tridiagonal |
2000.0
% . &
1000.0 | . N T
N 5
Y £ §?:
i
;
L I Pre i
v i
& l i
O O . m_ »é b ;M. & ‘ . i

DX H4 OB OM R1
Problems

Figure 6: Plot of the percent change in time to compute horizontal step when using the three
preconditioners

16

Percent increase in total time

300.0

200.0

100.0

Figure 7: Plot of the percent change in total time when using the three preconditioners

>

0.0

Three preconditioners

Change in total time

exact diagonal
estimated diagonal
s tridiagonal

k3
H
¥ oy
e
%, 4
,” .
7z
: ¢
3 7 I
. 2K
3 7 H Y !
i I B 4 oy
B B ;bR ¢ o
H z
1 P -
3 & s
2 S8 YRR 1 j
713 . S H
2 IR : - . :
2 .
‘34 : i J [y
H i . :) B
i b & 4
. . B v -
: i
: : ¢ i
> . 3 %
A . > § M
; : N N @&
; : v . SN g £
N p . . < N $. N e
H ;) S B =2 3 : &
. : A E 2 38 I H .
’ 3 P 5 3
i . " ? .3
: .3 I o I >, } ; .
: s : H < 1y B i
£ou g o o S S 2s . " i

R1 SV T1 D2 D3 OA

Problems

DX H4 OB OM

17

W 4 7

~ ' “ - -
- * - <
. - Y

Since py, ..., p; are A conjugate, the product R;Z'AR,- is tridiagonal. From the theory of conjugate
gradients, we know that the set of r; vectors are orthogonal. Let

G = £ri_1/||ri-1ll2,

and 3
Qj = [qla"'ai'i]'

The columns of Q ; are orthonormal. Then

[L _vB 0]
(251 (241
_@ _&.}_ 1 _@
o oy a2 a2
- ~ - _£ﬂ3 _ﬁs._I. .1.3
T; = QTAQ; = o3 o T o
.. _1fﬁ3
. . . o
v/ Bi 8 1
i 0 . —;J:J—_x-{_z;_

Using these equations, we can use C = Q jTjQ-JT as the preconditioner for ZEW'L.ZL., where Q j
and ’f‘_,- are computed in iteration £ — 1. To solve the linear system Ct = r, we use a tridiagonal
solver to find Tjw = Q?? and then assign ¢t = Q;w.

This preconditioner is cheap to store and to invert. However, there are difficulties involved
in using it. In preconditioned CG iterations, the residual vectors are no longer orthogonal in the
unscaled /; norm. So, only during unpreconditioned CG steps are the vectors and scalars stored
to form the preconditioner. This preconditioner is then reused to precondition a fixed number
of horizontal problems, before the preconditioning is turned off and another preconditioner is
stored. So, the preconditioner may not accurately estimate Z,g'W'ka. Also, the preconditioner is
positive semidefinite, which may cause the Steihaug method to halt after only a few iterations.
If the residual vector r lies in the nullspace of QjTjQ;F, then ¢ will be zero, and the Steihaug
method will end.

Figures 8 and 9 are graphs of the results of using this preconditioner in the deconditioned
Steihaug routine, building the preconditioner from 20 iterations and reusing it for five horizontal
problems. They show the percentage of increase in time, iterations, and function évaluations
when using the Lanczos preconditioner instead of the deconditioned Steihaug with no precondi-
tioner. Figure 8 shows the change in time to compute the horizontal step, number of conjugate
gradient steps and the number of function evaluations. For the few problems where the number
of conjugate gradient iterations decreased, the number of function evaluations increased. For OB,
even though the number of CG steps decreased, since there were more function calls, the running
time increased. For four of the problems, there were significant increases in the number of func-
tion evaluations. As mentioned earlier, since the preconditioner is not positive definite, the CG
routine will terminate early, with a bad step. Figure 9 shows the increase in total time from the
slow convergence. Even problems which had a decrease in time to solve the horizontal problem

18

took longer to converge and the total time increased. And, for H4, using this preconditioner
prevented convergence completely.

Although inexpensive to use, the Lanczos preconditioner is not a viable option for a precon-
ditioner.

5 Conclusion

In solving optimization problems, using the trust region method, a linear system arises of the
form ZTWZd = —g. When this matrix is not stored, it is difficult to precondition. Computing
the diagonal and tridiagonal preconditioners for each horizontal subproblem is expensive. The
Lanczos preconditioner is cheap, but not stable to use. None of the preconditioners decreased the
number of CG iterations significantly.

