¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-PROC-852700

Towards A Massive-Scale
Distributed Neighborhood Graph
Construction

K. lwabuchi, T. Steil, B. Priest, R. Pearce, G.
Sanders

August 3, 2023

Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis
Denver, CO, United States

November 12, 2023 through November 17, 2023

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Towards A Massive-Scale Distributed Neighborhood Graph
Construction

Keita Iwabuchi
kiwabuchi@lInl.gov
Lawrence Livermore National
Laboratory
Livermore, California, USA

Roger Pearce
rpearce@lInl.gov
Lawrence Livermore National
Laboratory
Livermore, California, USA

ABSTRACT

Graph-based approximate nearest neighbor algorithms have shown
high performance and quality. However, such approaches require a
large amount of memory and still take a long time to construct high-
quality nearest neighbor graphs (NNGs). Using distributed memory
systems is important when data is large or a shorter indexing time
is desired.

We develop a distributed memory version of NN-Descent, a
widely known graph-based ANN algorithm, closely following al-
gorithmic advances by PyNN-Descent authors. Our distributed
NN-Descent (DNND) is built on top of MPI and leverages two exist-
ing high-performance computing libraries: YGM (an asynchronous
communication library) and Metall (a persistent memory allocator).

We evaluate the performance of DNND on an HPC system us-
ing billion-scale datasets, demonstrating that our approach shows
high performance and strong scaling and has great potential for
developing massive-scale NNG frameworks.

CCS CONCEPTS

« Computing methodologies — Machine learning algorithms;
+ Theory of computation — Graph algorithms analysis; Dis-
tributed algorithms.

KEYWORDS

approximate nearest neighbor, distributed computing

ACM Reference Format:

Keita Iwabuchi, Trevor Steil, Benjamin Priest, Roger Pearce, and Geof-
frey Sanders. 2023. Towards A Massive-Scale Distributed Neighborhood
Graph Construction. In Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis (SC-W 2023), No-
vember 12—-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3624062.3625132

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC-W 2023, November 12—17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0785-8/23/11.

https://doi.org/10.1145/3624062.3625132

Trevor Steil
steill@llnl.gov
Lawrence Livermore National
Laboratory
Livermore, California, USA

Benjamin Priest
priest2@llnl.gov
Lawrence Livermore National
Laboratory
Livermore, California, USA

Geoffrey Sanders
sanders29@llnl.gov
Lawrence Livermore National
Laboratory
Livermore, California, USA

1 INTRODUCTION

The k-nearest neighbor (k-NN) search is the task of finding the
closest (most similar) k data points in a given dataset from a query
point, and it has various application fields, such as recommen-
dation systems, anomaly detection, and large language models
(LLM). Each data point is represented as a vector with tens to some-
times thousands of dimensions, and the search dataset may contain
millions to tens of billions of points, with the size of the data ex-
pected to increase in the future. Therefore, a brute-force approach,
which compares the query point to every data point, is impractical.
Moreover, many applications do not require an exact solution, and
techniques called approximate nearest neighbor (ANN) search are
widely used. These methods usually compute approximate nearest
neighbor data/information out of the input datasets in advance that
is used to conduct ANN searches. Popular ANN algorithm cate-
gories are: tree-based methods like k-d trees, hash function-based
methods like Locality-Sensitive Hashing (LSH) [11], quantization-
based methods that quantize the data and utilize that information
(e.g., Product Quantization [16]), and graph-based methods. Graph-
based methods construct approximate nearest neighbor graphs
(ANNGs) and perform graph traversals to find the nearest neigh-
bors. Neighbor relationships can be naturally embedded into graph
structures, and constructing ANNGs is performed by directly apply-
ing the given distance functions to the original data points. Because
of that, graph-based methods often offer high flexibility and high
accuracy [8, 10] compared to the other methods. However, on the
other hand, graph-based approaches consume a lot of memory, and
constructing high-quality ANN data requires a large amount of
time generally.

To address the drawbacks, we leverage distributed-memory sys-
tems with some high performance computing (HPC) libraries. This
paper introduces Distributed NN-Descent (DNND), our novel dis-
tributed memory version of a well-known graph-based ANN al-
gorithm, NN-Descent [6]. DNND employs two high-performance
computing libraries: YGM [21, 25], an asynchronous message com-
munication library that provides efficient distributed communica-
tion, and Metall [13], a persistent memory allocator that enables
applications to allocate data in a file system transparently. We also
propose communication-saving techniques to accelerate the NN-
Descent algorithm on distributed memory systems.

https://orcid.org/0000-0002-9395-0843
https://orcid.org/0009-0001-1174-1846
https://orcid.org/0000-0003-3806-7369
https://orcid.org/0009-0000-6449-6568
https://orcid.org/0000-0001-9145-1226
https://doi.org/10.1145/3624062.3625132
https://doi.org/10.1145/3624062.3625132

SC-W 2023, November 12-17, 2023, Denver, CO, USA

We evaluate the performance of DNND using up to billion-
scale datasets on an HPC system. We demonstrate that our
communication-saving technique cut half the amount of distributed
messages on the 1 billion datasets. Compared to Hnswlib [17], a
state-of-the-art shared-memory graph-based ANN library, DNND
was able to construct similar- or better-quality ANNGs up to 4.7
times faster using 16 compute nodes. DNND shows promising re-
sults for developing massive-scale NNG construction frameworks.

The following sections provide details of the NN-Descent algo-
rithm, followed by our DNND’s design and implementation. We
also present comprehensive performance evaluation results, offer-
ing key insights into the effectiveness and potential of DNND in
tackling the challenges of massive-scale ANN graph construction.

2 PRELIMINARIES

In this paper, we use the following notation, basically following the
one used in the original NN-Descent paper [6]. Let V be a dataset
that contains N = |V| points/vertices/feature vectors (we use these
terms interchangeably). We assume every feature vector has the
same number of dimensions. Let G be a k-nearest neighbor graph
(k-NNG) constructed from V. G, denotes the neighbor list of vertex
v € V, and the number of neighbors in G, is K (K < N). We use
0(v1,v2) to denote the distance between vy and vy, where v1,02 € V
and the distance metric 0 returns a value d € [0, inf) — the smaller
the value, the closer the distance. We assume 6 is a symmetric
function, i.e., 6(v1,02) = 0(v2,v1).

