
Abstract—With the rapid advancement and integration of 

communication and sensor technologies, power system operation 

is becoming more vulnerable to cyberattacks, particularly attacks 

in which malicious data could induce catastrophic consequences 

on market operations. Financial risks, as well as the potential 

physical damages, raise growing concerns about the reliable 

operation of the electricity market. Existing market-targeting 

cybersecurity research has focused on developing attack strategies 

or detection schemes. However, the lack of cyber-vulnerability 

analysis (CVA) hinders operators from systematically evaluating 

the real-time (RT) market-clearing model and identifying 

potential threats from a cybersecurity perspective. This paper 

proposes a comprehensive CVA model for delivering a detailed 

analysis of four aspects of vulnerability: highly probable 

cyberattack targets, devastating attack targets, risky load levels, 

and mitigation ability under different degrees of defense. Users 

can simulate interactions between attackers and defending 

operators under different attack events, and the corresponding 

market settlements are also obtained. The proposed bi-level model 

is recast into mixed-integer linear programming through Karush–

Kuhn–Tucker (KKT) conditions. A simulation study on an IEEE-

30 bus system demonstrates the accuracy and effectiveness of the 

proposed CVA model. 

Index Term— Cyber-vulnerability, Cybersecurity, Locational 

marginal prices (LMPs), Bi-level optimization, KKT conditions 

NOMENCLATURE  

Lower level variables and parameters:  

Parameters:  
Ci Bidding prices of ith unit 

di Load at bus i 

Pi
max, Pi

min Up and down generation limits for unit i 
GSFl-i Generation shift factor which gives the 

fraction of a change in the injection at bus i 

that appears on a branch l 

Li
max, Li

min Up and down transmission capacity for 

branch i 

Adf Defense degrees 

Variables: 
 

Pi Scheduled generation for unit i 
Vl

+, Vl
- Defense decision for congestion status of lth 

up/down line flow constraints 
Vi

b, Vi
d, Vi

p 

Vl
L+, Vl

L- 
Defense decision for bid of ith unit, load at ith 

bus, capacity of ith unit, up flow limit of lth 

branch, and down flow limit of lth branch 
Ni

b, Ni
d, Ni

p 

Nl
L+, Nl

L 
Defense value for bid of ith unit, load at ith 

bus, capacity of ith unit, up flow limit of lth 

branch, and down flow limit of lth branch 
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Upper level variables and parameters:  

Parameters:  

Aak             Attack degrees 

qi
b, qi

d, qi
p 

ql
L+, ql

L- 

Penetration level of data manipulation in 

bid of ith unit, load at ith bus, capacity of ith 

unit, up flow limit of lth branch, and down 

flow limit of lth branch 

Variables:  

Mi
b, Mi

d, Mi
p 

Ml
L+, Ml

L- 

Attack value for bid of ith unit, load at ith bus, 

capacity of ith unit, up flow limit of lth 

branch, and down flow limit of lth branch. 

δl
+, δl

- Attack decision for congestion status of lth 

up/down line flow constraints 

Bi
b, Bi

d, Bi
p 

Bl
L+, Bl

L- 

Attack decision for bid of ith unit, load at ith 

bus, capacity of ith unit, up flow limit of lth 

branch, and down flow limit of lth branch 

Lagrange multipliers:  

λ 

 
Lagrange multiplier for power balance 

constraint 
γl

+, γl
- Lagrange multipliers for up and down flow 

limits of lth branch 
μi

+, μi
- Lagrange multipliers for upper and lower 

generation limits of ith unit  

αl,j
+, αl,j

-, αi,j
+, 

αi,j
-   

Lagrange multipliers for the 1st reformed 

defense mitigation limits constraints 

κl,j
+, κl,j

-, κi,j
+, 

κi,j
-   

Lagrange multipliers for the 2nd reformed 

defense mitigation limits constraints 

β Lagrange multipliers for defense ability 

constraint 

Parameters and variables for reformulations:  