Thus, preconditioners for this problem must be very cheap to implement, and they must
approximate Z{Wka well. Finding such a preconditioner may be too difficult; therefore, we
are looking at other ways to improve the horizontal subproblem. One idea is to use the correct
Steihaug method, but with a preconditioned routine for solving linear systems involving the
matrix ZF Zy. Another idea is to rewrite the correct Steihaug method so that we can express
the scaling (Z{ Z;)~! as a projection. Thus, we have Zt; = Z1(ZF Zr)~2ZTr;, and we can then
substitute the projection (I — Ar(A¥ Ar)~1AF). This projection is cheaper to use since Ay is
explicitly stored, and should reduce the time to compute the horizontal step.

6 Acknowledgment

The authors thank Juan Meza for his input to this project and for his comments on the report.

19

o v — e e e

PR, . - - -
IR T 0 B Y -

Percent increase

450.0

350.0

250.0

150.0

50.0

-50.0

Figure 8: Plot of the percent change in time to solve horizontal problem, number of CG iterations

Lanczos Preconditioner

time to compute hstep

- CG iters

Junc evals

ey
oy
~
h ¥ -
5
B
. o
R N
A)
.
3
3 & .\,
&3
P
s
< N P
>
. . -
N
o . i
3 . p
2 B
] " o
—_ —y —

Py

N

SR

DX H4 OB OM R1 SV Ti1
Problems

and function evaluations when using the Lanczos preconditioner.

20

Percent increase in total time

Lanczos Preconditioner

Total time
140.0 | B -
100.0 | 1 i
60.0 |- . 1 .
20.0 | -
£ o — » boved —
-20.0

DX H4 OB OM R1 SV T1 D2 D3 OA
Problems

Figure 9: Plot of the percent change in total time when using the Lanczos preconditioner.

21

Appendix A

Name n m | Constraints Variables
DX | DIXCHLNV 100 50 | nonlinear equality bounds
H4 | HAGER4 1001 [500 | linear equality free, bounds, fixed
OB | OBSTCLAE 529 0 bounds, fixed
OM | OPTMASS 610 | 505 | linear equality, nonlinear inequality | free, fixed
R1 | READING1 202 | 100 | nonlinear equality bounds, fixed
SV | SVANBERG 500 | 500 | nonlinear inequality bounds
T1 | TORSION1 484 0 bounds, fixed
D2 | DTOC2 2998 | 1996 | nonlinear equality free, fixed
D3 | DTOC3 14999 | 9998 | linear equality free, fixed
OA | ORTHREGA | 2053 | 1024 | nonlinear equality free

Figure 10: Set of test problems from CUTE collection

22

References

[1] I. Bongartz, A.R. Conn, N. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained
testing environment. Technical Report 93/10, Facultés Universitaires de Namur, 1993.

[2] R. Byrd. Robust trust region methods for constrained optimization. In Third SIAM Confer-
ence on Optimization, Houston, TX, May 1987.

(3] A.R. Conn, N. Gould, and Ph.L. Toint. Conjugate gradient methods for nonconvex quadratic
programs. Communication with A.R. Conn, April, 1995.

[4] G. Golub and C. Van Loan. Matriz Computations. The Johns Hopkins University Press,
1989.

(5] M. Lalee, J. Nocedal, and T. Plantenga. On the implementation of an algorithm for large-scale
equality constrained optimization. Submitted to SIAM J. Optimization, December, 1993.

(6] S. Nash and A. Sofer. Preconditioning of reduced matrices. Technical Report 93-01, Depart-
ment of Operations Research and Engineering George Mason University, 1993.

(7] E. Omojokun. Trust Region Algorithms for Optimization with Nonlinear Equality and In-
equality Constraints. PhD thesis, University of Colorado, 1989.

[8] T. Plantenga. Large-scale nonlinear constrained optimization using trust regions. PhD thesis,
Northwestern University, 1994.

[9] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.
SIAM J. Numer. Anal, 20:409-426, 1983.

23

Unlimited Release

Initial Distribution:

MS9001 Tom Hunter, Atin:
2200 J. B. Wright
5200 E.E.lves
8200 L.A.West
8300 W. J. McLean
8400 R.C.
8700 T. M. Dyer
8800 L. A
8900 D

MS9004 M. E. John

MS9214 L. M. Napolitano, Jr.

MS9214 T. D. Plantenga (10)

MS9021 Technical Communications, 8815, for OSTI (10)

MS9021 Technical Communications,8815/Technical Library, MS0899, 4414
MS0899 Technical Library, 4414 (4)

MS9018 Central Technical Files, 8950-2 (3)

24

