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Coordinate-Based Seismic Interpolation in Irregular
Land Survey: A Deep Internal Learning Approach

Paul Goyes-Peiiafiel, Edwin Vargas,
Claudia V. Correa, Yu Sun, Ulugbek S. Kamilov, Brendt Wohlberg, and Henry Arguello

Abstract—Physical and budget constraints often result in
irregular sampling, which complicates accurate subsurface imag-
ing. Preprocessing approaches, such as missing trace or shot
interpolation, are typically employed to enhance seismic data
in such cases. Recently, deep learning has been used to address
the trace interpolation problem at the expense of large amounts
of training data to adequately represent typical seismic events.
Nonetheless, most research in this area has focused on trace
reconstruction, with little attention having been devoted to shot
interpolation. Furthermore, existing methods assume regularly
spaced receivers/sources failing in approximating seismic data
from real (irregular) surveys. This work presents a novel
shot gather interpolation approach which uses a continuous
coordinate-based representation of the acquired seismic wavefield
parameterized by a neural network. The proposed unsupervised
approach, which we call coordinate-based seismic interpolation
(CoBSI), enables the prediction of specific seismic characteristics
in irregular land surveys without using external data during
neural network training. Experimental results on real and
synthetic 3-D data validate the ability of the proposed method
to estimate continuous smooth seismic events in the time-space
and frequency-wavenumber domains, improving sparsity or low-
rank-based interpolation methods.

Index Terms— Deep internal learning, irregular land surveys,
positional encodings, seismic shot interpolation.
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I. INTRODUCTION

NTERPOLATION is of great importance within the seis-

mic data processing workflow because environmental or
topographic restrictions usually result in incomplete and irreg-
ular receiver and source sampling. Some limitations include
natural and anthropological factors such as water bodies, and
infrastructure, as well as equipment errors [1]. The most
common seismic interpolation approach involves recovering
missing traces of a shot gather. A more complex approach
focuses on estimating complete missing shot gathers, entailing
greater economic, environmental, and implementation benefits.
Nonetheless, most of the work reported in the literature deals
with trace interpolation, with limited consideration having
been given to shot interpolation. Thus, this work focuses on
interpolating missing seismic shots in irregularly sampled land
surveys.

Shot interpolation has typically been addressed by convex
optimization, aiming at inverting the acquisition model using
a regularizer that imposes prior knowledge about the data such
as sparsity in domains like wavelet, curvelet, shearlet, and
learned dictionaries [2], [3], [4]. More recently [5], sparse
regularization has been jointly integrated with implicit regu-
larization provided by denoising algorithms using the plug and
play priors and consensus equilibrium framework [6], [7], [8].
The versatility of deep learning has also been explored to solve
the shot interpolation problem in a supervised fashion [9],
specifically with a residual network architecture trained on
data samples generated with bicubic interpolation of the
incomplete dataset.

A key aspect of supervised deep learning approaches for
seismic data interpolation is that they employ external datasets.
For instance, a number of authors [10], [11], [12], [13],
[14] employ convolutional neural networks (CNNs) following
an end-to-end training strategy that requires large training
datasets. Alternatively, deep internal learning approaches that
exploit the structural redundancy of the field data itself, rather
than employing vast training datasets, have been proposed
for seismic trace interpolation [15], [16], using deep image
priors (DIPs) [17], [18], [19] and recurrent neural networks
(RNNs) [20]. Further, a combination of internal and external
learning for trace interpolation has been studied [21]. Although
all these works have explored deep learning-based solutions
for irregular subsampling schemes [22], [23], they implicitly



require a binning process to rearrange irregularly sampled
seismic data onto a regular grid with missing entries (traces).