Parameters  

Qm, Qs, Qg Big numbers with Qg >> Qm 

Variables  

δl
+_Vl

+, δl
-_ 

Vl
- 

Binary variables represent δl
++Vl

+, δl
-+Vl

- 

δl
+_Vl

+_Pi, 

δl
-_ Vl

-_ Pi 
Continuous variables represent (δl

++Vl
+)∙Pi, 

(δl
-+Vl

-)∙Pi, 
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δl
+_Vl

+_Mi 
j,  

δl
-_ Vl

-_ Mi 
j 

Continuous variables represent (δl
++Vl

+)∙Mi 

j, (δl
-+Vl

-)∙Mi 
j, and j ∈ {p+, p-, d+, d-, b+, b-, 

L+, L-} 
ui 

p+, ui 
p- Binary variables for the reformed 

complementary slackness of generation 

capacity constraint of unit i 
ul 

L+, ul 
L- Binary variables for the reformed 

complementary slackness of lth flow limits 

I. INTRODUCTION 

LTHOUGH the growth of the Internet has expedited smart 

grid development, the interconnected smart grid 

communication network opens the modern power system 

operation to unprecedented threats from cyberattacks. For 

example, in December 2015, the information system for three 

distribution centers in Ukraine was compromised, and 30 

substations were switched offline [1].  In March 2019, a denial-

of-service attack occurred at a western utility in the U.S. 

disconnecting the communication between operators and 

remote generation sites for a minute [2]. These real-life events 

demonstrate that cyber intrusions are capable of penetrating the 

communication systems in power grid operation. 

The U.S. power market clears hundreds of GW loads every 

hour, where electricity is produced reliably and economically. 

Malicious communication breaches into market operations 

could induce catastrophic consequences on fair financial 

settlements and reliable transmission services. Followed by the 

initial discussion of market-targeted cyberattacks presented in 

[3], the literature discussing various cyberattacks on power 

market operations is abundant.  

The three main directions of market-targeted cyberattack 

research can be summarized as: (1) developing new attack 

strategies, (2) developing new detection schemes, and (3) 

investigating the sensitivity of cyberattacks. In the first 

category, state estimation (SE) is the most popular intrusion 

path. In [4], a robust false-data injection attack (FDIA) on SE is 

designed to create a financial bias on market settlements along 

with bogus bids. In [5], an undetectable parameter attack on the 

system model is designed for financial profit in market 

operations. In [6], a topology attack is combined with an FDIA 

to lead customers to pay a higher bill through undetectable price 

deviations. In [7], three new topology attacks on SE are 

developed to mislead both economic dispatch and reliable 

operation. Next, ref. [8] determines that the grid topology is too 

extensive to be known by attackers, and a new profitable attack 

method without prior information on grid topology is proposed. 

Similarly, imperfect topology information is dealt with via 

robust optimization and stochastic programming in [9] and [10]. 

Various new attack paths and scenarios on market operation 

have been identified: a transmission line rating attack [11], a 

ramping constraints attack [12], and very short-term load 

forecasting [13]. For the second category of market-targeting 

cyberattack research, developing new detection schemes, 

detecting cyberattacks on market operations mainly focuses on 

SE level protections. In [14], a least-budget defense algorithm 

is proposed to secure pre-selected sensors, leading to the failure 

of bad data detection attacks. Refs. [15] and [16] have focused 

on enhancing the bad data detection algorithm itself by 

investigating the statistical difference between the random 

noise and the FDIA. In the last category of market-targeted 

cyberattack research, the sensitivity of cyberattacks, 

sensitivities of SE manipulation on market-clearing results have 

been fully investigated. In [18] and [19], the sensitivity of 

locational marginal prices (LMPs) to bad meter data has been 

formulated, and buses with higher sensitivity are found prone 

to being attack targets. In [20], the mathematic representation 

for the sensitivity of profitability to topology data is 

investigated. In [21], the sensitivity of renewable generation 

curtailments to profitability is formed. Although the 

curtailments in [21] are described as a strategy, the malicious 

attack could lead to the same results. 

Various market cyberattacks and their corresponding defense 

strategies have been identified and demonstrated in existing 

research works. They generally focus on elaborating the attack 

paths or specific strategies, for example, the attacker’s injection 

of false data to SE which changes the congestion pattern to 

modify LMPs. However, from the market operators’ viewpoint, 

no matter where the attack path lays, whether in SE or the 

market gateway, the potential targets in a market operation are 

as follows: unit bids, demand management, generation 

capacities, line ratings, and congestion patterns. Therefore, it is 

important for the market operator to identify the vulnerability 

among all those attack paths. To the best of our knowledge, no 

previous research has developed a comprehensive analysis 

model regarding the vulnerability of the electricity market 

model involving all potential attack objectives and targets. 

Therefore, this paper first provides an impact analysis model 

that emulates market-clearing under various cyberattacks, and 

then proposes a set of algorithms to identify the vulnerability 

from different aspects. 

The detailed contributions of this paper are as follows: 

• A comprehensive cyber-vulnerability analysis (CVA) model 

is proposed in which market data from all sources is assumed 

to be susceptible to attacks, including line ratings, congestion 

patterns, generation capacity withholds, market-interface, 

etc. Namely, all parameters in the ISO’s market model are 

assumed to be attackable. Next, various attack objectives are 

categorized and considered. The market operator can apply 

the proposed model to perform impact analysis on market 

cyberattacks.  