As for data size, a dataset V is N X dim X E bytes, where N is
the number of points in the dataset, dim is the dimension of the
feature vectors, and E is the size of the feature vector element type
(e.g., E is 4B for a single-precision floating-point). A k-NN graph G
consumes k X N X T bytes, where T is the size of the point ID type
(e.g., 4B for unsigned int). Because datasets and k-NN graphs are
dense, those numbers are actual memory/storage consumption if
they are stored in the binary format.

3 NN-DESCENT

This section describes the details of the NN-Descent [6] algorithm
and the reasons we use the algorithm for our distributed neighbor
graph construction.

3.1 NN-Descent Algorithm

NN-Descent is a heuristic and iterative approach to construct an
approximate k-nearest neighbor graph (k-NNG). Although its basic
idea is simple, it can achieve high-quality k-NNGs efficiently in
practice. NN-Descent’s empirical cost is round O(n'14) whereas
brute-force takes O(n?) [6]. The key concept of NN-Descent is that
my neighbors will likely also be close to each other. Specifically, if
vertices vy and v1 are not neighbors yet but are in G, (the nearest
neighbor list of v2) at the time, vg and v; will likely be located at a
close distance. Therefore, vy suggests vy and v; check the distance
between them and update their nearest neighbor lists if necessary.
NN-Descent initializes a k-NNG randomly and repeats neighbor
checks until the number of newly discovered close neighbors fall
below a pre-defined value. NN-Descent needs to use a distance
function only for neighbor checks and works on any data as long as

Iwabuchi et al.

the distance metric can calculate the distance between any vertex
pair in the dataset.

We show its detailed algorithm in Algorithm 1. The algorithm
takes a dataset V, a similarity function 6, and algorithm parameters,
p, and 8. The output is a K-NNG G (every vertex has K approxi-
mated nearest neighbors). G[v] represents G, (the neighbor list of
vertex v), and G[v][k] represents the k-th closest neighbor of v.

The first parallel for-loop block from line 2 initializes G by ran-
domly generating K initial neighbors for every vertex in V.

The for-loop block at line 7 generates two arrays (new and old)
for every vertex in the k-NNG (G). To avoid generating duplicate
neighbor checks from the same vertex, NN-Descent marks neigh-
bors in G as either old or new. When a new neighbor entry is
inserted in G, the entry is marked as new. NN-Descent picks up
pK new items at a time (p is the sample rate, e.g., 0.8), and those
selected items are marked as old.

In line 11-12, NN-Descent first generates reversed (transposed)
old and new matrices (old’ and new’). Those matrices are gener-
ated hoping that close neighbor status stays true even in the other
direction. Then, NN-Descent samples the entries from the reversed
matrices (old” and new’) and merges with the corresponding origi-
nal matrix old and new, respectively.

The loop block from line 17 is the core of the NN-Descent algo-
rithm. In the loop, it performs neighbor checks between the pairs
generated from the old and new matrices.

If the number of newly discovered close neighbors is less than
0KN (e.g., § = 0.001), NN-Descent terminates the algorithm. Oth-
erwise, it repeats the same steps from line 6. § controls the graph
quality vs. speed trade-off — the higher the value, the higher the
accuracy and computational cost are expected.

3.2 NN-Descent Analysis

Neighbor relationships can be naturally embedded into graph struc-
tures, and constructing ANNGs is performed by directly applying
the given distance functions to the original data points. Because
of that, graph-based methods often offer high flexibility and high
accuracy [8, 10] compared to the other methods.

On the other hand, the biggest weakness of the graph-based ap-
proach is its memory usage. Specifically, it is necessary to retain the
original dataset not only during the construction of the NNGs but
also during subsequent NN searches. k-NNG tends to require large
k values to achieve high quality NNGs. However, as k increases, the
memory consumption and the computational cost of the k-NNG
also increase.

Therefore, this study aims to investigate whether it is possi-
ble to develop a large-scale k-NNG construction framework that
maintains high versatility and performance by utilizing distributed
memory systems and HPC techniques.

Among the many graph-based approaches, we chose NN-
Descent [6]. NN-Descent performs relatively simple graph pro-
cessing while supporting arbitrary distance functions. Wang et
al. conducted a comprehensive study of graph-based ANN. They
claimed that NN-Descent (and its derived algorithms) achieved the
highest graph accuracy and high graph construction performance
compared to other graph-based algorithms [23]. The core opera-
tion of NN-Descent is checking the distance between two neighbor

Towards A Massive-Scale Distributed Neighborhood Graph Construction

Data: dataset V, similarity function 6, K, p, §
Result: K-NNG G

1 begin
2 parallel forv e V
3 fork «— 1to K do
4 u « Sample(V, 1)
5 Glo][k] <« (u,0(v,u), true)
6 while true do
7 parallel forv e V
8 old[v] « all items in G[v] with false flag
9 new[v] < pK items in G[v] with true flag
10 Mark sampled items in G[v] as false
11 old’ «— Reverse(old)
12 new’ < Reverse(new)
13 c—0
14 parallel forv e V
15 old[v] « old[v]U Sample(old’[v], pK)
16 new|[v] < new[v]U Sample(new’[v], pK)
17 foreach uj, up € new[ov],u; < uy or
u1 € new[v],uz € old[v] do
18 d «— 0(uy,uz)
/* ¢ and G are atomically updated */
19 ¢ < c+ Update(Glu1], (ug,d, true))
20 ¢ < c+ Update(Gluz], (u1,d, true))
21 if ¢ < 5K|V| then return G
22 Function Reverse(A)
23 A’ « Transpose matrix A
24 return A’
25 Function Sample(S, n)
26 s « Sample n items from set S
27 return s
28 Function Update(H, (v,d, f))
29 md « Farthest neighbor distance in H
30 if v ¢ H and d < md then
31 Pop farthest neighbor from H
32 Push (v, d, f) to H
33 return 1
34 return 0

Algorithm 1: NN-Descent algorithm [6]

vertices of a vertex. Similar operations can be seen in general graph
processing, such as triangle counting, and there have been many
prior studies in those algorithms [20]. Another advantage of NN-
Descent is that the final output is a simple graph data structure
where each vertex has k nearest neighbors. This provides high
convenience for other applications that want to utilize k-NNGs.