In contrast, this work presents a deep internal learning
approach to estimate complete missing shot gathers in an
irregular land survey bypassing the binning step. The pro-
posed method takes advantage of a recent branch of work
in computer graphics, coordinate-based neural representations,
which allows the encoding of a continuous spatial field into
the weights of a multilayer perceptron (MLP) by mapping
coordinates to pixel values, in an unsupervised manner [24],
[25], [26]. Specifically, the proposed coordinate-based seismic
interpolation (CoBSI) method learns a continuous mapping
from the spatial and temporal coordinates of the (incomplete)
acquired seismic data to the underlying recorded field. The
continuous nature of the neural representation can model
irregular sampling scenarios without a binning process and is
not constrained to have a spatial resolution, reducing memory
costs compared with discrete representations. Furthermore,
in contrast to current state-of-the-art methods, the proposed
approach enables seismic shot interpolation for both regular
and irregular 3-D land surveys, in an unsupervised fashion,
i.e., without additional training data. The proposed approach
is validated using 3-D seismic data from orthogonal grids such
as cross-spreads, focusing specially on randomly subsampled
regular and irregular grids with acoustic synthetic data, Strat-
ton survey [27] and SEAM Phase II Foothills model [28]. The
results show that CoBSI outperforms the multichannel sin-
gular spectrum analysis (MSSA), damped-MSAA (DMSSA),
sequential generalized K-means (SGK), and sparsity-based
shot reconstruction methods.

II. BACKGROUND

Coordinate-based neural representations have been success-
fully applied to unsupervised generation of highly realistic
views of scenes with complicated geometries and appear-
ance [26], [29], and implicit neural representations of signals
for solving boundary value problems [25]. In the same line of
work, the coordinate-based internal learning (ColL) approach
in [24] extrapolated these ideas to solve imaging inverse
problems by modeling a continuous measurement field from
a subsampled and noisy set of measurements, using geometry
parameters of a tomographic imaging system. Since a seismic
acquisition can be described in terms of a coordinate system,
resembling the continuous field modeling from the computer
vision area, this work explores a coordinate-based modeling
to address the seismic shot interpolation problem in a deep
internal learning approach. It is worth pointing out that CoBSI
addresses a substantially more complex interpolation than that
in [24], since the seismic wavefield we want to interpolate
contains different responses from reflected, refracted, and
surface waves.

This approach consists of two main processing blocks:
a positional encoder and an MLP. The positional encoding
maps help to preserve high-frequency information through
the encoding of coordinate positions [30], while the MLP
works as an interpolator from the encoded coordinates to
the signal amplitude. For instance, Tancik et al. [29] shows
that passing input points through a simple Fourier feature
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Fig. 1. Cross-spread geometry in irregular survey with missing shots F3 and
Fj_ in red. (a) Perspective view. (b) Plan view and (c) seismic data in tensor
representation JF.

mapping enables an MLP to learn high-frequency functions
in low-dimensional problem domains. It is worth noting that
the seismic interpolation task with MLP relies on a low-
dimensional problem as explained below.

III. 3-D SEISMIC ACQUISITION MODEL

Ideal seismic surveys are orthogonal grids with uni-
formly spaced receivers and sources (i.e., preplot design).
In practice however, environmental and topographic restric-
tions induce irregularities that result in nonuniform spatial
intervals, as illustrated by the cross-spread acquisition example
in Fig. 1(a) and (b), where missing shots are depicted in red.
Data from cross-spread surveys are modeled as cubes of k
stacked shot gathers F; € R™*", with m time samples and n
receivers. Thus, the whole dataset can be denoted as a tensor
F = {F;}¥_, e Rk Fig. 1(c) shows a survey with missing
shot gathers F3 and F;_;. Letting f € R™* be the vector
representation of the full cross-spread seismic survey F, the
acquisition model can be written as the linear system

r=9&+ow e

with @ as the matrix modeling the sampling process, @ the
acquisition noise, and r € R™*=% ig the incomplete acquired
data (seismic response). Specifically, the acquisition operator
@ e Rrmntk=s)xmnk j¢ defined as ® = S ® I,,,, where ®
represents the Kronecker product [31], L,, is an mn x mn
identity matrix, and S € R¥=*** is an identity matrix modeling
the subsampling effect by setting it to zero the s rows that
correspond to the linear indices of the missing sources.
Previous works have shown that the underlying seismic data
f can be estimated from the incomplete acquisition y, following
either optimization or data-driven approaches. Specifically,
optimization methods consider that seismic signals are sparse
in some transformation domain W, such that they can be
represented as Wf = «, where o corresponds to the coefficients
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Fig. 2. Source sampling with (a) uniform and regular interval with distance d
and (b) irregular interval with variable distance. Black dots represent missing
shots to be interpolated.

in the transformed domain [2], [3], [5], [32], [33]. Using such
a sparsity prior, it is possible to estimate f by solving the
optimization problem given by