• Four specific impact analysis algorithms are proposed to 

identify the vulnerability of power market parameters 

comprehensively. The four proposed algorithms target four 

vital aspects of the vulnerability of power market parameters: 

(1) Vulnerability in terms of possibility: which attack paths 

are most likely to be attacked? (2) Vulnerability in terms of 

severity: which attack paths have the most impact on market 

operation? (3) Vulnerability in terms of load level: at which 

load level are attacks more likely to occur? (4) Vulnerability 

in terms of defense strategies: how defense degrees impact 

the effectiveness of market cyberattacks? 

The rest of this paper is organized as follows. Section II first 

presents the formulation of the proposed CVA model. Section 

III describes the proposed algorithms based on the CVA model 

in detail. In Section IV, the reformulation and linearization 

steps for solving the proposed model are presented. Section V 

conducts a detailed simulation study on an IEEE 30-bus system 

to demonstrate the effectiveness of the proposed vulnerability 

A 
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analysis. Finally, conclusions and future studies are discussed 

in Section VI. 

II. PROPOSED ANALYSIS MODEL ON MARKET FDIAS  

A. Preliminary on real-time (RT) market model  

Ex-ante and ex-post are two primary models for RT market-

clearing [22]. In the ex-ante model, generation dispatches and 

LMPs are calculated based on the forecasted conditions for the 

next trading period. Optimal generation dispatches are 

determined given the expected load and physical security 

constraints. The ex-post model is purely a price-setting model 

in which generation dispatches are determined via the ex-ante 

model, while the LMPs are calculated by the ex-post model. 

The proposed analytical model can be applied to both the ex-

ante and ex-post models. The ex-ante model is applied here as 

an illustration, shown in (1)-(5). 
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The details of the RT market model can be found in [22]. The 

market-clearing price is composed of the Lagrange multipliers 

associated with (2)-(5), as shown in (6). 

   ( )
l i l l

L

M GSFL P gl g+ -

-
= + -å  (6) 

B.   Proposed CVA model  

The proposed analytic model provides a flexible platform to 

emulate different attack strategies and defense degrees under 

various assumptions. The details of the vulnerability analysis 

algorithms are discussed in the next section. This section 

presents the construction of the CVA model.  

 
Fig. 1. Proposed CVA model structure 

The CVA model contains an attacker and a defending market 

operator. The attacker wants to optimize its objective (e.g., 

LMP manipulations), then it anticipates the optimal response 

from the market operator. In this setting, the attack's 

optimization problem contains a nested optimization task that 

corresponds to the market operator's optimization problem. The 

defending ability is modeled for the impact analysis of defense 

degrees, which is clarified in detail in Section III.4. Therefore, 

the proposed model is constructed as a bilevel optimization 

problem. The attacker modifies the parameters that impact the 

market-clearing result, and the market operator clears the 

market with defending variables, which in turn affects the 

attacker's objective. The overall structure of the proposed model 

for CVA is shown in Fig.1. 

1) Upper level (attacker): 

Although most of the existing research assumes that attacks 

on the market are profit-driven, the purpose of cyberattacks on 

market operation varies from one attacker to another. 

Generally, potential objectives for power market cyberattacks 

can be categorized into three types: (1) financial settlements, 

(2) generation dispatches, and (3) transmission congestions. 

Therefore, the proposed model considers different attack 

objectives from each of the above categories, as shown in Table 

I to provide a general attack evaluation. The objective of the 

upper level model can be selected from Table I based on 

different analysis purposes, which are discussed in Section III. 

Table I. Potential attack objectives 

Type Objective Model 

Financial 

settlements 

LMP 
i

LMP  

Social-welfare ∑Ci (Pi) 

Generation  Generation dispatch 
i

P  

Transmission  
Congestion price 

i j
LMP LMP-  

Congestion pattern L  

The upper level of the analysis model incorporates all 

potential attack targets in market operation. When the market 

operator solves a RT economic dispatch problem, data from 

multiple sources are used, including: (1) short term load 

forecasts and demand management from energy management 

systems (EMSs); (2) bidding prices and generator capacities 

from market gateway; and (3) congestion patterns and line 

ratings from EMSs. Therefore, to conduct a comprehensive 

analysis, all of the above data sources are assumed to be 

susceptible to attacks, as shown in (7)-(11). Although some 

parameters may not be easily compromised unless the cyber 

threats are from insiders, the proposed CVA model in this paper 

considers comprehensive scenarios to provide a general 

analytic framework for market operators to identify possible 

cyber vulnerabilities. Specific constraints and variables can be 

simplified or removed if decision makers consider these 

parameters to be perfectly secure. The maximum amount of 

those attacks is constrained by the penetration level value q and 

the targets’ original value. 
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Constraint (12) means that congestion pattern attacks happen 

either at upper or lower limits because a line flow can either be 

on the upper or lower limit. The attacker degree is constrained 

in (13), which represents how many targets the attacker can 

compromise. 