3.3 Approximate Nearest Neighbor Search

Although the focus of this study is the graph construction step, we
explain how to perform an ANN search on a k-NNG to provide
readers with a better understanding of the background information.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

By performing graph traversals on a k-NNG, it is possible to
efficiently find approximate nearest neighbors for a given point
with high accuracy in practice. To be clear, the query point used in
the search does not need to exist in the dataset used to construct
the graph, and the number of nearest neighbors to search for can
be larger than k.

Here, we describe a naive yet efficient search algorithm. Let’s
consider the case where we search [nearest neighbors from a query
point (feature vector) q on a k-NNG G. First, [points are chosen
randomly from G. Then, the distances from q to the chosen points
are calculated, and the results are stored in two heaps: frontier heap
and [-NN heap. The frontier heap heap holds the point IDs to visit
in the future and places the nearest element at the top, and the
I-NN heap heap; holds ¢’s up to I nearest neighbors and places
the farthest point at the top. Next, the nearest point p is popped
from the heapy, and for every neighbor point w of p (ie., w € Gp),
the distance 0(g, w) is calculated if w has not yet been visited. If
0(g, w) is smaller than the top element in heap;, heap; is updated,
and the element is also added to the heap . This process is repeated
until A) the heap s becomes empty or B) heap.top() > heap;.top()
is satisfied (i.e., the closest point in the frontier is already farther
than the most distant point in the [-NN heap). When the algorithm
finishes, the heap; contains the [nearest neighbors of gq.

This simple greedy algorithm visits and finishes searching for
far fewer points than N (the number of points in G) in practice.
While this allows for rapid search completion, the search could fall
into a local minimum and fail to find the optimal nearest neigh-
bors. Therefore, PyNNDescent [18] introduces a parameter epsilon
(epsilon > 0) to relax the conditions for adding points to the heapy,
thereby expanding the search range. Specifically, when the distance
between the query point g and a point p in G is calculated, p is
added to the heapy if the condition (epsilon + 1)dmax > 0(q, p) is
met, where dmax is the distance to the farthest point in heap; at
the time. This allows the search space to be expanded. Thus, there
is a trade-off between search quality and search time, and using
a large epsilon value can lead to a significant reduction in search
performance.

4 DNND: DISTRIBUTED NN-DESCENT

Our DNND implementation closely follows the approach taken by
PyNNDescent [18]. PyNNDescent is a shared-memory NN-Descent
implementation written in Python. The library employs some op-
timization techniques to improve the performance and quality of
NN-Descent. Our contributions consist of building their algorithms
utilizing YGM (asynchronous communication library) and Metall
(persistent memory allocator) and reorganizing communication
patterns to reduce off-node communication.

DNND distributes a k-NNG G and an input dataset V equally
among all MPI ranks based on the hash values of the vertex IDs.
Each vertex (feature vector) v € V and the corresponding neighbor
list G, are located in the same MPI rank.

There are three large phases that require distributed-memory
communication in NN-Descent in Algorithm 1. The first one is
k-NNG initialization (for-loop block starts on line 2). The second
one is the generation of reversed old and new matrices (line 11—
12). The third one is the neighbor check step (for-loop block starts

SC-W 2023, November 12-17, 2023, Denver, CO, USA

on line 17). We describe how we implement these phases in the
following subsections.

4.1 Asynchronous Communication

DNND employs an asynchronous distributed-memory communi-
cation model. To implement an asynchronous computing model,
DNND utilizes YGM [21, 25]. YGM is an asynchronous irregular
communication library built on top of MPI (message passing inter-
face) and is designed for irregular communication patterns. It em-
ploys fire-and-forget remote procedure call semantics. Specifically,
a sender provides a function and function arguments for execution
on a specified destination rank through an async call. This function
will be invoked on the destination rank at an unspecified time in
the future, but YGM does not explicitly make the sender aware
of this completion to avoid synchronization costs. YGM buffers
messages internally to increase communication throughput. When
YGM’s barrier function is called, all ranks wait until all messages
are processed.

For example, to calculate the distance between v, and v}, from
the owner rank of v,, DNND first sends the feature vector of v, and
a user-level function to the owner rank of v;, asynchronously. When
the message is executed at the destination rank, YGM invokes the
user-specified function, which A) calculates the distance between
vq and v, and B) asynchronously sends back the distance value to
the original rank where v, exists. This communication pattern is
used to initialize the k-NNG.

Because distributed NN-Descent performs various types of ir-
regular communication patterns, YGM is a suitable library for im-
plementing DNND. In the NN-Descent algorithm, the key descent
operation is the neighbor checks, as described in lines 19— 20 in
NN-Descent Algotimthm 1. This pattern is similar to wedge queries
performed in triangle enumerations, for which YGM has demon-
strated it was highly performant in the distributed setting [20].
We explain how the neighbor check step is conducted in DNND
efficiency in Section 4.3.

4.2 Generating Reverse Neighbors

Generating the old and the new matrices does not require commu-
nication between MPI ranks, whereas generating reversed (trans-
posed) old and new matrices does. DNND first makes reversed old
and new matrices locally, then sends them to the corresponding
ranks. When sending the reversed matrices, DNND randomly shuf-
fles the order of the destination vertices to avoid sending data to
the same rank from multiple ranks simultaneously and causing
communication congestion at the destination rank.

