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Abstract—With the rapid advancement and integration of
communication and sensor technologies, power system operation
is becoming more vulnerable to cyberattacks, particularly attacks
in which malicious data could induce catastrophic consequences
on market operations. Financial risks, as well as the potential
physical damages, raise growing concerns about the reliable
operation of the electricity market. Existing market-targeting
cybersecurity research has focused on developing attack strategies
or detection schemes. However, the lack of cyber-vulnerability
analysis (CVA) hinders operators from systematically evaluating
the real-time (RT) market-clearing model and identifying
potential threats from a cybersecurity perspective. This paper
proposes a comprehensive CVA model for delivering a detailed
analysis of four aspects of wvulnerability: highly probable
cyberattack targets, devastating attack targets, risky load levels,
and mitigation ability under different degrees of defense. Users
can simulate interactions between attackers and defending
operators under different attack events, and the corresponding
market settlements are also obtained. The proposed bi-level model
is recast into mixed-integer linear programming through Karush—
Kuhn-Tucker (KKT) conditions. A simulation study on an IEEE-
30 bus system demonstrates the accuracy and effectiveness of the
proposed CVA model.

Index Term— Cyber-vulnerability, Cybersecurity, Locational
marginal prices (LMPs), Bi-level optimization, KKT conditions

NOMENCLATURE

Lower level variables and parameters:

Parameters:

Ci Bidding prices of i unit

di Load at bus i

p/mox p/min Up and down generation limits for unit i

GSFy.i Generation shift factor which gives the
fraction of a change in the injection at bus i
that appears on a branch |

Limax, Limin Up and down transmission capacity for
branch i

At Defense degrees

Variables:

Pi Scheduled generation for unit i

Vi, Vi Defense decision for congestion status of I
up/down line flow constraints

VP, Vid, VP Defense decision for bid of i unit, load at it"

V-, Vb bus, capacity of i"" unit, up flow limit of I
branch, and down flow limit of I branch

N, Ni¢, NiP Defense value for bid of it unit, load at it"

Ni-+, N bus, capacity of i unit, up flow limit of I

branch, and down flow limit of I branch
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Upper level variables and parameters:

Parameters:

Ak Attack degrees

aP, q, oP Penetration level of data manipulation in

qtt, q“- bid of i unit, load at i™ bus, capacity of it"
unit, up flow limit of 1™ branch, and down
flow limit of 1™ branch

Variables:

M, M9, MiP  Attack value for bid of i unit, load at i* bus,

M-, M capacity of i unit, up flow limit of I
branch, and down flow limit of I'" branch.

or, or Attack decision for congestion status of I
up/down line flow constraints

Bi°, B¢, B Attack decision for bid of i unit, load at it"

B, Bl bus, capacity of i unit, up flow limit of I

branch, and down flow limit of I branch

Lagrange multipliers:

A Lagrange multiplier for power balance
constraint
o Lagrange multipliers for up and down flow

limits of 1" branch

Lagrange multipliers for upper and lower
generation limits of i unit

Lagrange multipliers for the 1%t reformed

wit, ui

ait, aj, oijt,

aij defense mitigation limits constraints

rit, raf, kijt,  Lagrange multipliers for the 2" reformed

Kij defense mitigation limits constraints

p Lagrange multipliers for defense ability
constraint

Parameters and variables for reformulations:

Parameters
Qm! QSI Qg
Variables
5|+_V|+, 5|'_
\Ah
or_Vi_Pj,
or_Vr_Pi

Big numbers with Qg >> Qm

Binary variables represent 6" +V/*, 5r+Vr

Continuous variables represent (5i*+Vi*)-P;j,
(07 +Vy)-Pi,
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S*_Vi*_Mi,  Continuous variables represent (9r+V/*)-Mi

o_Vi_M! 1 (5r+Vy)-Mil, and j € {p*, p’, d*, d", b*, b,
L*, L}

uiP* ui Binary variables for the reformed
complementary slackness of generation
capacity constraint of unit i

utt ut Binary variables for the reformed

complementary slackness of I flow limits

I. INTRODUCTION

LTHOUGH the growth of the Internet has expedited smart

grid development, the interconnected smart grid
communication network opens the modern power system
operation to unprecedented threats from cyberattacks. For
example, in December 2015, the information system for three
distribution centers in Ukraine was compromised, and 30
substations were switched offline [1]. In March 2019, a denial-
of-service attack occurred at a western utility in the U.S.
disconnecting the communication between operators and
remote generation sites for a minute [2]. These real-life events
demonstrate that cyber intrusions are capable of penetrating the
communication systems in power grid operation.