2) Lower level (market operator): 

The market operator is placed at a lower level equipped with 

the capability to defend against attacks. The original economic 

dispatch model (1)-(5) becomes (14)-(18) with the considered 

attacks and corresponding defenses. To identify the critical 

attack path and defense efficiency, the defense degree is 

constrained in (19), which represents the number of attacks that 

can be defended against. Although operators want to defend 

against all possible attacks, there is always a recourse limit such 

that they have to defend against the attacks that they identify as 

most threatening. It worth noting that the defender knows where 

the attacker attacked in this bilevel formulation. However, the 

defender proposed analysis presented in this work is aimed at 

analyzing the effectiveness of the defense degree, which is 

explained in detail in Section III. 4. Equations (20) and (21) 

indicate that if an attack is identified, then it is totally countered, 

and equation (22) shows the defense is only placed where the 

attack happens. 
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The proposed CVA model is used to perform a vulnerability 

analysis from four different aspects, which will be elaborated in 

the next section.  

III. THE CAPABILITY OF THE PROPOSED ANALYSIS MODEL 

As discussed in the introduction, potential attack targets, 

risky operating conditions, and defense effectiveness are the 

most vital elements in developing a defense strategy. Therefore, 

the following four aspects are selected to construct the CVA 

model. 

1) Identifying highly probable attack targets (Algorithm 1): 

Some parameters are compromised more frequently than 

others. For example, congestion patterns can be a vital attack 

route for both LMP manipulation and diminishing social-

welfare. As shown in Fig.2, protection of the congestion pattern 

makes it hard for those two types of market attackers to achieve 

their desired goals. Therefore, in Algorithm 1, the CVA model 

is solved iteratively for all interested attack objectives, and the 

attack route for each attack objective is recorded. The 

frequently attacked parameters (routes) are identified as 

vulnerable parameters in terms of the probability of being 

attacked. Providing protection to the identified parameters 

diminishes overall attack interest in the market operation. 

Further, the attacker has different optimal attack routes when 

they have different attack degrees. 

 
Fig. 2. Identifying highly probable attack targets 

 Therefore, market operators can also identify vital attack 

routes under different attack degrees through Algorithm 1. The 

detailed procedure of this identification is shown in Algorithm 

1 HPA, where HPA stands for “highly probable attack” analysis. 

Algorithm 1 Function HPA (market parameters, attack objectives) 

    Input  Real-time market parameters and interested attack objectives 

   Output Highly probable attack targets 

1 For each possible attack degree do 

2       For each attack objective in Table I do 

3       Solving the CVA model (7) - (22) 

4       Record the attack binary variable B for each target 

5       End for 

6 Sum variable B in all attack objectives for each target 

7 End for 

8 Identify targets that have high values of sum (B) 

9 Return the Identified Targets 

2) Identifying devasting attack targets (Algorithm 2): 

Different from highly probable attack targets (Algorithm 1), 

devasting attack targets vary from one attack objective to 

another. The attacks on one parameter could be more effective 

than the attacks on other parameters for a particular attack 

objective. As shown in Fig. 3, modifying load information 

could be more effective than modifying line rating. Thus, 

protection of these attack targets largely diminishes the 

attackers’ interest in a specific attack objective. It should be 

noted that an attack on the congestion pattern is not applicable 

to this algorithm because the congestion status is a binary 

variable that does not have a penetration level. 

 
Fig. 3. Identifying devasting attack targets 
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Further, LMPs experience step changes regarding some 

attack routes, such as attacks in load levels, which means the 

LMP does not change until the modified parameter is large 

enough. For these attack scenarios, Algorithm 2 can identify the 

critical attack penetration level that leads to the step change. In 

Algorithm 2, the CVA model is solved iteratively with a gradual 

increase of the penetration level ∆q under an interested attack 

objective. The selection of ∆q is based on the market operator’s 

need, and the smaller the ∆q, the higher the level of accuracy 

that can be obtained. The detailed procedure of this 

identification is shown in Algorithm 2 DAT, where DAT stands 

for “devasting attack targets” analysis. 