4.3 Neighbor Checks with Communication
Saving

In the distributed setting, it is possible to nearly halve the amount

of data that are sent off nodes in the neighbor check step.

In lines 19-20 in Algorithm 1, neighbor checks are performed
for both directions between u; and uz. In the distributed setting,
both u; and uy send their feature vectors to each other during the
neighbor check. Since the size of a feature vector is the dimensions
of the dataset, the communication cost is high. Figure 1a shows an
unoptimized distributed NN-Descent neighbor check pattern. For

Iwabuchi et al.

Type 2 Type 2+

Type 1 ‘ Typel Type1l

(a) Unoptimized (b) Optimized

Figure 1: NN-Descent neighbor checking communication
patterns (unoptimized vs. optimized). The line thickness rep-
resents the message volume.

convenience, hereafter, we call the neighbor check message from a
center vertex as Type 1 message and the feature vector message as
Type 2 message.

We propose three communication-saving techniques and de-
scribe the optimized communication in Figure 1b.

4.3.1 One-sided Communication. We can reduce the communica-
tion cost by employing a one-sided communication pattern. Instead
of the central vertex v sending a Type 1 message to u; and ug, v
sends a Type 1 message to only u1. Then u; subsequently sends its
feature vector to the other vertex uy. After receiving the feature
vector, uy calculates the distance between itself and u; and returns
the distance to u;. This distance returner message is called Type 3
message in Figure 1b.

4.3.2 Redundant Neighbor Check Reduction. The second optimiza-
tion we propose is the reduction of redundant neighbor checks.
After uj receives a neighbor check message (Type 1) from o, it
checks if uy is already in its neighbor (i.e., uz € Gy,). If that is true,
sending a Type 2 message to uz is a waste, obviously; therefore, u;
does not send a Type 2 message to uz. DNND also invokes the same
check before sending the Type 3 messages from uy to u;.

4.3.3 Pruning Long Distance Messages. The third method is another
way to reduce the number of Type 3 messages. If uy is already
farther than u;’s most distant neighbor (G[u1][k]), sending back
a calculated distance value from us to u; is a waste. Therefore, u;
attaches the distance to its most distant neighbor 6(u1, G[u1][k]) to
Type 2 messages. After calculating 6(uq, uz) at ug, up sends back the
distance only when 6(u1,u2) < 6(u1,G[u;1][k]). In this proposed
method, the distance information attached to a Type 2 message is
very small compared to the feature vector. Therefore, by sending
data that is negligible in size, DNND can stop some unnecessary
messages from u. This modified Type 2 message is called Type 2+
message in Figure 1b.

4.4 Batched Communication

Although YGM is designed for irregular communication patterns
and automatically sends messages when its internal buffer exceeds
a certain threshold, we found that periodically performing global
synchronization to send off buffered messages in the application
layer brings great benefits when performing massive volume com-
munication.

Towards A Massive-Scale Distributed Neighborhood Graph Construction

Because YGM does not have real-time global knowledge of the
number of messages in all processes’ buffers, a large number of mes-
sages are sent from many ranks simultaneously, potentially causing
a kind of traffic congestion in YGM or lower-level communication
libraries like MPL

Therefore, when DNND needs to send a large number of mes-
sages at a time, it calls YGM’s barrier function every time after
passing a certain number of requests to YGM (e.g., 22523 requests
globally).

4.5 Nearest Neighbor Graph Optimizations

In addition to making NN-Descent work on distributed memory
systems, we also implemented two k-NNG optimization techniques
implemented in PyNNDescent to increase ANN search performance
and accuracy.

The first one is generating reverse neighbors. After construct-
ing a k-NNG G, one of the simple yet effective optimizations is
adding edges for the opposite directions (in other words, merging
a transposed G to the original G). This optimization makes a graph
more densely connected. We remove duplicate edges after merging
reverse edges.

The second one is limiting the neighborhood size. Although the
NN-Descent step creates a k-NNG, where each vertex contains
k nearest neighbors, applying the first graph optimization could
produce vertices that contain large numbers of neighbors. DNND
prunes such high-degree vertices’ neighborhood sizes up to k x m,
where m is a constant number and m >=1 (e.g., m = 1.5).

4.6 Leveraging Persistent Memory Allocator

We also employ a persistent memory allocator, Metall [13], to in-
crease the usability of our DNND at massive-scale ANN compu-
tations. Constructing high-quality k-NNGs for massive-scale data
requires significantly more time than performing ANN searches
on the constructed graphs. Therefore, the ability to store the con-
structed graph data in some form of persistent storage is highly
beneficial for large-scale ANN.

Metall is built on top of the file-backed memory-mapped mecha-
nism, i.e., mmap(2) system call, to enable applications to allocate
data in files transparently. Metall has a C++ memory allocator in-
terface compatible with the C++ Standard Template Library (STL).
We can store STL Container-based data structures without writing
file I/O code or dedicated data structures that work with only a
particular library.

5 EVALUATION

We evaluate our DNND’s k-NNG construction performance and
quality on a large-scale distributed memory system using up to
billion-scale datasets.

5.1 Setup

Here we describe the dataset, the evaluation environment, and the
configuration of DNND.

5.1.1 Dataset. We use 8 datasets, including non-Lp distances, from
the ANN-Benchmarks [1] and the Big ANN Benchmarks [19]. We
list the datasets in Table 1.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Table 1: Datasets used in the evaluation.

Dataset Dimensions Entries Similarity Metric
Fashion-MNIST 784 60,000 Ly
GloVe 25 25 1,183,514 Cosine
Kosarak 27,983 74,962 Jaccard
MNIST 784 60,000 Ly
NYTimes 256 290,000 Cosine
Last.fm 65 292,385 Cosine
Yandex DEEP 1B 96 1billion Ly
BigANN 128 1billion Ly

5.1.2 Evaluation Environment. Experiments were run on the Mam-
moth cluster at Lawrence Livermore National Laboratory. There are
around 50 compute nodes, and each node has dual 64-core AMD
EPYC 7742 processors (2.25 GHz) and 2048 GiB of memory. Nodes
are connected with a Cornelis Networks Omni-Path interconnect.
As for the MPI library, we used MVAPICHZ2.