The U.S. power market clears hundreds of GW loads every
hour, where electricity is produced reliably and economically.
Malicious communication breaches into market operations
could induce catastrophic consequences on fair financial
settlements and reliable transmission services. Followed by the
initial discussion of market-targeted cyberattacks presented in
[3], the literature discussing various cyberattacks on power
market operations is abundant.

The three main directions of market-targeted cyberattack
research can be summarized as: (1) developing new attack
strategies, (2) developing new detection schemes, and (3)
investigating the sensitivity of cyberattacks. In the first
category, state estimation (SE) is the most popular intrusion
path. In [4], a robust false-data injection attack (FDIA) on SE is
designed to create a financial bias on market settlements along
with bogus bids. In [5], an undetectable parameter attack on the
system model is designed for financial profit in market
operations. In [6], a topology attack is combined with an FDIA
to lead customers to pay a higher bill through undetectable price
deviations. In [7], three new topology attacks on SE are
developed to mislead both economic dispatch and reliable
operation. Next, ref. [8] determines that the grid topology is too
extensive to be known by attackers, and a new profitable attack
method without prior information on grid topology is proposed.
Similarly, imperfect topology information is dealt with via
robust optimization and stochastic programming in [9] and [10].
Various new attack paths and scenarios on market operation
have been identified: a transmission line rating attack [11], a
ramping constraints attack [12], and very short-term load
forecasting [13]. For the second category of market-targeting
cyberattack research, developing new detection schemes,
detecting cyberattacks on market operations mainly focuses on
SE level protections. In [14], a least-budget defense algorithm
is proposed to secure pre-selected sensors, leading to the failure
of bad data detection attacks. Refs. [15] and [16] have focused
on enhancing the bad data detection algorithm itself by
investigating the statistical difference between the random

noise and the FDIA. In the last category of market-targeted
cyberattack research, the sensitivity of cyberattacks,
sensitivities of SE manipulation on market-clearing results have
been fully investigated. In [18] and [19], the sensitivity of
locational marginal prices (LMPs) to bad meter data has been
formulated, and buses with higher sensitivity are found prone
to being attack targets. In [20], the mathematic representation
for the sensitivity of profitability to topology data is
investigated. In [21], the sensitivity of renewable generation
curtailments to profitability is formed. Although the
curtailments in [21] are described as a strategy, the malicious
attack could lead to the same results.

Various market cyberattacks and their corresponding defense
strategies have been identified and demonstrated in existing
research works. They generally focus on elaborating the attack
paths or specific strategies, for example, the attacker’s injection
of false data to SE which changes the congestion pattern to
modify LMPs. However, from the market operators’ viewpoint,
no matter where the attack path lays, whether in SE or the
market gateway, the potential targets in a market operation are
as follows: unit bids, demand management, generation
capacities, line ratings, and congestion patterns. Therefore, it is
important for the market operator to identify the vulnerability
among all those attack paths. To the best of our knowledge, no
previous research has developed a comprehensive analysis
model regarding the vulnerability of the electricity market
model involving all potential attack objectives and targets.
Therefore, this paper first provides an impact analysis model
that emulates market-clearing under various cyberattacks, and
then proposes a set of algorithms to identify the vulnerability
from different aspects.

The detailed contributions of this paper are as follows:

e A comprehensive cyber-vulnerability analysis (CVA) model
is proposed in which market data from all sources is assumed
to be susceptible to attacks, including line ratings, congestion
patterns, generation capacity withholds, market-interface,
etc. Namely, all parameters in the ISO’s market model are
assumed to be attackable. Next, various attack objectives are
categorized and considered. The market operator can apply
the proposed model to perform impact analysis on market
cyberattacks.

e Four specific impact analysis algorithms are proposed to
identify the vulnerability of power market parameters
comprehensively. The four proposed algorithms target four
vital aspects of the vulnerability of power market parameters:
(1) Vulnerability in terms of possibility: which attack paths
are most likely to be attacked? (2) Vulnerability in terms of
severity: which attack paths have the most impact on market
operation? (3) Vulnerability in terms of load level: at which
load level are attacks more likely to occur? (4) Vulnerability
in terms of defense strategies: how defense degrees impact
the effectiveness of market cyberattacks?