Algorithm 2 Function DAT (market parameters, attack objectives) 

       Input  Real-time market parameters and interested attack objectives 

     Output Devasting attack targets 

1 Select interested attack objective from Table I 

2       For each attack target do 

3 Set attack variables B associated with other attack 

targets equal to 0 

4               While penetration level q is less than a threshold 

5                  Solving the CVA model (7) - (22) 

6                  q = q +∆q 

7                  Record the value of attack objective 

8        End while 

9       End for 

10 Compare the slope of different attack targets 

11 Identify targets that have steep slopes 

12 Return the Identified Targets 

3) Formulating risky load levels (Algorithm 3): 

Different load levels result in different market settlements and 

dispatches. Therefore, the load level is a critical element of a 

successful cyberattack. As shown in Fig. 4, an attacker with the 

same ability could obtain different profits from market-clearing 

under different load levels. Therefore, the higher the 

profitability is, the riskier the load level is. In Algorithm 3, the 

CVA model is solved iteratively with all interested attack 

objectives at different load levels. The obtained attack objective 

values are scaled and summed for each load level. If the value 

is higher than a certain threshold, then the load level can be 

identified as risky. In this study, the same load participation 

factors are assumed. If the market operator interests in different 

load participation factors, the load level and the participation 

factors are both recorded when solving the CVA model, and the 

risky load level becomes a risky set containing a load level and 

load participation factors. 

 

Fig. 4. Formulating risky load levels 

The market operator should take extra caution when the 

current load level is identified as risky. The detailed procedure 

of this identification is shown in Algorithm 3 RLL, where RLL 

stands for “risky load level” analysis. 

Algorithm 3 Function RLL (market parameters, attack objectives) 

       Input  Real-time market parameters and interested attack objectives 

     Output Risky load levels 

1       For each load level do 

2              Obtain market-clearing result without attacks 

3                For each interested attack objective do 

4                  Solving the CVA model (7) - (22) 

5                  Record the difference between the attacked       

value and the normal value 

6        End for 

7        Sum attack objectives with specified weights ∑Wi∙obji 

8       End for 

9       Identify load levels that have high weighted values 

10 Return the Identified Load Levels 

4) Investigating the mitigation ability of different defense 

degrees (Algorithm 4): 

The goal of Algorithm 4 is to investigate the impact of defense 

degrees on the effectiveness of the attack. As shown in Fig. 5, 

if some of the most effective attack routes are defended by the 

operator, the attacker might switch to other attack routes. 

However, those backup attack routes are not as effective. 

Therefore, investigation of the defense degree to which the 

attacker may lose the attack interests is an important aspect of 

the development of defense strategies. The proposed Algorithm 

4 solves the CVA model iteratively with a gradual increase of 

defense degrees, and the corresponding value of the attack 

objective is recorded. When the value of the attack objective 

discourages the attack, the defense degree is identified as the 

critical defense degree. 

 
Fig. 5. The mitigation ability of different degrees 

The detailed procedure of this identification is shown in 

Algorithm 4 DDD, where DDD stands for “different defense 

degrees” analysis. 

Algorithm 4 Function DDD (market parameters, attack objectives) 

        Input  Real-time market parameters and interested attack objectives 

       Output Defense mitigation ability plot/list 

1       For each attack objective do 

2            Set an interested attack degree Aak and set the defense 

degree Adf = Aak 

3              while defense degree Adf is larger than 0 do 

4                Solving the CVA model (7) - (22) 

5                Record the objective value 

6                Adf = Adf -1 

7       End while 

8      Plot/list the objective value versus defense degree 

9       End for 

10 Return the plot/list 

The above four proposed analysis algorithms are 

demonstrated with examples in Section V. Analysis in this paper 

is performed using the attack objectives in Table I, but future 

users can integrate any additional attack objectives in a similar 

way. The proposed analysis algorithms aim to solve the CVA 
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model iteratively, which could raise a concern about scalability. 

Indeed, the number of combinations of attack objectives and 

attack targets can be astronomical for a real system. However, 

the potential attack objectives and attack targets can be filtered 

to a much smaller portion depending on ISOs or the decision 

maker’s preference. For example, the ISO New England system 

has 2771 branches, but the average active transmission 

constraint in January 2020, their winter peak month, is just 142 

branches Error! Reference source not found.. The attacker's 

ability is also limited because the attacker may not have access 

to all parameters. Therefore, the number of combinations can 

be reduced. Further, the proposed algorithms are for the purpose 

of analyzing vulnerability, not for protecting market operation 

in RT. Thus, the proposed analysis could be performed offline 

and in the cycle of a few weeks (or even months) depending on 

the market operator’s preference. Therefore, the computation is 

a minor concern for the proposed vulnerability analysis 

algorithms. 