5.1.3 DNND Configuration. Unless specifically mentioned, we
used the following algorithm parameters in DNND during all eval-
uations. During the NN-Descent construction, we set the early
termination parameter § to 0.001 and the sample rate p to 0.8. In
the graph optimization phase, we set the neighborhood size limit
parameter m to 1.5. We set the communication batch size to 228
requests for all top 6 datasets except Kosarak (22°) and 22° for the
bottom two datasets.

There are two DNND execution files: one for k-NNG construction
and the other for graph optimization. The k-NNG construction pro-
gram stores the constructed k-NNG and the corresponding dataset
V (matrix data) in Metall, and the optimization program reads the
data from Metall and performs the optimizations described in Sec-
tion 4.5. As for the filesystem location, where Metall allocates a
k—NNG and a dataset, we used a tmpfs filesystem (/dev/shm) to
avoid storage I/O overhead.

5.2 Preliminary NN Graph Quality Evaluation

Our first evaluation criterion is the quality of k~-NNGs. To confirm
DNND achieves reasonable k-NNG accuracy, we ran DNND on the
top 6 small graphs in TABLE 1 and compared the achieved k-NNGs
to the ones computed by a brute-force approach. The brute-force
approach performs similarity comparisons between all pairs in the
datasets.

We calculate a recall score for every point in a k-NNG and report
the average per graph. The recall score is the ratio of the neighbor
IDs that exist in the corresponding ground truth data.

DNND was able to construct k-NNGs (k = 100) with 0.93 and
0.98 recall scores for NYTimes and Last.fm, respectively. The rest
of the datasets’ scores are equal to or more than 0.99. Those results
indicate that DNND can construct high-quality k-NNGs.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

5.3 Billion-scale k-NNG Construction

Using the datasets that contain one billion points in Table 1, we
evaluated DNND regarding the following two aspects: A) the scala-
bility, and B) how quickly it can construct a graph of similar quality
compared to a state-of-the-art ANN library (Hnswlib [17]).

As for k-NNG quality checking, it is impractical to construct
ground truth k-NNGs using a brute-force method. Therefore, we
evaluate the quality of constructed graphs in terms of the trade-off
between query time and recall score using the query and ground
truth data contained in the dataset.

The Yandex DEEP 1B and the BigANN datasets use float32 and
uint8 data types, respectively, and we used those types in DNND
and Hnswlib. We also used uint32 to represent point IDs.

5.3.1 DNND Configuration for 1 billion Datasets. We constructed
k-NNGs with k = 10, k = 20, and k = 30, where k represents the
number of neighbors each vertex has after construction. We varied
the number of compute nodes up to 32 (128 processes per node).
We used at least 4, 8, and 16 nodes for k = 10, k = 20, and k = 30,
respectively, because the jobs did not finish within a reasonable
time limit or encountered an out-of-memory (OOM) error with
fewer compute nodes. DNND’s other parameters are described in
Section 5.1.3.

Query Program: We implemented a shared memory query pro-
gram using C++ and OpenMP. Our query program employs the
same search algorithm as PyNNDescent, which is described in Sec-
tion 3.3. In a preliminary evaluation, we confirmed that our query
program could achieve identical recall scores and efficiency (in
terms of the number of performed distance calculations) compared
to PyNNDescent. As for the epsilon parameter, we used 0 and varied
the value from 0.1 to 0.4 by 0.025 in this billion-scale evaluation.

5.3.2 Hnswlib Configuration. We used Hnswlib [17], a state-of-
the-art shared-memory ANN library, for performance comparison.
Hnswlib does not construct a general structure k-NNG, like NN-
Descent and DNND do — achieving a portable k-NNG from Hnswlib
requires additional processing. However, Hnswlib and DNND are
both graph-based ANN libraries that support various distance met-
rics. It also showed better performance over a product quantization-
based library (Faiss [15]) in terms of index construction time and
query quality vs. performance trade-off [17]. Because of those rea-
sons, we compare their performance to DNND. Hnswlib’s core code
is written in C++, and we used the C++ interface. We used 256
threads on Mammoth and set job time limits to 24 hours.

Hnswlib uses two parameters when building the graph, M and
ef_construction (referred to as efc from here). There is also an ef
parameter for nearest neighbor search. Generally, using larger val-
ues improves the qualities of graphs and queries but also increases
the run time.

On the other hand, there is no obvious relationship between NN-
Descent (DNND) and Hnswlib parameters for a fair comparison.
Therefore, we conducted a wide range of parameter surveys for Hn-
swlib and carefully selected the Hnswlib results to compare against
DNND. More specifically, to select reasonable parameters for Hn-
swlib for performance comparison, we first constructed graphs
using Hnswlib varying their parameters, followed by performing
nearest neighbor searches on the constructed graphs using their

Iwabuchi et al.

Table 2: Hnswlib parameters.

Yandex DEEP 1B
Label Hnsw A HnswB HnswC HnswD

Dataset BigAnn

M 64 64 32 64
efc 50 200 25 200
ef 20-1200 20-1000

query function. Second, we did the same for DNND using the param-
eters described in Section 5.3.1. Third, for each graph constructed
by DNND, we looked for the Hnswlib-constructed graphs that show
almost the same or better query recall scores with almost the same
or shorter time. In case multiple graphs were found, we picked the
one with the shortest graph construction time.

We show the selected Hnswlib graph’s parameters in Table 2.

5.3.3 Query Recall-score vs. Performacne Trade-off. Since we chose
the Hnswlib graphs based on query recall scores and performance,
we first show the recall@10 vs. query performance trade off re-
sults in Figure 2. The x-axis represents the recall score, and the
y-axis represents the query throughput per second (gps score). Each
data point on the same line represents a different query parameter
combination.