The rest of this paper is organized as follows. Section Il first
presents the formulation of the proposed CVA model. Section
111 describes the proposed algorithms based on the CVA model
in detail. In Section IV, the reformulation and linearization
steps for solving the proposed model are presented. Section V
conducts a detailed simulation study on an IEEE 30-bus system
to demonstrate the effectiveness of the proposed vulnerability



analysis. Finally, conclusions and future studies are discussed
in Section V1.

I11.PROPOSED ANALYSIS MODEL ON MARKET FDIAS

A. Preliminary on real-time (RT) market model

Ex-ante and ex-post are two primary models for RT market-
clearing [22]. In the ex-ante model, generation dispatches and
LMPs are calculated based on the forecasted conditions for the
next trading period. Optimal generation dispatches are
determined given the expected load and physical security
constraints. The ex-post model is purely a price-setting model
in which generation dispatches are determined via the ex-ante
model, while the LMPs are calculated by the ex-post model.
The proposed analytical model can be applied to both the ex-
ante and ex-post models. The ex-ante model is applied here as
an illustration, shown in (1)-(5).
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The details of the RT market model can be found in [22]. The
market-clearing price is composed of the Lagrange multipliers
associated with (2)-(5), as shown in (6).

LMP =1+ 3 GSF_(9 -9 ) (6)
L

B. Proposed CVA model

The proposed analytic model provides a flexible platform to
emulate different attack strategies and defense degrees under
various assumptions. The details of the vulnerability analysis
algorithms are discussed in the next section. This section
presents the construction of the CVA model.
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Fig. 1. Proposed CVA model structure

The CVA model contains an attacker and a defending market
operator. The attacker wants to optimize its objective (e.g.,
LMP manipulations), then it anticipates the optimal response
from the market operator. In this setting, the attack's

optimization problem contains a nested optimization task that
corresponds to the market operator's optimization problem. The
defending ability is modeled for the impact analysis of defense
degrees, which is clarified in detail in Section Il1.4. Therefore,
the proposed model is constructed as a bilevel optimization
problem. The attacker modifies the parameters that impact the
market-clearing result, and the market operator clears the
market with defending variables, which in turn affects the
attacker's objective. The overall structure of the proposed model
for CVA is shown in Fig.1.

1) Upper level (attacker):

Although most of the existing research assumes that attacks
on the market are profit-driven, the purpose of cyberattacks on
market operation varies from one attacker to another.
Generally, potential objectives for power market cyberattacks
can be categorized into three types: (1) financial settlements,
(2) generation dispatches, and (3) transmission congestions.
Therefore, the proposed model considers different attack
objectives from each of the above categories, as shown in Table
I to provide a general attack evaluation. The objective of the
upper level model can be selected from Table | based on
different analysis purposes, which are discussed in Section I11.

Table I. Potential attack objectives

Type Obijective Model
Financial LMP LMP,
settlements Social-welfare >Ci(P)
Generation Generation dispatch p
o Congestion price LMP - LMP
Transmission i j
Congestion pattern L

The upper level of the analysis model incorporates all
potential attack targets in market operation. When the market
operator solves a RT economic dispatch problem, data from
multiple sources are used, including: (1) short term load
forecasts and demand management from energy management
systems (EMSs); (2) bidding prices and generator capacities
from market gateway; and (3) congestion patterns and line
ratings from EMSs. Therefore, to conduct a comprehensive
analysis, all of the above data sources are assumed to be
susceptible to attacks, as shown in (7)-(11). Although some
parameters may not be easily compromised unless the cyber
threats are from insiders, the proposed CVA model in this paper
considers comprehensive scenarios to provide a general
analytic framework for market operators to identify possible
cyber vulnerabilities. Specific constraints and variables can be
simplified or removed if decision makers consider these
parameters to be perfectly secure. The maximum amount of
those attacks is constrained by the penetration level value g and
the targets’ original value.
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Constraint (12) means that congestion pattern attacks happen
either at upper or lower limits because a line flow can either be
on the upper or lower limit. The attacker degree is constrained
in (13), which represents how many targets the attacker can
compromise.