1
f = argmin = |Ir — @fll; + A ¥, 2)
f

where A > 0 is a regularization parameter weighting the
sparsity term in the solution. On the other hand, missing
seismic data can be recovered using data-driven approaches,
such as CNNs that learn internal structures of extensive seis-
mic datasets [10], [11], [12]. Nonetheless, all these methods
rely on the sensing matrix ®, which accounts for indexed
sampling positions. Thus, it assumes a regular sampling grid,
as illustrated in Fig. 2(a), i.e., it cannot model irregularly-
spaced sources. Therefore, reconstruction methods still face
limitations in providing accurate seismic estimates for irregular
surveys, as the one depicted in Fig. 2(b), where the distance
between sources is not fixed.

To address this problem, Hennenfent et al. [34] incorpo-
rated a nonequispaced curvelet transform within a sparsity-
promoting prior, and Galvis et al. [4] used interpolation
operators on the irregular grid before applying reconstruction
algorithms with a binning preprocessing step to cast the irreg-
ularly sampled data into a regular grid. The main drawback
of these approaches is that the interpolator assumes linear
continuity, since it is applied only in the shot direction, which
in 3-D acquisitions does not allow interpolation of the 2-D
wavefield. For this reason, the approach in [4] is limited to
2-D shots in split-spread geometries.

IV. COORDINATE-BASED SEISMIC SHOT INTERPOLATION

Unlike the state-of-the-art interpolation methods that rely
on index-based modeling of the survey, the proposed CoBSI
method employs a coordinate-based deep internal learning
approach for modeling the seismic survey in a more real-
istic fashion. The core idea of the proposed approach is
motivated by recent computational imaging works in neural
interpolation [24], [25], [26], [29], [35], [36], and consists of
representing the acquired response of the wavefield r € R
from a given coordinate v = [x, y,z] € R3, where x, v, Z,
respectively, denote the time, receiver, and source positions,
with a neural network M, with parameters 6. The goal
of this neural network is to map input coordinates to the
sampled wavefield responses, i.e., r = My (v). Based on this
representation, we can model the acquired cross-spread r from
(1) by querying My using the corresponding coordinates of
the acquired response (see Fig. 3).

Fig. 3. Illustration of the coordinate-based representations v in a single
cross-spread grid for seismic acquisition (blue dots), with x, y, z denoting
receiver, time, and source coordinates, respectively. Coordinates v* belong to
the desired shot gathers to interpolate (black dots).

The proposed neural network My is the composition of
a high-dimensional mapping 7, and an MLP Ny such that
Mg (v) = NMy(~(v)). Recent works have demonstrated that this
separation mitigates the performance degradation observed in
MLP to represent high-frequency variations [29], [35], [37],
such as those measured in seismic data due to abrupt changes
in the continuity of reflection events, or coherent noise such
as body waves and ground roll. Sections IV-A and IV-B
present the details of the mapping function + and the MLP
Ny architecture.

A. Anisotropic Positional Encoding

To address the problem of representing high-frequency
components of natural images, Tancik et al. [29] proposed to
employ a positional encoding v as high-dimensional mapping,
given by

Yy (v) = [cos(wv), sin(wv), ..., cos(w;v), sin(w;v), ...,

cos(wyv), sinfwyv)]”T  3)

where U is the total number of components, {a),»}f]:l, the
frequency mappings are given by w; = im/2 or w; = w2~}
in the linear and exponential sampling, respectively, and v
is some arbitrary coordinate normalized to lie in [O, 1.
Note that the positional encoding defined in (3) expands the
input coordinates as the combination of different frequency
components and, all coordinates are mapped to the same
number of frequencies.

