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Abstract—Information and communication technologies have
been widely used in smart grid for efficient operation. However,
these technologies are vulnerable to malicious cyber attacks,
which may lead to severe reliability and economic issues. Re-
cently, a variety of data-driven anomaly detection approaches
have been explored to detect potential cyber attacks in smart
grids. In this paper, we researched on the electricity market data
aiming to identify anomalies from the locational marginal prices
(LMPs) and provide a new indicator for potential cyber attacks
in power grids. Specifically, a novel data-driven probabilistic
anomaly detection framework is proposed for electricity market,
which consists of three major components: long short-term
memory (LSTM) based deterministic electricity price forecasting,
probabilistic electricity price forecasting and anomaly detection.
This framework is tested on a model-based electricity market
simulator under two types of cyber attacks, i.e., load redistribu-
tion attack (LRA) and price responsive attack (PRA). Numerical
results on the simulated LMPs show that the proposed framework
is capable of detecting data anomalies over these attacks.

Index Terms—cyber security, anomaly detection, machine
learning, probabilistic forecasting, locational marginal price
(LMP).

I. INTRODUCTION

The U.S. power grid is a complex cyber-physical system
incorporating vast volume of distributed devices, which by
nature results in a large attack surface. Malicious attackers can
compromise the power devices, communication and control
facilities or market interfaces, leading to local outages, equip-
ment damages, grid instabilities or individual financial gains.
One of the most cited cyber attacks in literatures is the false
data injection attack (FDIA). Motivated by financial benefits,
using FDIA, the attackers can create false load estimation
or transmission congestion limits to mislead the real-time
electricity pricing algorithms in producing biased locational
marginal prices (LMPs). The attacker then takes advantages
of the biased LMP to gain monetary profits using bids and
offers via the market interface. Such coordinated attack is
hard to detect using traditional cyber defense methods, such as
bad data detection in state estimation and intrusion detection
systems in SCADA. The reason is twofold: (1) the current
FDIA can be designed sophisticated enough to bypass the bad
data detection algorithms [1]]; (2) the FDIA can be applied
to various data interfaces, such as field sensors, data server
in control centers or remote communication channels, using
various techniques, e.g. man-in-the-middle attack and malware

attack. The complexity and uncertainty of FDIA makes it
unreliable to use single focused cyber defense mechanism.

Due to the wide adoption of load management technologies,
the research on load alternating attacks (LAA) gains popular-
ity. Three types of LAA were discussed in [2]] targeting on (1)
data centers and computation load, (2) direct load control and
(3) indirect load control. The authors also presented a cost-
efficient protection strategy by selecting the critical loads to
be guarded based on protection costs, network topology and
generation reserves. [3] presented a dynamic load alternating
attack (D-LAA) that manipulates loads progressively to desta-
bilize or degrade the system frequency regulation. D-LAA can
be designed in open-loop or close-loop using frequency sensor
data as the feedback signal. In [4]], the authors defined the
Manipulation of demand via IoT (MadlIoT) attacks, which ma-
liciously control the power demand by compromising IoT de-
vices, such as smart thermostats. With large amount of victim
devices, this attack could cause (1) frequency instability, (2)
cascading failure and (3) operating cost increase. Similarly, in
[Sl], the authors presented coordinated load-changing attacks,
called Grid Shock, targeting on digital devices, i.e. computers
and their peripherals. Each of these devices only contribute
hundreds to thousands of Watts but a botnet can joint these
power consumptions to affect the grid operations negatively.
It is noexpensive and almost infeasible to defend LAAs by
monitoring and protecting each grid edge devices.

A promising cyber defense approach, which is non-intrusive
to the operational system and adds additional protection is
the physical response based anomaly detection. For cyber-
physical systems, evaluating physical performance from sensor
data is a common practice, but using these data to detect
cyber attacks is under-developed. A few anomaly detection
technologies have been presented in the literature with power
systems applications. For example, Wang et al. [6] presented
a power consumption anomaly detection method based on
long short-term memory (LSTM) point forecasts and error
pattern. In [7], Krishna er al. adopted Principal Component
Analysis (PCA) and density-based spatial clustering on noise
pattern to detect the anomalies which are deviations from
the normal electricity consumption behavior. Kim et al. [8]]
presented a framework which utilizes spatial and temporal
correlation between multiple solar farms to defend against
data integrity attacks and learns the inter-farm/intra-farm cor-
relation between measurements to perform anomaly detection.