2) Lower level (market operator):

The market operator is placed at a lower level equipped with
the capability to defend against attacks. The original economic
dispatch model (1)-(5) becomes (14)-(18) with the considered
attacks and corresponding defenses. To identify the critical
attack path and defense efficiency, the defense degree is
constrained in (19), which represents the number of attacks that
can be defended against. Although operators want to defend
against all possible attacks, there is always a recourse limit such
that they have to defend against the attacks that they identify as
most threatening. It worth noting that the defender knows where
the attacker attacked in this bilevel formulation. However, the
defender proposed analysis presented in this work is aimed at
analyzing the effectiveness of the defense degree, which is
explained in detail in Section Ill. 4. Equations (20) and (21)
indicate that if an attack is identified, then it is totally countered,
and equation (22) shows the defense is only placed where the
attack happens.
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The proposed CVA model is used to perform a vulnerability
analysis from four different aspects, which will be elaborated in
the next section.

I1l. THE CAPABILITY OF THE PROPOSED ANALYSIS MODEL

As discussed in the introduction, potential attack targets,
risky operating conditions, and defense effectiveness are the
most vital elements in developing a defense strategy. Therefore,
the following four aspects are selected to construct the CVA
model.

1) Identifying highly probable attack targets (Algorithm 1):

Some parameters are compromised more frequently than
others. For example, congestion patterns can be a vital attack
route for both LMP manipulation and diminishing social-
welfare. As shown in Fig.2, protection of the congestion pattern
makes it hard for those two types of market attackers to achieve
their desired goals. Therefore, in Algorithm 1, the CVA model
is solved iteratively for all interested attack objectives, and the
attack route for each attack objective is recorded. The
frequently attacked parameters (routes) are identified as
vulnerable parameters in terms of the probability of being
attacked. Providing protection to the identified parameters
diminishes overall attack interest in the market operation.
Further, the attacker has different optimal attack routes when
they have different attack degrees.
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Fig. 2. Identifying highly probable attack targets

Therefore, market operators can also identify vital attack
routes under different attack degrees through Algorithm 1. The
detailed procedure of this identification is shown in Algorithm
1 HPA, where HPA stands for “highly probable attack™ analysis.

Algorithm 1 Function HPA (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
OQutput Highly probable attack targets

1 For each possible attack degree do
For each attack objective in Table | do
Solving the CVA model (7) - (22)
Record the attack binary variable B for each target
End for
Sum variable B in all attack objectives for each target
End for
Identify targets that have high values of sum (B)
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Return the Identified Targets

2) ldentifying devasting attack targets (Algorithm 2):

Different from highly probable attack targets (Algorithm 1),
devasting attack targets vary from one attack objective to
another. The attacks on one parameter could be more effective
than the attacks on other parameters for a particular attack
objective. As shown in Fig. 3, modifying load information
could be more effective than modifying line rating. Thus,
protection of these attack targets largely diminishes the
attackers’ interest in a specific attack objective. It should be
noted that an attack on the congestion pattern is not applicable
to this algorithm because the congestion status is a binary
variable that does not have a penetration level.
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Fig. 3. Identifying devasting attack targets



Further, LMPs experience step changes regarding some
attack routes, such as attacks in load levels, which means the
LMP does not change until the modified parameter is large
enough. For these attack scenarios, Algorithm 2 can identify the
critical attack penetration level that leads to the step change. In
Algorithm 2, the CVA model is solved iteratively with a gradual
increase of the penetration level Aq under an interested attack
objective. The selection of Aq is based on the market operator’s
need, and the smaller the Ag, the higher the level of accuracy
that can be obtained. The detailed procedure of this
identification is shown in Algorithm 2 DAT, where DAT stands
for “devasting attack targets” analysis.