However, in the particular case of seismic data, each signal
coordinate represents substantially different features (sources,
receivers, and time samples), which should not be equally
encoded to preserve the structure of the data. Therefore, this
work proposes to employ an anisotropic positional encoding,
in which a different number of frequency components is used
for each axis direction. Thus, for the 3-D case of seismic data,
the anisotropic positional encoding is defined as

Tung () = [y (), W), vk (@1" )

where M, N, K are the number of frequency components
associated with x (time), y (receiver), and z (shot) axes as
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Fig. 4. Conceptual example of anisotropic positional encoding maps with
linear sampling with M =8, N =5, and K = 8 number of frequencies. The
matrices on the left represent the  functions for each coordinate, respectively.
The vectors in the middle represent the corresponding mapping for a given
coordinate x, y, and z. Finally, the vector in the right I'gsg(v) illustrates the
final mapping of the proposed anisotropic positional encoding.

shown in Fig. 3. Fig. 4 illustrates an example of the anisotropic
positional encoding for M = 8§ N = 5, and K = 8§,
where the horizontal axis for all encoding maps represents
the normalized coordinate values lying in [0, 1], the vertical
axis represents the number of encoding frequencies, and the
output I" lies in [—1, 1]. The number of frequency components
for each coordinate M, N, K is found via parameter tuning.

B. Network Architecture

An MLP is here used to approximate the function Ny. This
architecture is modeled as the nested functions

No(w) = fr(fr—1(-- fa(fi(v))) ®)

where L is the number of layers or depth of the MLP, and
fi(v;) = ¢(W;v; +b;) is the i-th layer of the MLP, which is
an affine transformation represented by the matrix W; and bias
b;, followed by a nonlinear activation function ¢. This work
adopts the rectified linear unit (ReLU) as activation function,
which is one of the most widely employed in modern neural
networks [38]. Moreover, since seismic data are normalized
in the range [0, 1], the sigmoid activation function has been
selected for the output layer.

The overview of the proposed coordinate-based neural net-
work is depicted in Fig. 5 with a fully connected block of NN
neurons and L layers, and a single-neuron output layer. Note
that it can be seen as a regression problem, such that we can
simply employ a mean squared error (mse) loss function to find
the optimal network parameters, 6*. The mse loss function can
be written as

mn(k—s)

1
=) > i = No@unk @) (6)

£®) = mn(k
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Fig. 5. Coordinate-based neural network My with anisotropic positional
encoding (P.E) and interpolation neural network Nj.

where s and k are the number of missing and total shots,
respectively; v; = [x;, y;, z;] is the i-th element of the set of
coordinates V, and r; is the ith entry of the acquired amplitude
values r from (1).

We remark here that training data from additional seismic
surveys are not necessary because we just employ the available
discrete samples of the acquisition of interest for training the
network.

C. Interpolation Algorithm

The anisotropic positional encoding and MLP from
Sections IV-A and IV-B are combined as the CoBSI method
described in Algorithm 1. Specifically, the inputs of the
algorithm are given as follows.

1) The set of coordinates of the available (acquired) data
V= {Ui};nznl(k_s)’ with v; = [x;, ¥, zi].

2) The corresponding amplitude values of the acquired data
r=1[ry,....7, ..., F';n—s)] from (1).

3) The set of coordinates of the missing data V* = {v}}/"*

iti=1-

In step 1, the anisotropic positional encoding of each point
v; is calculated using (4). Then, in lines 3—10 the positional
encodings and the amplitude values are used to train the MLP
Nj in an end-to-end fashion, to obtain the optimized network
parameters 6%, as in step 11 of Algorithm 1. In lines 12-14,
the network with optimal parameters is used to estimate the
amplitude values of the missing shots by querying My, using
the corresponding coordinates V* = {v}}”} of the s missing
shot-gathers, as long as the input coordinates are in the same
acquisition domain. Specifically, note that in terms of seismic
surveys, the acquisition domain is related to the maximum
coverage in the receiver and source lines as shown in Fig. 3.
In line 15, these amplitudes are concatenated to the known data
amplitudes, and rearranged as 2-D structures corresponding to
the seismic shots (line 16). Thus, a full seismic data cube F
is obtained.

V. SIMULATIONS AND RESULTS

Three different experiments were carried out to evaluate the
effectiveness of CoBSI in regular and irregular cross-spread
acquisition geometries, using synthetic and real data. In all
the experiments, we fixed the number of layers of the MLP



Algorithm 1 Seismic Shot Interpolation Using CoBSI Method
Require: V: Set of coordinates; r: Data amplitude values
corresponding to each coordinate. V*: Set of coordinates
for the missing shots. Ng: Number of iterations.
1: Calculate set P = {FMNK(v,')};"__"l(k_J) using Eq. 4 and
v; € V.