We submit all queries at once and process them in parallel (256
threads) for both implementations after loading all queries from
a file. The query and ground truth datasets were obtained from
the Big ANN Benchmarks website [19], Each query and ground
truth dataset contains 10,000 queries and 10 ground truth nearest
neighbors for each query point. The recall score is the ratio of
computed nearest neighbor IDs that also exist in the corresponding
ground truth. We report the mean recall score of all queries per
data point.

Hnswlib results. We show two Hnswlib results for each DEEP
1B and BigANN dataset. Hnsw A and Hnsw C are the graphs that
achieved similar or better graph quality than DNND k10 graphs
with the minimum graph construction time. Hnsw B and Hnsw D
are the best graphs we could achieve.

DNND results. We show each dataset’s results of k = 10, k = 20,
and k = 30. DNND was able to produce the same quality graphs
regardless of the number of compute nodes used; thus, we do not
show the results of changing the number of compute nodes. DNND
achieved similar quality graphs to Hnswlib’s best ones with k20.
With k30, DNND produced better-quality graphs than Hnswlib.

5.3.4 k-NNG Construction Performacne. Finally, we show the k-
NNG construction time in Figure 3 (thre raw numbers are in Table 3).
The x-axis represents the number of compute nodes, and the y-axis
represents the time to construct a k-NNG in hours. All axes are in
the log scale. The graph construction step does not include the time
to load the dataset from the files.

Hnswlib results. Hnsw A and Hnsw C are the cases that showed
similar or higher quality than the DNND k10 graphs with the min-
imum construction time. Hnswlib took 5.9 hours and 1.7 hours,

Towards A Massive-Scale Distributed Neighborhood Graph Construction

5 10% fmm e e
c
o
S
&
5 Hnsw A
3—} Hnsw B
2 10%4 DNND k10
g DNND k20
© DNND k30
30 40 50 60 70 80 90 100
Recall Score (%)
(a) Yandex DEEP 1B
e
S 10°
S
&
5 Hnsw C
“‘,-’ Hnsw D
20t DNND k10
@ :
3 - DNND k20
© DNND k30
30 40 50 60 70 80 90 100
Recall Score (%)
(b) BigAnn
k) 105 k=)
§ 5 10°
S BE= 5
(7] L7 S—
(2] n e
9 I e e B
a i a.
810 4 g
a T a 104 ,,,,,,
) S
o &
9 92 94 96 98 100 90 92 94 96 98 100

Recall Score (%) Recall Score (%)

(c) Yandex DEEP 1B
(recall score > 90%)

(d) BigAnn
(recall score > 90%)

Figure 2: Recall@10-query time trade-off on the k-NN graphs
constructed in Figure 3. Figure 2c and Figure 2d are enlarge-
ments of the parts where the corresponding figures’ recall
scores are > 90%.

respectively, demonstrating very high k-NNG construction perfor-
mance in those cases. On the other hand, Hnsw B and Hnsw D,
which are similar to or less than DNND k20 cases, took 22.6 hours
and 16.5 hours, respectively. Hnswlib could not construct graphs
of higher quality than DNND k30 within 24 hours.

DNND results. Each result includes both k-NNG construction and
optimization (generating reverse edges) steps. The optimization step
accounted for less than 0.2% of the corresponding construction time
in all cases. Opening and closing Metall data stores took negligible
time; therefore, we did not include the time in the figures.

As for the DEEP 1B dataset with k = 10, DNND took 6.96 hours to
construct a k-NNG on 4 compute nodes and showed high scalability
until 16 nodes — taking 1.84 hours on 16 nodes, yielding a scaling
factor of 3.8X. With k = 30, DNND was able to construct a k-NNG
in 6.58 hours by using 32 nodes. The same trend was shown with
BigAnn data, DNND took 1.24h, 3.05h, and 5.83h, respectively, to
construct k-NNGs with k=10, 20, and 30 when using 32 nodes. By
using 16 nodes, DNND (k20) was able to construct graphs at least
similar quality to Hnsw B (DEEP 1B) and Hnsw D (BigAnn) at
speeds 4.4 times and 4.7 times faster, respectively.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

4 2t
2
—_ ~23
£23 <
Q Hnsw A Q92 Hnsw C
£ 22 Hnsw B £ Hnsw D
= DNND k10 = 1 DNND k10

21 DNND k20 2 DNND k20

DNND k30 DNND k30
21 23 25 o1 23 25

The Number of Nodes
(128 procs/node)

The Number of Nodes
(128 procs/node)

(a) Yandex DEEP 1B (b) BigAnn
Figure 3: k-NNG construction time. Hnswlib (shared-
memory) results were run on a single node using 256 threads.

Given the results, it is suggested that NN-Descent excels in con-
structing high-quality graphs, and DNND can address the increase
in execution time and memory usage by utilizing distributed mem-
ory machines.

Table 3: The raw numbers of the data points in Figure 3

Number of nodes 1 4 8 16 32
Hnsw A 5.90 - - - -
Hnsw B 22.60 - - - -
DNND k10 - 6.96 3.87 1.84 1.50
DNND k20 - - 10.62 5.18 3.74
DNND k30 - - - 10.29 6.58

(a) Yandex DEEP 1B

Number of nodes 1 4 8 16 32

Hnsw C 1.70 - - - -

Hnsw D 16.50 - - - -

DNND k10 - 545 292 1.27 1.24

DNND k20 - - 8.19 3,50 3.05

DNND k30 - - - 6.84 5.83
(b) BigAnn

5.3.5 Effects of Neighbor Checking Communication Saving Tech-
niques. We collected the number of sent messages during the
neighbor checks to evaluate the effects of the neighbor checking
communication-saving techniques described in Section 4.3.

We show the number of messages that were sent when con-
structing k-NNGs for the two billion-scale datasets with k = 10
in Figure 4a. We also show the same results converted to the total
message sizes in Figure 4b. Because we used uint8_t for BigAnn
data’s feature vector, BigAnn’s message size is smaller than DEEP
1B’s. For both datasets, the number of messages and the total mes-
sage sizes were reduced by about 50%. Those results show that our
proposed communication saving techniques are very effective in
terms of both the number of messages and the communication data
volume.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Typel mmm Type2 Type2+ mmm Type3

Unoptimized Optimized Unoptimized Optimized
DEEP 1B DEEP 1B BigANN BigANN

Count (trillion)

o R N W A U O N

(a) The numbers of neighbor check
messages.