However, most of the existing anomaly detection applications
for power systems are deterministic and thus insufficient to
characterize the uncertainties of cyber attacks. Probabilistic
approaches that provide quantitative uncertainty information
associated with cyber attacks are therefore expected to better
assist power system operations.

To address the aforementioned limitations, in this paper,
a data-driven probabilistic anomaly detection methodology
is developed to provide reliable defense strategies against
various cyber attack scenarios. First, a deep neural network,
LSTM, is used to model the temporal dependencies within
the LMP profile and correlations with explanatory variables.
Then, a parametric probabilistic forecasting model is adopted
to convert the LMP point forecasts to probabilistic forecasts,
which is used for anomaly detection. Our major contribution is
to formulate the anomaly detection problem as a probabilistic
forecasting task and implement this approach to the publicly
available electricity market data. The proposed probabilistic
anomaly detection algorithm utilizes prediction interval to
reveal the underlying structures within normal behavior and
detect unexpected events.

The rest of the paper is organized as follows. Section
[ describes the proposed probabilistic anomaly detection
method, in consist of a deep-learning based deterministic
forecasting model and a parametric probabilistic forecasting
model. Section [lII| applies and validates the developed proba-
bilistic anomaly detection method to two types of cyber attack
scenarios. Concluding remarks and future work are discussed
in Section [[V1

II. METHODOLOGY

The overall framework of the proposed probabilistic
anomaly detection methodology is illustrated in Fig. It
consists of three major steps:

1) Step 1 (gray blocks): Feed the historical data into an

LSTM based forecasting machine to predict LMP.

2) Step 2 (orange blocks): Convert the point forecasts to
prediction intervals (PIs) using a parametric probabilis-
tic forecasting method based on designated predictive
distribution shapes and pinball loss optimization.

3) Step 3 (blue block): Detect anomalies based on the
threshold confidence and evaluate the performance.

This section delineates the mathematical models of algorithms
used in our proposed framework. Step 1 is explained in
Subsection A and Step 2&3 are explained in Subsection B.

A. Multi-input Long Short Term Memory

Due to data availability, it is impractical to collect all
explanatory variables (e.g., temperature and humidity, etc.)
to build an ideal LMP forecasting model. In this paper, we
select the energy cost, congestion cost, forecast load, and their
corresponding lagged variables to train the LSTM model, since
they are published in real-time for most electricity market
operators.

LSTM is a special recurrent neural network (RNN) archi-
tecture for time series modeling and forecasting, which has the

capability of learning and memorizing long-term dependencies
within the time-series data. The basic topology of standard
RNN is shown in Fig. [2} where X denotes input, Y denotes
output. h is the hidden state, Wp,, Wy, and Wy, are
the weight matrix among inputs, outputs, and hidden state
itself, respectively. The standard RNN have one hidden layer,
which could only trace back to few time steps due to the
vanishing gradient effect [9]. To better capture the long-term
dependencies, LSTM introduces different gates which could
regulate the gradient flow of the network. Following the work
of [10], the inner structure of the LSTM unit is illustrated in
Fig. B] and described in Eq/[T]

iy = 0(xWip + he— 1 Wi, + ¢ 1 Wie + b;)
fo=0(@Wye + he s Wen + 1 Wie + by)

¢t = coo1fe +ip - tanh(xWee + hym1Wen +be) (1)
0t = 0 (s Woy + he—1 Wop + by)

hi = o4 - tanh(ct)

where i) f(.), and oy are the input gate, forget gate, and
output gate, respectively. o denotes the sigmoid activation
function, h; is the state at ¢, x; denotes input, o; is the cell
output, and c; is the memory state. LSTM updates its hidden
state ¢; by using the current input x; and the previous state
c¢—1. The final state h; is determined by c¢; and o;. The weights
are optimized by minimizing the difference between the LSTM
outputs and training samples. In this study, the input vector of
the multi-input LSTM can be expressed as:

Ty = [ytfh ‘I)t] 2

where ®; denotes the feature vector of the time step t, y
denotes the observation at time step ¢.