2: Initialize @ randomly

3: for i =1....Ngdo

4: Draw P, C P, r, from r > Draw data batch

5: for each I'yyx(v;) € P, r; from r; do

6: Fi < No(Cunk(v))) > Estimate the seismic
response

7: Compute MSE loss £(6) using 7;,r;, and Eq. 6.

8 Update 6 using ADAM optimizer

: end for
10: end for

11: Get the optimal parameter §* from last iteration

12: for each v} € V* do

13: F¥ < Np(Tyunk (v)))
responses for missing shots

14: end for

15: £ < [I*, 1]
seismic response

16: F € R™<"xk  reshape(f € R""%) > Rearrange vector to
tensor representation

17: Output: F complete seismic data

> Estimate the seismic

> Concatenate acquired and interpolated

TABLE I

SUMMARY OF PARAMETERS FOR THE COORDINATE-BASED NEURAL NET-
WORK My ON EACH EXPERIMENT. NN: NUMBER OF NEURONS, LR:
LEARNING RATE, NTP: NUMBER OF TRAINABLE PARAMETERS

Experiment Dataset NN LR Epochs NTP
I Synthetic 128 le-3 1000 232449
I Stratton 256  le-3 5000 932865
11 SEAM Phase IT | 128 le-4 50000 234241

architecture to L = 15 with the same number of neurons (NN)
per layer. Table I summarizes the main network parameters
used for training on each experiment: dataset, NN, learning
rate, epochs, and the number of trainable parameters (NTP).
These parameters were found by grid search, so that the best
peak signal-to-noise ratio (PSNR) metric was obtained on each
experiment.

Particular details on each dataset and experiment are
included in Sections V-A-V-C. All experiments were con-
ducted using the NVIDIA Tesla P100 16-GB GPU. The PSNR
is here used to assess the accuracy of the reconstructions,
exactly as described by Liang et al. [39], as well as the
structural similarity image metric (SSIM) from [40]. Both
metrics were applied in the time-domain shots, with respect
to the ground truth. Interpolated shots obtained with CoBSI
are compared against those resulting from the F-XY domain
MSSA and DMSSA method [41] with fhigh = 550 and iter =
50 implemented using the DRR MATLAB package [42], SGK
using fast dictionary learning for high-dimensional seismic
reconstruction [43], [44], and the sparsity-based interpolation
(SBI) in (2), solved with the alternating direction method of

TABLE I

INTERPOLATION RESULTS FOR FIVE MISSING SHOTS IN EXPERIMENT I,
USING THE PROPOSED COBSI METHOD WITH EXPONENTIAL AND
LINEAR SAMPLING (COBSI-Exp AND COBSI-LIN,

RESPECTIVELY)
Shot SSIM PSNR (dB)
CoBSI-Exp  CoBSI-Lin | CoBSI-Exp  CoBSI-Lin
S4 0.990 0.987 42.368 42.701
S6 0.983 0.980 42.070 41.542
S8 0.977 0.969 36.859 34.767
S11 0.977 0.976 37.343 40.587
S13 0.980 0.977 37.479 36.707
Average 0.982 0.978 39.224 39.261
Std. Dev. 0.005 0.007 2.746 3.373
S1.S2  S3 S4 S5 S6 S7 S8 59 S10 S11512  S13S514
di' do ' dy "dy ' dy 'didy dy ' dy dy 'dy dz 'dy

Fig. 6. Synthetic irregular shot acquisition employed in Experiment I, with
d; =75 m, d, = 100 m, and d3 = 125 m. Black dots indicate missing shots.

multipliers (ADMM) algorithm from [3]. All the parameters
in these methods were fixed to those suggested by the authors
of each work.

A. Experiment |

A synthetic dataset of an irregular acquisition from a cross-
spread grid using the acoustic forward modeling operator from
DEVITO [45], [46] to propagate the seismic wavefield was
used in this experiment. The cross-spread comprises m =
900 time samples, n = 101 receivers, and k = 14 shots. The
interval samplings are dr = 1 ms, dg = 25 m, respectively,
for time and receivers. For this experiment, five shots (5S4,
S6, S8, S11, and S13) were removed from the dataset, and
interpolated using the proposed CoBSI method. Fig. 6 depicts
the irregular interval in shot sampling, where the five missing
shots are represented by black dots. Note that the removed
shots account for different distance intervals among known
data.