Algorithm 3 Function RLL (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Qutput Risky load levels

1 For each load level do
Obtain market-clearing result without attacks
For each interested attack objective do
Solving the CVA model (7) - (22)
Record the difference between the attacked
value and the normal value
End for

Sum attack objectives with specified weights Y #;-obj;
End for
Identify load levels that have high weighted values
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Return the Identified Load Levels

Algorithm 2 Function DAT (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Qutput Devasting attack targets
1 Select interested attack objective from Table |
2 For each attack target do
3 Set attack variables B associated with other attack
targets equal to 0
4 While penetration level q is less than a threshold
5 Solving the CVA model (7) - (22)
6 g =g +Aq
7 Record the value of attack objective
8 End while
9 End for
10 Compare the slope of different attack targets
11 Identify targets that have steep slopes
12 Return the Identified Targets

3) Formulating risky load levels (Algorithm 3):

Different load levels result in different market settlements and
dispatches. Therefore, the load level is a critical element of a
successful cyberattack. As shown in Fig. 4, an attacker with the
same ability could obtain different profits from market-clearing
under different load levels. Therefore, the higher the
profitability is, the riskier the load level is. In Algorithm 3, the
CVA model is solved iteratively with all interested attack
objectives at different load levels. The obtained attack objective
values are scaled and summed for each load level. If the value
is higher than a certain threshold, then the load level can be
identified as risky. In this study, the same load participation
factors are assumed. If the market operator interests in different
load participation factors, the load level and the participation
factors are both recorded when solving the CVA model, and the
risky load level becomes a risky set containing a load level and
load participation factors.
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Fig. 4. Formulating risky load levels

The market operator should take extra caution when the
current load level is identified as risky. The detailed procedure
of this identification is shown in Algorithm 3 RLL, where RLL
stands for “risky load level” analysis.

4) Investigating the mitigation ability of different defense
degrees (Algorithm 4):

The goal of Algorithm 4 is to investigate the impact of defense
degrees on the effectiveness of the attack. As shown in Fig. 5,
if some of the most effective attack routes are defended by the
operator, the attacker might switch to other attack routes.
However, those backup attack routes are not as effective.
Therefore, investigation of the defense degree to which the
attacker may lose the attack interests is an important aspect of
the development of defense strategies. The proposed Algorithm
4 solves the CVA model iteratively with a gradual increase of
defense degrees, and the corresponding value of the attack
objective is recorded. When the value of the attack objective
discourages the attack, the defense degree is identified as the

critical defense degree.

If some of them can be defended,
L'y

Market-clearin
what are the optimal set? g

Defend|‘ '\:_ | I—____|
] i o
Attacker, 1 : | Rk
Congestion | < S
Pt S| |
i} Sw'i)/ch t  Bids Vi | | D |
N by |
N | |
s——‘ ———————————— —>é|-> -
Line rating e _Quentity |

Fig. 5. The mitigation ability of different degrees

The detailed procedure of this identification is shown in
Algorithm 4 DDD, where DDD stands for “different defense
degrees” analysis.

Algorithm 4 Function DDD (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Output Defense mitigation ability plot/list
1 For each attack objective do
2 Set an interested attack degree Ax and set the defense
degree Ag = A
3 while defense degree A is larger than 0 do
4 Solving the CVA model (7) - (22)
5 Record the objective value
6 Agr=Ag-1
7 End while
8 Plot/list the objective value versus defense degree
9 End for
10 Return the plot/list
The above four proposed analysis algorithms are

demonstrated with examples in Section V. Analysis in this paper
is performed using the attack objectives in Table I, but future
users can integrate any additional attack objectives in a similar
way. The proposed analysis algorithms aim to solve the CVA



model iteratively, which could raise a concern about scalability.
Indeed, the number of combinations of attack objectives and
attack targets can be astronomical for a real system. However,
the potential attack objectives and attack targets can be filtered
to a much smaller portion depending on ISOs or the decision
maker’s preference. For example, the ISO New England system
has 2771 branches, but the average active transmission
constraint in January 2020, their winter peak month, is just 142
branches Error! Reference source not found.. The attacker's
ability is also limited because the attacker may not have access
to all parameters. Therefore, the number of combinations can
be reduced. Further, the proposed algorithms are for the purpose
of analyzing vulnerability, not for protecting market operation
in RT. Thus, the proposed analysis could be performed offline
and in the cycle of a few weeks (or even months) depending on
the market operator’s preference. Therefore, the computation is
a minor concern for the proposed vulnerability analysis
algorithms.