IV. REFORMULATIONS OF THE PROPOSED CVA MODEL 

Section II describes the mathematical model for CVA, and 

Section III discusses how to apply the CVA model to identify 

cyber vulnerability for an RT market model. This section 

presents the steps to solve the CVA model. 

Normally, the lower-level problem can be converted to 

constraints through Karush-Kuhn-Tucker (KKT) conditions 

[23]. Then, the bi-level problem becomes a single-level 

problem Error! Reference source not found.. However, the 

lower-level problem of the CVA model contains binary 

variables, which violate the optimality condition of the KKT 

conditions. Here, we apply the following reformulations to 

convert the lower-level problem with binary variables through 

KKT conditions. 

Step 1) Constraints (20) and (21) linearization 

Constraints (20) and (21) contain the multiplication of 

binary variables and continuous variables. The detailed 

equations for linearizing (20) and (21) can be found in Appendix 

A. 

Step 2) Lower-level problem convexification 

The binary variables in the lower-level problem are 

convexified through a penalty function before the KKT 

conversion. The binary defense decision variable V is reformed 

with continuous representation. Equation (23) redefines V as a 

finite continuous value with an upper limit W. Then, equation 

(24) restricts the feasible value for the continuous variable V to 

be either 1 or 0. It is worth noting that although now the binary 

variable V is remodeled through continuous representation, the 

feasibility region is still non-convex. 

 0W V³ ³    (23) 

 ( 1) 0V V - =  (24) 

 2min    cos ( ( 1))t Q V V+ -   (25) 

Then, constraint (24) is removed by adding a penalty term in 

the objective function, as shown in (25). The large number Q 

will penalize the objective function unless V is either 1 or 0. The 

square of V(V-1) has the same feasible region as V(V-1), but the 

square is a convex representation. In this formulation, the 

lower-level problem is convexified. The selection of the large 

number Q is a challenge for optimization problems involving 

penalties because a penalty term may not be exactly zero at the 

obtained optimal solution. In this study, a large value is 

assigned to Q initially, and then it is gradually increased until 

an optimal solution is obtained (i.e., the solution does not 

change and the value of V is close to binary). When the 

penalized variables are close but not exactly binary (e.g., 0.99 

or 0.01), they are rounded to 0 or 1. 

Step 3) Formulating KKT conditions 

The optimality conditions of the lower-level problem in a bi-

level formulation are well-established in [26] and Error! 

Reference source not found.. Therefore, the complete KKT 

constraint set is not elaborated here.  

Step 4) Linearizing nonlinear terms  

The CVA model contains nonlinear elements that render the 

implementation of the optimizations. In particular, the 

multiplication of the status of congestion attacks and other 

variables leads to various nonlinear elements. The constraints 

that contain nonlinear terms are listed in Appendix B. The 

detailed steps for linearizing all the nonlinear elements in those 

constraints are attached in Appendix C, Appendix D, and 

Appendix E. 

V. CASE STUDY 

A thorough simulation study of an IEEE 30-bus system is 

given in this section to demonstrate the effectiveness of the 

proposed vulnerability analysis algorithms. The system 

topology is shown in Fig. 6. 

 
Fig. 6. One-line diagram of IEEE-30 bus system 

The detailed system parameters can be found in [28]. The 

simulation studies were performed with Matlab 2018 on a PC 

with Intel i7-8650U processor and 8GB RAM.  

1) Identifying highly probable attack targets 

This study aims to demonstrate Algorithm 1 in Section III.1. 

The CVA model is solved iteratively for various attack 

objectives from Table I. The computational time of Algorithm 

1 in this study is 70.32 s.  

Fig. 7 shows various attacked parameters for each attack 

objective. The Y-axis shows different objectives of the attacks, 

and the X-axis shows different attack targets in market 

operation. Triangles on a specific row represent optimal attack 

targets for a specific attack objective. For example, for the 

attack that is to maximize the LMP at bus 1, the optimal attack 

targets are the load at bus 12 and the line rating at line 15. In 

other words, an attack on these two parameters will more 
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effectively alter the LMP at bus 1 than the attacks on any other 

different combination of two parameters. 