B. Probabilistic Anomaly Detection

Once the deterministic LMP forecasts are generated, a
multi-distribution database is formulated to model the possible
shapes of the LMP predictive distribution. These four distribu-
tions, characterized by mean value (1) and standard deviation
(0), are Gaussian, Gamma, Laplace and non-central-t distri-
butions. The mean value is approximated by the deterministic
point forecast and the standard deviation o is calculated by
minimizing the pinball loss of the quantile function at each
time step. Based on the optimal pinball loss values, we select
the best predictive distribution. The pinball loss value of a
certain quantile L,, is expressed as:

m
(1- ﬁ) X (Gmt —Yt)s Yt < Gmt
Lm,t((Jm,t, yt) = m
100 X (Yt = Gmyt)s Yt = Gmt
3)

where ¥, represents the ¢th observation, m represents a quan-
tile percentage from 1 to 99, and ¢,, represents the predicted
quantile. For a given m percentage, the quantile g,, represents
the value of a random variable whose cumulative distribution
function (CDF) is m percentage. Pinball loss is one of the
most popular metrics for evaluating probabilistic forecasts
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Fig. 1: The Overall framework of the probabilistic anomaly detection model for electricity market data
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[11]]. Smaller pinball loss values indicate better probabilistic
forecasting.

The process of probabilistic anomaly detection is described
as follows:

1) Parameterizing the quantile in terms of p and o, where
1 assumes to be the point forecast. The mth quantile of
the tth point forecast, gy, ; is expressed as:

dm,t = F_1< 7gt70—t) (4)

m
100
where, ¥; and y; are deterministic forecasts and observa-
tions, respectively. F'~1(-) is the inverse CDF function.
The corresponding pinball loss is expressed as Eq. [3]

2)

3)

4)

5)

Calculating the unknown parameter o at each time step
by minimizing the averaged sum of pinball loss through
genetic algorithm (GA) [12]:

N,
« o1 = N
at = arg H;lfn Nim 7nz::1 Lm,t(o-ty Yt, Yt m)
subject to o, <ot <oy ®))

where o} is the optimal standard deviation of the tth
time step; N, = 99 is the number of quantiles; o; and
o, are the lower and upper bound of o, which are set
as 0.01 and 80, respectively.

An support vector regression (SVR) surrogate model
is used to fit the point forecast and ¢* in the training
stage, which is used to generate unknown pseudo opti-
mal standard deviations, 6*, in the forecasting stage.
During probabilistic forecasting, both the deterministic
forecasts, i.e. u, generated by LSMT and the estimated
pseudo optimal standard deviation 6* generated by SVR
are used to determine the prediction interval (PI) [14].
For each time step, the observation falls into a certain
PI, which is used to estimate the likelihood of it being
anomaly (outliers). The deterministic prediction decides
the best estimate of next step LMP, while the probabilis-
tic prediction quantifies the uncertainty of all possible
observations. The larger PI denotes further deviation
from its nominal value. In this paper, we assume an
anomaly is spotted whenever the observation falls out
of the 70% PI. This detection threshold can be further
tuned through a sensitivity study which is out of our
scope.

III. CASE STUDY

A. Data Description

For data preparation, we first built an electricity market
simulator based on Matpower [13] using a combined model of
day-ahead economic dispatch (ED) and real-time incremental
economic dispatch (IED). We then run the simulator on the
IEEE 14 bus system with 11 loads selected from PJM load
profiles. The day-ahead hourly load forecast and 5-minute real-

time

load forecast from Sept. 19th to Oct. 17th 2019 were used



for ED and IED, separately. The simulated 5-minute real-time
LMP, energy cost, congestion cost and the 5-min load forecast
were used for training and testing. The ratio of the number
of training samples to testing samples was 3:1. The LSTM
deterministic forecasting model has two hidden layers of 50
and 30 neurons and the weights were optimized with Adam.

B. Cyber Attack Scenario Design

Two kinds of attacks are implemented in the simulator: Load
Redistribution Attack (LRA) and Price Responsive Attack
(PRA).

LRA was first introduced by Yuan et al [16], as a kind of
FDIA attack where only the measurements related to some
load bus power injection are attacked. LRA redistributes the
load by increasing/decreasing certain loads at some buses
while keeping the total load unchanged [17]. Since no attacks
happened on the well-protected generation buses and LRA
can bypass bad data detection, LRA can be hard to detect
in real-time. The damage of LRA is that it can lead to a
wrong dispatch result, i.e., fake solution from the economic
dispatch problem, which may overload certain transmission
lines and raise LMPs. The LRA was added to the simulator
before solving the IED problem to redistribute the 5-min load
forecast. It tries to increase the load prediction in the targeted
bus, while decrease the load prediction in the non-targeted
buses. To maximize the gain of the attacks, LRA is only
activated in the simulator during the critical hours, i.e., when
LMP has a big change in the historical data. In our case,
we observed that LMP changes dramatically during 11:00
to 13:00, when LMP increases due to line congestion, and
20:00 to 22:00, when LMP decreases due to the remove of
congestion. Therefore, we only add attacks during these two
time periods, to extend the time of line congestion. LRA is
added by the following procedure:

1) Within the time period 11:00 to 13:00, check if we
have already applied attacks in the previous steps. If the
number of existing attacks is greater than the maximum
allowed attacks, terminate.