IV. REFORMULATIONS OF THE PROPOSED CVA MODEL

Section Il describes the mathematical model for CVA, and
Section 11 discusses how to apply the CVA model to identify
cyber vulnerability for an RT market model. This section
presents the steps to solve the CVA model.

Normally, the lower-level problem can be converted to
constraints through Karush-Kuhn-Tucker (KKT) conditions
[23]. Then, the bi-level problem becomes a single-level
problem Error! Reference source not found.. However, the
lower-level problem of the CVA model contains binary
variables, which violate the optimality condition of the KKT
conditions. Here, we apply the following reformulations to
convert the lower-level problem with binary variables through
KKT conditions.

Step 1) Constraints (20) and (21) linearization

Constraints (20) and (21) contain the multiplication of
binary variables and continuous variables. The detailed
equations for linearizing (20) and (21) can be found in Appendix
A.

Step 2) Lower-level problem convexification

The binary variables in the lower-level problem are
convexified through a penalty function before the KKT
conversion. The binary defense decision variable V is reformed
with continuous representation. Equation (23) redefines V as a
finite continuous value with an upper limit W. Then, equation
(24) restricts the feasible value for the continuous variable V to
be either 1 or 0. It is worth noting that although now the binary
variable V is remodeled through continuous representation, the
feasibility region is still non-convex.

W3VvV:3o0 (23)
VV-1)=0 (24)
min  cost + QV (V - 1))° (25)

Then, constraint (24) is removed by adding a penalty term in
the objective function, as shown in (25). The large number Q
will penalize the objective function unless V is either 1 or 0. The
square of V(V-1) has the same feasible region as V(V-1), but the
square is a convex representation. In this formulation, the
lower-level problem is convexified. The selection of the large
number Q is a challenge for optimization problems involving

penalties because a penalty term may not be exactly zero at the
obtained optimal solution. In this study, a large value is
assigned to Q initially, and then it is gradually increased until
an optimal solution is obtained (i.e., the solution does not
change and the value of V is close to binary). When the
penalized variables are close but not exactly binary (e.g., 0.99
or 0.01), they are rounded to 0 or 1.
Step 3) Formulating KKT conditions

The optimality conditions of the lower-level problem in a bi-
level formulation are well-established in [26] and Error!
Reference source not found.. Therefore, the complete KKT
constraint set is not elaborated here.
Step 4) Linearizing nonlinear terms

The CVA model contains nonlinear elements that render the
implementation of the optimizations. In particular, the
multiplication of the status of congestion attacks and other
variables leads to various nonlinear elements. The constraints
that contain nonlinear terms are listed in Appendix B. The
detailed steps for linearizing all the nonlinear elements in those
constraints are attached in Appendix C, Appendix D, and
Appendix E.

V.CASE STUDY

A thorough simulation study of an IEEE 30-bus system is
given in this section to demonstrate the effectiveness of the
proposed vulnerability analysis algorithms. The system
topology is shown in Fig. 6.
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Fig. 6. One-line diagram of IEEE-30 bus system

The detailed system parameters can be found in [28]. The
simulation studies were performed with Matlab 2018 on a PC
with Intel i7-8650U processor and 8GB RAM.

1) Identifying highly probable attack targets

This study aims to demonstrate Algorithm 1 in Section I11.1.
The CVA model is solved iteratively for various attack
objectives from Table I. The computational time of Algorithm
1 in this study is 70.32 s.

Fig. 7 shows various attacked parameters for each attack
objective. The Y-axis shows different objectives of the attacks,
and the X-axis shows different attack targets in market
operation. Triangles on a specific row represent optimal attack
targets for a specific attack objective. For example, for the
attack that is to maximize the LMP at bus 1, the optimal attack
targets are the load at bus 12 and the line rating at line 15. In
other words, an attack on these two parameters will more



effectively alter the LMP at bus 1 than the attacks on any other
different combination of two parameters.