Therefore, by enumerating the number of triangles on each 

column, the probability of being attacked can be estimated for 

each parameter from the perspective of being a highly probably 

attack target. In other words, the column that has the most 

triangles indicates the parameter that has the highest probability 

of being attacked. In this study, the line rating of line 15 is the 

most vulnerable parameter, which will be the most frequent 

attack target. Therefore, when this target is protected, most 

attacks become less effective. Although the attackers' objective 

is usually unknown in reality, protection of highly probable 

targets reduces overall attack interest in the market operation. 

The upper subplot and lower subplot in Fig. 7 represent 

different attack degrees (2 and 3), namely, how many 

parameters the attacker is able to modify. When the attack 

degree increases from 2 to 3, the possibility of attacking the line 

rating of line 15 increases from 48.6% to 71.6%. Therefore, if 

the line rating of line 15 is immune from attacks, interests in 

most attacks on this market are greatly reduced. 

 
Fig. 7. Identifying the most likely attack target 

2) Identifying devasting attack targets 

This study aims to demonstrate Algorithm 2 in Section III.2. 

The CVA model for interested attack objectives is solved 

iteratively for a gradual increase of the penetration levels of 

different attack targets. The deviations between the objective 

value under normal operation and under attack are recorded. 

The computational time of Algorithm 2 in this study is 135.25 

s. We select the most popular two attack objectives in the 

literature as examples: (1) diminishing the social welfare and (2) 

manipulating LMPs (bus 10). The impact analyses of 4 different 

attack targets on those two objectives are shown in Table II and 

Table III. Simulations on other attack objectives and targets can 

be performed similarly. 

Table. II. Impact analysis on LMP manipulations 

 

Table. III. Impact analysis on diminishing social-welfare 

 

For LMP manipulation, an attack on unit 4’s bid is more 

effective when the penetration level is low, and an attack on unit 

3’s capacity becomes more effective when the penetration level 

is higher than 40%. For diminishing social-welfare, attacking 

the load at bus 2 is more effective when the penetration level is 

lower than 30% or higher than 90%, and attacking unit 3's bid 

is more effective for other penetration levels. Further, a step-

change phenomenon is observed for both attack objectives. The 

social welfare loss exhibits a step-change pattern with the bid 

modification attack and continuously changes with the 

remaining attacks. By comparison, the LMP continuously 

changes with the bid modification attack and exhibits a step-

change pattern with the remaining attacks. This indicates that 

the bid modification attack does not impact social welfare 

unless it changes the dispatch results since it does not change 

the generation cost in practice, but the bids of marginal units 

directly impact the LMP. If the most sensitive attack target is 

identified and protected, the attack interests for a specific attack 

are significantly reduced. 

3) Evaluating risk load levels 

This study aims to demonstrate Algorithm 3 in Section III.3. 

The CVA model for all attack objectives is solved iteratively 

under different load levels. The deviations between the 

objective value under normal operation and under attack are 

recorded. The computational time of Algorithm 3 in this study 

is 965.36 s. Fig. 8 shows the risk evaluation of different load 

levels by a heat map. Different attack objectives have their own 

heat map (i.e., risk zone).  
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Fig. 8. Vulnerable market operating zone 

Here, all risk zones are summed and scaled to be between 0 

and 1, where 0 means not risky, and 1 means the riskiest. Thus, 

the greater the overlap of the risk zones, the brighter the square 

is. That is, a brighter area means more impact on the market 

operation. 

As shown in Fig. 8, at first, the heavier the load is, the more 

an attacker can do. However, when the load becomes higher, 

the impact decreases because the margin for manipulation by 

the attacker is decreased. In other words, when more 

generations are at maximum, there is less room for an attacker 

to manipulate the parameters without being detected.  

4) Investigating the mitigation ability of different degrees of 

defense  

This study aims to demonstrate Algorithm 4 in Section III.4. 

The understanding of how defenses improve the deviation from 

the optimal dispatch provides a guideline for a market operator 

to develop defense strategies. The CVA model is solved 

iteratively with a gradual increase of the defense degree. The 

computation time of Algorithm 4 in this study is 65.39 s. As 

shown in Table IV, the value of deviation from a normal value 

gradually decreases to zero with the increasing defense degree.  

Table. IV. Impact analysis on defense degree 

 

When more highly effective attack routes are blocked (i.e., 

at higher defense degrees), the attacker has to switch to less 

effective attack routes, and thus, the impact of cyberattacks is 

alleviated. Although the attack still impacts market operations 

unless all of the compromised parameters are corrected, the 

attacker could lose interest when the degree of defense is higher 

than a certain threshold such that the attacker’s gain from a 

cyberattack is very low. The proposed analysis provides the 

market operator with information on critical defense degrees. 