Typel mmm Type2 Type2+ mmm Type3

=
N)

g
=}

o
o

o
>

Total Size (peta byte)
o
o

e
)

"“Unoptimized Optimized Unoptimized Optimized
DEEP 1B DEEP 1B BigANN BigANN

(b) The total sizes of the neighbor
check messages.

Figure 4: The effectiveness of our proposed communication-
saving techniques described in Section 4.3. We corrected the
data with k = 10 on 16 nodes. The unoptimized pattern sends
Type 1 and Type 2 messages. The optimized pattern sends
Type 1, Type 2+, and Type 3 messages.

6 RELATED WORK

To implement distributed-memory NN-Descent, the original NN-
Descent paper [6] employed MapReduce [4]. Also, Warashina et
al. [24] presented a performance-optimized version of that. Due to
the design and implementation of MapReduce-type frameworks,
we believe that implementing algorithm-specialized software, as
DNND, produces much better performance. GNND [22] is a GPU-
based NN-Descent (no distributed memory support). Leveraging
GPU for local NN-Descent computing could be one of our future
work directions.

A Hierarchical Navigable Small World (HNSW) graph is a hierar-
chical nearest neighbor index structure in which successive layers
contain fewer points from the original dataset. Searches begin in the
sparsest layer and end in a layer containing the full dataset, making
finer adjustments to the nearest neighbors in each layer. This data
structure is implemented by its creators in the Hnswlib library [17].
Pyramid extends the HNSW structure to distributed memory by
partitioning data across processes and building a meta-HNSW on
the partitions for use in distributing queries [5].

ELPIS [2] is a shared-memory ANNG library that utilizes Her-
cules [7] to split the given dataset into multiple groups using a
tree structure, and, at the leaf level, ELPIS employs Hnswlib [17] to
construct a graph for each divided dataset group. It demonstrates
very fast index construction time and query performance. ELPIS is
specialized for Ly distance.

Iwabuchi et al.

EFANNA [9] utilizes a dive-and-conquer technique to gener-
ate an initial k-NNG and performs the NN-Descent algorithm. Al-
though EFANNA does not show better performance during the
graph construction and the query over the original NN-Descent
algorithm in another study [23], exploring their strategy for
distributed-memory systems could be one of our future works.

As a method to speed up the query time of graph-based ANN,
PyNNDescent divides data points using a random projection tree
and selects the search’s starting point based on this information.
FINGER [3] proposed to speed up queries by introducing an ap-
proximate distance function calculation method.

7 FUTURE WORK

First, further performance profiling is required to identify bottle-
necks, such as finding how much the computation or communica-
tion is heavier than the other and understanding communication
patterns deeply. Based on the obtained information, leveraging
GPU for accelerating local NN-Descent computing and specialized
hardware for network communication are our interests.

Another future work would be exploring the further utilization
of the persistent memory allocator. Employing Metall will facilitate
rapid graph updates in the face of several real-world situations.
For example, new data points may be added/deleted, followed by a
short graph refinement phase, which will fit NN-Descent’s iterative
nature well. Also, several studies have shown that out-of-core pro-
cessing could reduce memory usage while minimizing the perfor-
mance overhead for large-scale graph processing and graph-based
NN, for example [12, 14].

8 CONCLUSION

We developed a novel distributed memory implementation of NN-
Descent leveraging HPC libraries and proposed a communication-
saving technique. We adopted YGM, an asynchronous message
library for distributed memory communication, and also utilized
Metall, a persistent memory allocator, to enhance the usability of
the constructed k-NN data.

When using the one billion-size datasets, our proposed k-NN
graph construction communication-saving method reduced mes-
sage counts and volume by approximately 50%. In contrast to Hn-
swlib, a state-of-the-art graph-based shared memory ANN library,
DNND was able to construct a graph of similar or higher qual-
ity up to 4.7 times faster using 16 compute nodes. Furthermore,
DNND demonstrated to construct even better quality graphs (k=30)
in 6.6 and 5.8 hours using 32 nodes on Yandex DEEP 1B and Bi-
gAnn graphs, respectively. Given that Hnswlib does not produce a
generic k-NNG different from DNND (NN-Descent), the outcomes
of this study indicate that DNND can construct k-NNGs with high
performance while maintaining the high accuracy and versatility
of k-NNG, which is a strength of NN-Descent, by leveraging dis-
tributed memory systems. We achieved promising results toward
developing a massive-scale k-NNG framework.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-PROC-852700).

Towards A Massive-Scale Distributed Neighborhood Graph Construction SC-W 2023, November 12-17, 2023, Denver, CO, USA

REFERENCES [21] Trevor Steil, Tahsin Reza, Benjamin W. Priest, and Roger Pearce. 2023 (to ap-
[1] Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN- pear). Embracing Irregular Par‘allelism in HPC with YG_M' In Pr ocee_dings of the
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Inter natton'al Conference for High P er:formance ,C‘{mP uting, N etwt?rklng, Stf)rage
Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.i5.2019.02.006 and Analysis (Denver, Colorado) (SC '23). Association for Computing Machinery,

[2] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. ELPIS: Graph-Based Ne\fv York, NY, USA“ . . .
Similarity Search for Scalable Data Science. Proc. VLDB Endow. 16, 6 (apr 2023), (22] Hui Wang, Wan-LelA Zhao, Xiangxiang Zeng, and Jlanye' ang. 2021. F aslt K-
1548-1559. https://doi.org/10.14778/3583140.3583166 NN Graph Construction by GPU Based NN-Descent. Association for Computing
Machinery, New York, NY, USA, 1929-1938. https://doi.org/10.1145/3459637.