Besides evaluating the ability of CoBSI to interpolate seis-
mic shots from a synthetic irregular dataset, this experiment
aims at analyzing the behavior of linear and exponential
frequency mappings in the anisotropic positional encoding.
Table II summarizes the CoBSI interpolation metrics for the
five missing shots. Specifically, as a result of parameter tuning,
the number of frequencies was fixed at 1 for time and shots,
and 2 for receivers, i.e., I'12;. The attained results show
small variations in the metrics obtained with the two types of
sampling for the anisotropical positional encoding function.
Fig. 7 presents the interpolation results of shot S6, which
exhibits discontinued seismic events highlighted by the arrows,
that are not fully interpolated by CoBSI with exponential
sampling. On the other hand, with linear sampling, CoBSI is
able to smooth the entire signal by estimating more continuous
events throughout the shot.

Table IIT summarizes CoBSI-Exp interpolation results com-
pared with those from DMSSA, MSSA SGK and SBI. It can
be seen that the proposed approach outperforms the evaluated
counterparts in both metrics. Fig. 8 shows that unlike the com-
parison methods, where most of the reconstruction errors occur
in the reflection events, CoBSI shows a small distribution of



TABLE III

RESULTS SUMMARY FOR THE INTERPOLATED SHOTS OBTAINED WITH COBSI, COMPARED WITH RESPECT TO DMSSA, MSSA, SGK, AND SBI
METHODS USING THREE DIFFERENT SEISMIC ACQUISITION SURVEYS

Experiment Shot SSIM PSNR (dB)
P CoBSI DMSSA MSSA SGK SBI CoBSI DMSSA MSSA SGK SBI
S4 0.990 0.294 0.284 0493  0.547 | 42.368 17.737 18.379  19.261  20.845
S6 0.983 0.237 0.239 0.459 0.741 | 42.070 14.933 15.707  19.146  26.463
Experiment I: S8 0.977 0.277 0.253 0453  0.921 | 36.589 20.276 19.486  19.562  22.026
Synthetic S11 0.977 0.183 0.135 0461 0.583 | 37.343 19.241 17.867  18.155  21.199
S13 0.980 0.060 0.065 0431 0481 | 37479 14.188 14318 15.609 17.264
Average | 0.981 0.210 0.195 0.459  0.655 | 39.170 17.275 17.151 18347  21.559
S3 0.651 0.084 0.070 0.435 0.503 | 22.621 15419 14.850  16.510 17.371
Experiment II: S6 0.552 0.106 0.092 0.402 0.520 | 19.970 15.412 14900 16.098  19.233
Stratton 3D survey ~ Average | 0.602  0.095 0.087 0419 0512 | 21296 15416 14875 16304 18.302
S2 0.724 0.150 0.083 0.399  0.296 | 23.379 17.398 15416  18.082  20.195
Experiment III: S4 0.728 0.255 0.185 0436 0.229 | 24.812 19.768 18.154  19.183  19.807
SEAM Phase 11 Average | 0.726 0.203 0.134 0418 0.263 | 24.096 18.583 16.785 18.633  20.001
(a) Ground truth shot 6 CoBSI-Lin CoBSI-Exp . . . .
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Fig. 7. Comparison between shot 6 interpolation using linear and exponential
sampling in the positional encoding function for the experiment I in (a)
time and (b) frequency-wavenumber domain. Arrows point at the main

differences and correspond to events whose continuity is better approximated
by CoBSI-Lin.

errors toward the edges of the shot gather, thus, exhibiting
a high reconstruction accuracy in the first arrivals, as well
as in linear and hyperbolic events. Moreover, considering the
averaged results, CoBSI outperforms the comparative methods
by up to 0.786 (SSIM) and 22.018 dB (PSNR).