As shown in the first row of Table IV, when 3 of the most 

effective attack routes can be protected, the maximum social 

welfare deviation dropped from 109.2% to 86.2%, which may 

discourage the attacks. Further, the social welfare loss due to 

cyberattacks decreases almost linearly with the increasing 

defense level. For an LMP manipulation attack, as in the second 

row of Table IV, the defense is not effective (i.e., the deviation 

created by the attack is 215.9%) until 5 parameters can be 

defended, which means the attackers can still achieve the 

desired outcome via the undefended measures. When the 

defense degree is larger than 5, the optimal value of the attack 

objective starts to decrease. It should be pointed out that the 

proposed algorithm provides useful information for a decision 

maker while the actual threshold to determine the number of 

defense degrees is a choice of the decision maker 

VI. CONCLUSION 

 In this paper, the missing components in the current research 

on power market cybersecurity are discussed. Next, a CVA 

model is proposed for market operators to perform impact 

analysis on market cyberattacks. Then, four vital components 

related to cyber vulnerability in the system are discussed, and 

four vulnerability analysis algorithms are proposed. The 

proposed algorithms can help the market operator identify 

highly probable attack targets, devastating attack targets, risky 

load levels, and the mitigation ability of different defense 

degrees. In summary, the proposed CVA model provides a new 

method to identify various aspects that are vulnerable to 

cyberattacks in market operation, which provides valuable 

references for further development of cyber defense strategy. 

 Our future studies will focus on applying artificial 

intelligence algorithms to identify specific interaction patterns 

between attackers and defenders based on the proposed CVA 

model. 

APPENDIX 

The reformulations and linearization of the CVA model are 

included in this Appendix. 

A. Constraint (20) and (21) linearization 

The first constraint (20) is linearized and replaced by (A1) 

and (A2). Similarly, (21) is replaced by (A3) and (A4). 
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B. Constraints that contain nonlinear elements 

(17) and (18) 

 
max

( | ) (P ( ))(
0,

)

d d

l l l i i i i i

L L

l l l

l
i

V GSF d M N

L M
L

N
l

dg d+ +

-

+ +

+ - - +
=

- +
"

-
Î

å
   (B1) 

 

min( | )

(P ( )

(

))
0,

L L

l l l l l

d d

l i i i i

l
i

i

V L M N

GSF d M
L

N
l

dg d- - - +

-

- + -

-
=

- +
"

-
Î

å
   (B2) 

 i NG

(
0,

(( (

)

) ) )

i i i

l i l l

b b

i i

l l l l

L

C M

GSF

N

V V
d d

l

d

m m

g gd

+ -

+ -+ + - -

-

" Î

+ - +

+
=

+

+-

+ -

å
 (B3) 

 

, , , ,

i NG

( ( | ) ( )
,

)
0

|
l i l l l l

l

i j i j j

l l

i j i

GSF V V
d d

l d d

a a k k

g g
-

+

+- - + +

-

- + -
" Î

- + -
=

+ - + -

å
 (B4) 



 9 

, , , ,
i NG,( | ) 0

l l i j i j i j i jl
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C. Linearizing δ_V∙M and δ _V∙N 

The variable δ_V represents the OR gate operation of the 

variable δ and V. Therefore, the relationship between δ_V, δ, 

and V is shown in (C1)-(C3). 

 j j j

l l l_V V ,   l L j { , }       + −     (C1) 

 
j j j
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 j j j j

l l l l_V V ,   l L   j { , }   +     + −  (C3) 

Similar to (A1)-(A4), δ _V∙M is replaced by a new continuous 

variable δ_V_M, with constraints (C4) and (C5).  
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In element δ _V∙N, variable N is constrained by (A1)-(A4). A 

new continuous variable δ_V_N is introduced to replace δ_V∙N 

with (C6)-(C10). 
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D. Linearizing δ _V∙P 

The upper limits of P contain variables and parameters. Thus, 

the reformulation is applied recursively. Then, the δ _V∙P is 

represented by a new continuous variable δ_V_P with 

constraints (D1)- (D10).  
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E. Linearizing complementary slackness constraints 

The technique (Fortuny-Amat reformulation) of linearizing 

complementary slackness has been well established in [26] and 

Error! Reference source not found.. All complementary 

slackness constraints in this paper are dealt with via this 

technique. For example, (B5) is equivalent to (E1)-(E2). 

Similarly, other complementary slackness constraints can be 

reformed. However, after this reformulation, they are still not 

linear due to variable δ _V.  
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Therefore, we add a new constraint (E3) to remove δ _V from 

(E1) and (E2). Similarly, δ_V in other constraints can be 

removed. 
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