Therefore, by enumerating the number of triangles on each
column, the probability of being attacked can be estimated for
each parameter from the perspective of being a highly probably
attack target. In other words, the column that has the most
triangles indicates the parameter that has the highest probability
of being attacked. In this study, the line rating of line 15 is the
most vulnerable parameter, which will be the most frequent
attack target. Therefore, when this target is protected, most
attacks become less effective. Although the attackers' objective
is usually unknown in reality, protection of highly probable
targets reduces overall attack interest in the market operation.
The upper subplot and lower subplot in Fig. 7 represent
different attack degrees (2 and 3), namely, how many
parameters the attacker is able to modify. When the attack
degree increases from 2 to 3, the possibility of attacking the line
rating of line 15 increases from 48.6% to 71.6%. Therefore, if
the line rating of line 15 is immune from attacks, interests in
most attacks on this market are greatly reduced.
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Fig. 7. Identifying the most likely attack target

2) ldentifying devasting attack targets

This study aims to demonstrate Algorithm 2 in Section I11.2.
The CVA model for interested attack objectives is solved
iteratively for a gradual increase of the penetration levels of
different attack targets. The deviations between the objective
value under normal operation and under attack are recorded.
The computational time of Algorithm 2 in this study is 135.25
s. We select the most popular two attack objectives in the
literature as examples: (1) diminishing the social welfare and (2)

manipulating LMPs (bus 10). The impact analyses of 4 different
attack targets on those two objectives are shown in Table Il and
Table I11. Simulations on other attack objectives and targets can
be performed similarly.

Table. I1. Impact analysis on LMP manipulations

P. Levels

10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%

e
'70'0,7
Targets ]

Bids of G3 0 0 30 | 54 | 7.7 102 | 126 | 149 | 173 | 18.7

Bids of G4 26 | 51 | 7.7 | 103 | 12.8 | 154 | 180 | 206 | 23.1 | 25.7

CapacityofG3 | 0 0 0 0 519 | 519 | 519 | 519 | 519 | 519

Load at bus 2 0 0 0 0 0 0 0 0 0 0

Table. I11. Impact analysis on diminishing social-welfare

P. Levels

<. Tiory 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%
Targets 15)

Bids of G3 0 0 207.1 | 207.1 | 207.1 | 207.1 | 207.1 | 207.1 | 207.1

Bids of G4 0 0 0 0 0 220 | 220 | 220 | 220 | 2.0
Capacity of G3 | 1.2 3.6 5.5 7.3 9.1 109 | 127 | 145 | 164 | 181

207.1

Load atbus 2 | 30.0 | 60.0 | 90.0 | 120.0 | 150.0 | 180.0 | 210.0 | 240.0 | 270.0 | 300.0

For LMP manipulation, an attack on unit 4’s bid is more
effective when the penetration level is low, and an attack on unit
3’s capacity becomes more effective when the penetration level
is higher than 40%. For diminishing social-welfare, attacking
the load at bus 2 is more effective when the penetration level is
lower than 30% or higher than 90%, and attacking unit 3's bid
is more effective for other penetration levels. Further, a step-
change phenomenon is observed for both attack objectives. The
social welfare loss exhibits a step-change pattern with the bid
modification attack and continuously changes with the
remaining attacks. By comparison, the LMP continuously
changes with the bid modification attack and exhibits a step-
change pattern with the remaining attacks. This indicates that
the bid modification attack does not impact social welfare
unless it changes the dispatch results since it does not change
the generation cost in practice, but the bids of marginal units
directly impact the LMP. If the most sensitive attack target is
identified and protected, the attack interests for a specific attack
are significantly reduced.

3) Evaluating risk load levels

This study aims to demonstrate Algorithm 3 in Section 111.3.
The CVA model for all attack objectives is solved iteratively
under different load levels. The deviations between the
objective value under normal operation and under attack are
recorded. The computational time of Algorithm 3 in this study
is 965.36 s. Fig. 8 shows the risk evaluation of different load
levels by a heat map. Different attack objectives have their own
heat map (i.e., risk zone).
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Fig. 8. Vulnerable market operating zone

Here, all risk zones are summed and scaled to be between 0
and 1, where 0 means not risky, and 1 means the riskiest. Thus,
the greater the overlap of the risk zones, the brighter the square
is. That is, a brighter area means more impact on the market
operation.