In an attempt to provide some insight into the function of
the neural network, we used a set of coordinates, regularly
sampled in the interval [0, 1] along the receiver and time
dimensions (101 and 900 samples, respectively), and fixed
the source coordinate at z 0.5, to plot the outputs of a
single (arbitrary) neuron for each layer, as illustrated in Fig. 9.
It can be noted that the first six layers resemble low-level
features related to the overall structure of the location of first
arrivals and the regions where reflections occur, while layers

B. Experiment II

The seismic dataset employed for this experiment is the
Stratton survey [27], a real 3-D land swath acquisition project
from South Texas, which was rearranged as a cross-spread
using a geometric analysis based on the survey characteristics.
A subset of 1001 time samples, 90 receivers, and ten sources,
with a gap between the fifth and sixth shots, as illustrated
in Fig. 10. The goal of this experiment is to evaluate the
ability of the proposed method to deal with real more complex
data. To this end, we removed shots S3 and S6, such that
two different gap lengths are considered. The interpolation
challenge in these real data is to determine the correct position
of the seismic reflection event in the vertical axis (time axis).
In this case, the number of frequencies for the positional
encoding was fixed at 9 for the time axis, 5 for receivers,
and 8 for shots, i.e., I'gsg.

Fig. 11 presents a comparison between the interpolation
results for shot S6, where it can be seen that the interpolated
signals are smoother and more continuous than the ground
truth, which explains the resulting lower metric values. These
results show that the main advantage provided by CoBSI with
['g9sg in linear sampling is that it can preserve the polarities
and location of events on the time axis, pointed by arrows.

For instance, SBI fails in interpolating the events signaled
by arrows in Fig. 11, located close to receiver index 25 and
in the time samples 300 and 500, respectively, because it
does not have enough neighboring shot information to esti-
mate the correct temporal position of the events. Moreover,
CoBSI provides a stronger denoised signal enhancing and
highlighting the seismic events in the shot. As in the pre-
vious case, the results for Experiment II in Table III show
that CoBSI-Exp interpolation provides more accurate results
compared to DMSSA, MSSA SGK, and SBI, for both met-
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rics. The improvements in this experiment go up to 0.521
(SSIM) and 6.421 dB (PSNR), for the averaged results of all
shots.

C. Experiment III

The dataset used in this experiment is a part of the SEAM
Phase II Foothills model. The acquisition is an orthogonal
survey over a complex geological model simulating the Llanos
Foothills of the Andes Mountains in Colombia, one of the most
challenging regions of active land exploration [28], mainly
because of complex seismic events with abrupt changes in
amplitude caused by the topography. The dataset comprises
m = 128 time samples, n = 128 receivers, and k = 7 shots.
The interval samplings are dt = 8 ms, dg = 50 m, and
ds = 50 m for time, receivers, and shots, respectively. In this
experiment, we evaluate the performance of CoBSI in regular
acquisitions. Thus, shots S2 and S4 were removed from the
survey, and the interpolated shots are illustrated in Fig. 12.
It can be seen that CoBSI with I'ss; in linear sampling
reconstructs the events preserving the tilt and polarities, while
SBI method yields events with low amplitude, as well as
artifacts in the main reflection events located in the center of
the shot. Further, due to the complexity of the distribution of
the reflection events, the competing interpolation methods fail
in correctly reconstructing the low amplitude signals, this can
be seen in the error images, with larger error values distributed
throughout the shot, while in CoBSI the errors occur mostly
at the bottom of the shot gather. Therefore, in this scenario,
CoBSI exhibits higher accuracy as it is able to highlight the
main seismic reflection events in the shot gathers. The results
for this experiment in Table III verify this behavior with gains
of up to 0.592 (SSIM) and 7.311 dB (PSNR) in the average
results.
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Comparison of shot 6 interpolation results from Experiment I using CoBSI, DMSSA, MSSA, SGK, and SBI methods.

VI. DISCUSSION

In general, the previous results demonstrate that CoBSI
interpolation outperforms DMSSA, MSSA SGK and SBI for
all experiments, providing adequate representations of the
typical characteristics of a seismic shot such as smoothness
and continuity in the events, noise reduction, and amplitude
compensation. Sections VI-A and VI-B discuss the advantages
and limitations of CoBSI related to seismic neural representa-
tion and computational costs.