2) Check if the next total load prediction is greater than
the current total load by 5%. If yes, we reduce the
load increasing rate at the non-targeted bus where its
corresponding load is increasing, and make the load
decreasing rate higher at the non-targeted bus where
its load is decreasing. We then apply the adjusted load
to the targeted bus to increase its incremental load and
accelerate the LMP ramping.

Similar procedure is applied to the time period 20:00 to 22:00,
where we aim to slow down the load decreasing rate at the
targeted bus, in order to extend the period of line congestion.

PRA is a type of LAA, inspired by the real-time pricing

attacks [[18]], and Manipulation of Demand attack (MAD) [19]],
which change the load behaviors to damage the power grid.
The motivation of our PRA is that the quick growth of smart
grid foresees the wide usage of load management technologies,
which can change the load behaviors based on the current LMP
information. For example, the controller of smart appliance

can switch to the full-power mode when the price is low, and
keep in energy saving mode when the price is high. Unlike
the infrastructures of power grid, which are well-protected,
the load controllers are located in the user end with much
less secure to defend cyber attacks. The PRA is designed by
injecting false price signal to the load controllers so as to
inverse the controller logic, to use more power when LMP is
high and there is a high opportunity of line congestion in the
power grid. By increasing the load demand at such a critical
time period, we expect it can possibly change the LMP by
introducing more congestion.

Assuming there is a delay in the control of price-responsive
demand after LMP changes, e.g., the load change happens 30
minutes after the price change. Our implementation of PRA
is summarized as follows:

1) Check if we have already applied attacks in the previous
steps. If the number of existing attacks is greater than
the maximum allowed attacks in the given time period,
terminate. (In our test case, we check if there are 5
continuous attacks happened during the last 5 time
steps.)

2) Check if LMP has a big increase, compared to the LMP
from last step. (In our test case, we check if it has an
increase over 10%.) If yes, adjust the price-responsive
load by the following equation

PDadjusted = PDbase + PDp'r‘ * ()\curr//\pred)ﬁ (6)

where PDyqs. and PD,, are the base load and the price-
responsive part of the load, similar to the definition given in
[18]l. In our test case, we set PDpgse = 90% % PD,yeq, i.e.,
90% of the load forecast, and the rests are the price-responsive
load. The decreasing factor (3 is set to be -0.8. Note that our
formulation is slightly different from the one used in [18],
since we use day-ahead LMP prediction Ay,..q as a base line.
If the current LMP is equal to the predicted one, the above
equation ends up t0 PDygjusted = PDpred.

C. Deterministic LMP Forecasting Results

Three evaluation metrics are used to assess the determin-
istic forecasting accuracy, which are the normalized root
mean squared error (nRMSE), normalized mean absolute error
(nMAE), and mean absolute percentage error (MAPE). For
these metrics, a smaller value indicates better forecasting
performance. Deterministic LMP forecasting results are sum-
marized in Table (I} In this study, the persistence method (PS) is
adopted as the baseline since its superiority for shorter forecast
horizon [20]. Overall, the accuracies of the LSTM determinis-
tic LMP forecasts are better than those of persistence forecasts
under both cases with or without attack. It is mainly because
the LMP data is highly temporal correlated, and the LSTM
model outperforms in capturing long-term dependencies.

D. Probabilistic Anomaly Detection Results

This section evaluated the performance of the proposed
probabilistic anomaly detection method. Laplace distribution
is selected as the predictive distribution based on its minimal



TABLE I: 5-min ahead LMP forecasting performance

. Scenario
Model  Metric wlo attack LRA  PRA
NMAE(%) .07 520 596
LSTM  NRMSE(%) 135 610 683
MAPE(%) 228 799 843
oS NMAE(%) 380 640 6.66
NRMSE(%) 650 786  8.42
MAPE(%) 471 9.13 1027

pinball loss in the training process. Therefore, the LSTM
model with Laplace distribution (LSTM-Laplace) is chosen
as the final anomaly detection model. The performance skill
scores could be calculated based on Table [[I, where The true
positive (TP) denotes the number of detected attacks; false
negative (FN), i.e., type II error, denotes the number of missed
detection of attacks; False positive (FP), i.e, false alarm or
type I error, denotes the number of normal data is treated as
attacks; true negative (TN) denotes the number of normal data
is correctly identified. IV, is the total number of test samples.
Among these indexes, the FP can cause false alarms, which
may add redundant work to system operators, while the FN
missed by the detection model may bring loss to market end
users.