[3] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon,

and Cho-Jui Hsieh. 2023. FINGER: Fast Inference for Graph-Based Approximate 3452344 Lo . .
Nearest Neighbor Search. In Proceedings of the ACM Web Conference 2023 (Austin, (23] Men$Zha° Wang, XlaohangAXu, Qiang Yue, gnd Yuxiang Wang. 2021. A Compre-
TX, USA) (WWW °23). Association for Computing Machinery, New York, NY, hensive Survey and Experimental Comparison of Graph-Based Approximate

USA, 3225-3235. https://doi.org/10.1145/3543507.3583318 Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (jul 2021), 1964-1978.
https://doi.org/10.14778/3476249.3476255

Tomohiro WARASHINA, Kazuo AOYAMA, Hiroshi SAWADA, and Takashi HAT-
TORI. 2014. Efficient K-Nearest Neighbor Graph Construction Using MapReduce
for Large-Scale Data Sets. IEICE Transactions on Information and Systems E97.D,
12 (2014), 3142-3154. https://doi.org/10.1587/transinf.2014EDP7108

YGM. [n.d.]. GitHub - LLNL/ygm — github.com. https://github.com/LLNL/ygm.
[Accessed 28-Jun-2023].

[4] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113. (24

[5] Shiyuan Deng, Xiao Yan, KW Ng Kelvin, Chenyu Jiang, and James Cheng. 2019.

Pyramid: A general framework for distributed similarity search on large-scale

datasets. In 2019 IEEE International Conference on Big Data (Big Data). IEEE,

1066-1071. (25

Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient K-Nearest Neighbor

Graph Construction for Generic Similarity Measures. In Proceedings of the 20th

International Conference on World Wide Web (Hyderabad, India) (WWW °11).

Association for Computing Machinery, New York, NY, USA, 577-586. https:

//doi.org/10.1145/1963405.1963487

Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,

and Houda Benbrahim. 2022. Hercules against Data Series Similarity Search. Proc.

VLDB Endow. 15, 10 (jun 2022), 2005-2018. https://doi.org/10.14778/3547305.

3547308

Carlos Eiras-Franco, David Martinez-Rego, Leslie Kanthan, César Pifieiro, Anto-

nio Bahamonde, Bertha Guijarro-Berdifias, and Amparo Alonso-Betanzos. 2020.

Fast Distributed KNN Graph Construction Using Auto-Tuned Locality-Sensitive

Hashing. ACM Trans. Intell. Syst. Technol. 11, 6, Article 71 (oct 2020), 18 pages.

https://doi.org/10.1145/3408889

Cong Fu and Deng Cai. 2016. EFANNA : An Extremely Fast Approximate Nearest

Neighbor Search Algorithm Based on kNN Graph. arXiv:1609.07228 [cs.CV]

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search with the Navigating Spreading-out Graph. Proc. VLDB

Endow. 12, 5 (jan 2019), 461-474. https://doi.org/10.14778/3303753.3303754

[11] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In Proceedings of the 25th International Conference

on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 518-529.

Keita Iwabuchi, Scott Sallinen, Roger Pearce, Brian Van Essen, Maya Gokhale, and

Satoshi Matsuoka. 2016. Towards a Distributed Large-Scale Dynamic Graph Data

Store. In 2016 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 892-901. https://doi.org/10.1109/I[PDPSW.2016.189

Keita Iwabuchi, Karim Youssef, Kaushik Velusamy, Maya Gokhale, and Roger

Pearce. 2022. Metall: A persistent memory allocator for data-centric analytics.

Parallel Comput. 111 (2022), 102905. https://doi.org/10.1016/j.parco.2022.102905

[14] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate Billion-point
Nearest Neighbor Search on a Single Node. In Advances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.
cc/paper_files/paper/2019/file/09853¢7fb1d3f8ee67a61b6bf4a7{8e6-Paper.pdf

[15] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.

[16] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117-128. https://doi.org/10.1109/TPAMIL.2010.57

[17] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824-836.

[18] PyNNDescent. [n.d.]. GitHub - lmcinnes/pynndescent: A Python nearest

neighbor descent for approximate nearest neighbors — github.com. https:

//github.com/Imcinnes/pynndescent. [Accessed 24-Jun-2023].

Harsha Vardhan Simhadri, George Williams, Martin Aumiiller, Artem Babenko,

Dmitry Baranchuk, Qi Chen, Matthijs Douze, Lucas Hosseini, Ravishankar Kr-

ishnaswamy, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong Wang.

[n. d.]. Billion-Scale Approximate Nearest Neighbor Search Challenge: NeurIPS’21

competition track. http://big-ann-benchmarks.com/neurips21.html. [Accessed

30-Jun-2023].

[20] Trevor Steil, Tahsin Reza, Keita Iwabuchi, Benjamin W. Priest, Geoffrey Sanders,
and Roger Pearce. 2021. TriPoll: Computing Surveys of Triangles in Massive-Scale
Temporal Graphs with Metadata. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (St. Louis,
Missouri) (SC "21). Association for Computing Machinery, New York, NY, USA,
Article 67, 12 pages. https://doi.org/10.1145/3458817.3476200

(6

=

[7

[

o
&

[9

=

[10

[12

[13

[19

https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.14778/3583140.3583166
https://doi.org/10.1145/3543507.3583318
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.14778/3547305.3547308
https://doi.org/10.14778/3547305.3547308
https://doi.org/10.1145/3408889
https://arxiv.org/abs/1609.07228
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1109/IPDPSW.2016.189
https://doi.org/10.1016/j.parco.2022.102905
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://doi.org/10.1109/TPAMI.2010.57
https://github.com/lmcinnes/pynndescent
https://github.com/lmcinnes/pynndescent
http://big-ann-benchmarks.com/neurips21.html
https://doi.org/10.1145/3458817.3476200
https://doi.org/10.1145/3459637.3482344
https://doi.org/10.1145/3459637.3482344
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.1587/transinf.2014EDP7108
https://github.com/LLNL/ygm