A. Seismic Neural Representation

This work aims to show that a complete and continuous
representation of seismic data can be obtained by coupling
the anisotropic positional encoding and the MLP, despite the
simplicity of the neural network, as it has been previously
shown for other computational imaging problems [26], [35].
Further, it should be noted that the CoBSI formulation is
flexible, so that other, more complex neural network archi-
tectures can be employed instead of the MLP, at the expense
of their inherent computational complexity. One of the main
advantages of CoBSI is that once the seismic neural rep-
resentation is obtained from the available incomplete data,
it is possible to estimate the response of the continuous
field at any arbitrary coordinate within the analysis domain,
so that complete missing shot gathers can be accurately
estimated. In addition, compared to other interpolation or
reconstruction methods where parameter tuning must be done,
in CoBSI the number of frequencies in the mapping func-
tion is closely related to the dimensionality of the seismic
data. Therefore, the hyperparameters M, N, K from (4) can
be found by analyzing the type of seismic acquisition sur-
vey. Specifically, with few seismic sources in a cross-spread
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Fig. 10. Irregular real seismic acquisition employed in Experiment II, with
d; =50 m, d, = 100 m. Black dots indicate missing shots.

array, the signal variation will be mainly focused in the
receiver direction (inline), because more spatial information
exists. On the other hand, dealing with inline-offset spread
or marine data, where the density of shots is high, the
greatest variation of the signal occurs in the source direction
(crossline).

B. Computational Cost
As shown in Table I, there are fewer than one million
trainable parameters in CoBSI. To provide a comparison

TABLE IV

COMPARISON OF THE NTP REQUIRED IN SEISMIC
RECONSTRUCTION METHODS

Seismic Data Network NTP Learning

2D [23] U-NET 87M Supervised
2D [36] CNN ordinary 42K Unsupervised
3D [47] U-NET 27M Supervised
2D [48] Autoencoder 18M Supervised
3D [50] Autoencoder 6M Supervised
Shotgather (i.e. 3D) CoBSI (MLP) <IM  Unsupervised

with respect to more complex network architectures employed
in seismic reconstruction, Table IV presents the NTP of
CNNs such as U-Net [23], [47] and autoencoders [48],
[49], [50] under supervised learning schemes, as well as an
ordinary CNN [36]. It is worth noting that these methods
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point at events better approximated by CoBSI, while sparsity yields low amplitude events and artifacts in the main reflection events at the center of the shot.

focus on interpolating receivers in 2-D and 3-D seismic network (MLP), entailing less computational resources in
data. In contrast, CoBSI aims to estimate complete missing an unsupervised strategy, as only the weights and biases of
shots, which is substantially a more complex task. Further, the MLP are learned. While [36] is an unsupervised learn-
it is able to obtain such interpolations employing a simpler ing approach, it only considers missing trace reconstruction



for uniform subsampling, which is unrealistic for field
applications.

A potential limitation of CoBSI, however, lies in the fact
that it requires training an MLP for each new seismic dataset.
Although the computer vision community has devoted a great
deal of attention to reducing the cost of training implicit
representations from scratch, by using previous knowledge of
the underlying class of signals being represented [51], [52],
[53], [54], this is still an active ongoing area of research that
can be explored in future work.

Network parameter configuration is still required in CoBSI,
as the MLP requires two configuration parameters, i.e., number
of layers and NN per layer. Conducted experiments show that
15 layers are enough to represent all the analyzed datasets,
with different complexity levels, and only the NN per layer
has to be found by parameter tuning.

VII. CONCLUSION

A CoBSI method to estimate missing seismic shots in
both regular and irregular 3-D land seismic acquisitions
has been proposed. Unlike the state-of-the-art reconstruction
methods that employ index-based models, CoBSI employs
a coordinate-based approach that allows data interpolation
in irregular geometries. Further, a key component of CoBSI
is an anisotropic positional encoding layer in the neural
network to map from low- to high-dimensional coordinates
to consider the variation in the reference axes corresponding
to time, receivers, and shots domains. Experimental results
showed the ability of the proposed method on three differ-
ent scenarios: 1) irregular geometry and synthetic wavefield;
2) geometry with a gap in real acquisition from Texas; and
3) the well-known geophysical SEAM Phase II Foothills Model
with a regular acquisition. The obtained results demonstrated
the advantages of the proposed method with respect to SBI
and low-rank interpolation, since CoBSI can estimate con-
tinuous seismic events while providing a smooth signal in
the space-time domains. Quantitatively, on average CoBSI
outperformed the competing methods by up to 22.11 dB of
PSNR in synthetic data and 6.4 and 7.31 dB for the real-data
experiments.
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