TABLE II: Contingency table of attack detection

Attack (Yes) | Attack (No) Total
Detected TP (hit) FP (miss) TP+FP
(Yes)
Detected| FN (miss) TN (hit) FN+TN
(No)
Total TP+FN FP+TN Ns=TP+FP+FN+TN

1) Evaluation Metrics: We calculated the true positive rate
(TPR), false positive rate (FPR), and F1 score of the anomaly
detection results. The mathematical expressions of the three
metrics are expressed as:

TP
TPR*TP—FFN )
FP
FPR= 557N ®)
2T P
F-1=
2TP + FP + FN ®)

where the TPR measures the proportion of actual attacks
that are correctly identified, the FPR measures the portion of
normal data mistakenly categorized as attacks, and the F-1
score is the harmonic mean of the precision and recall. For
the TPR and F-1 score metrics, value approaching 1.0 indicates
better performance, while for FPR metric, a value closer to 0
indicates better performance.

To show the effectiveness of the proposed LSTM-Laplace
model three baseline models are selected for comparison,

which are: LSTM model with Gaussian distribution (LSTM-
Gaussian), LSTM model with Gamma distribution (LSTM-
Gamma), and quantile regression (QR). The reasons for
choosing these baseline models are: (i) QR is a widely used
non-parametric probabilistic method [21]]. Since the proposed
LSTM-Laplace model is a parametric method, the QR baseline
allows us to explore the performance between parametric
method and non-parametric method; (ii) the LSTM-Gaussian
and LSTM-Gamma model allow us to explore the detection
performance based on different predictive distribution types.

The evaluation metrics of different models are compared
and summarized in Table Overall, the proposed LSTM-
Laplace anomaly detection method has a higher TPR, F-1
Score, and lower FPR compared with other anomaly detec-
tion methods, which shows the effectiveness of the proposed
probabilistic anomaly detection algorithm. Note also that
the models of LSTM-Gaussian, LSTM-Gamma, and LSTM-
Laplace perform similarly and better than the QR method,
which indicates that the optimization can help achieve better
detection performance with different predictive distribution
types in parametric methods. In addition, it is shown that the
scores of LRA is better than that of PRA. It is mainly due
to the larger LMP magnitude change under LRA and higher
PRA attack frequency.

TABLE III: Probabilistic Anomaly Detection Results

Method Attack Scenario Metrics
TPR FPR F-1 Score

LRA 091 0.19 0.89
LSTM-Laplace PRA 0.86 0.23 0.86
. LRA 0.89 024 0.87
LSTM-Gaussian PRA 0.85 024 0.88
LRA 0.86 0.23 0.87
LSTM-Gamma PRA 085 024 086
OR LRA 0.79 033 0.84
PRA 0.71 0.35 0.65

Note: The best TPR, FPR, and F-1 score among different models are
marked in boldface.

2) Results Analysis: To better visualize the probabilistic
anomaly detection results, the PIs of selected time period
under LRA and PRA are illustrated in Fig. ] and Fig. [3
respectively. It is observed that at most part of the no attack
periods, the LMP reasonably lies within the PIs. When the
observation in the attack period falls out of the 70% PI , it is
defined as a truth positive detection. It is seen that the PRA
frequency in Fig. [5]is higher than that of LRA in Fig. 4] and
the magnitude change of LMP under LRA is higher than that
under PRA. However, under both scenarios, the high detection
accuracy shows the robustness of the proposed method. The
width of the PI varies with the LMP variability. When the
LMP fluctuates more frequently, the PI tends to be wider, and
thereby the uncertainty under PRA is relatively higher.

IV. CONCLUSION

This paper developed a data-driven probabilistic anomaly
detection method in electricity market. Results of the case
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study under different attack scenarios showed that the de-
veloped probabilistic anomaly detection method was able to
effectively detect both LRA and PRA in electricity market.
Future work will explore: (i) performance improvement using
spatio-temporal correlations among nearby nodes, and (ii)
sensitivity analysis on different PI thresholds to detection
performance.
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