As shown in Fig. 8, at first, the heavier the load is, the more
an attacker can do. However, when the load becomes higher,
the impact decreases because the margin for manipulation by
the attacker is decreased. In other words, when more
generations are at maximum, there is less room for an attacker
to manipulate the parameters without being detected.

4) Investigating the mitigation ability of different degrees of
defense

This study aims to demonstrate Algorithm 4 in Section 111.4.
The understanding of how defenses improve the deviation from
the optimal dispatch provides a guideline for a market operator
to develop defense strategies. The CVA model is solved
iteratively with a gradual increase of the defense degree. The
computation time of Algorithm 4 in this study is 65.39 s. As
shown in Table 1V, the value of deviation from a normal value
gradually decreases to zero with the increasing defense degree.

Table. IV. Impact analysis on defense degree

Degree

] 1 2 3 4 5 6 7 8

S Viat,
Objective™." (%)

Social-welfareloss | 109.2 | 105.1 | 101.0 | 86.2 | 721 | 553 | 357 | 246 0

LMP (bus 10) 215.9 | 215.9 | 215.9 | 215.9 | 215.9 | 215.5 | 132.0 | 30.3 0

When more highly effective attack routes are blocked (i.e.,
at higher defense degrees), the attacker has to switch to less
effective attack routes, and thus, the impact of cyberattacks is
alleviated. Although the attack still impacts market operations
unless all of the compromised parameters are corrected, the
attacker could lose interest when the degree of defense is higher
than a certain threshold such that the attacker’s gain from a
cyberattack is very low. The proposed analysis provides the
market operator with information on critical defense degrees.
As shown in the first row of Table IV, when 3 of the most
effective attack routes can be protected, the maximum social
welfare deviation dropped from 109.2% to 86.2%, which may
discourage the attacks. Further, the social welfare loss due to
cyberattacks decreases almost linearly with the increasing
defense level. For an LMP manipulation attack, as in the second
row of Table IV, the defense is not effective (i.e., the deviation
created by the attack is 215.9%) until 5 parameters can be
defended, which means the attackers can still achieve the

desired outcome via the undefended measures. When the
defense degree is larger than 5, the optimal value of the attack
objective starts to decrease. It should be pointed out that the
proposed algorithm provides useful information for a decision
maker while the actual threshold to determine the number of
defense degrees is a choice of the decision maker

VI. CONCLUSION

In this paper, the missing components in the current research
on power market cybersecurity are discussed. Next, a CVA
model is proposed for market operators to perform impact
analysis on market cyberattacks. Then, four vital components
related to cyber vulnerability in the system are discussed, and
four vulnerability analysis algorithms are proposed. The
proposed algorithms can help the market operator identify
highly probable attack targets, devastating attack targets, risky
load levels, and the mitigation ability of different defense
degrees. In summary, the proposed CVA model provides a new
method to identify various aspects that are vulnerable to
cyberattacks in market operation, which provides valuable
references for further development of cyber defense strategy.

Our future studies will focus on applying artificial
intelligence algorithms to identify specific interaction patterns
between attackers and defenders based on the proposed CVA
model.

APPENDIX

The reformulations and linearization of the CVA model are
included in this Appendix.

A. Constraint (20) and (21) linearization
The first constraint (20) is linearized and replaced by (Al)
and (A2). Similarly, (21) is replaced by (A3) and (A4).
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C. Linearizingd V-M and 6 V-N

The variable 6 _V represents the OR gate operation of the
variable ¢ and V. Therefore, the relationship between ¢ 7, 4,
and V is shown in (C1)-(C3).

S VIV, Vel vje{+-} (C1)
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Similar to (Al1)-(A4),0 V-Misreplaced by a new continuous
variable 6 VM, with constraints (C4) and (C5).
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i1+

Inelement§ VN, variable N is constrained by (Al)-(A4). A

new continuous variable VN is introduced to replace 6 _V-N
with (C6)-(C10).
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D. Linearizingd V-P

The upper limits of P contain variables and parameters. Thus,
the reformulation is applied recursively. Then, the 6 V-P is
represented by a new continuous variable 6 ¥V P with
constraints (D1)- (D10).
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E. Linearizing complementary slackness constraints
The technique (Fortuny-Amat reformulation) of linearizing
complementary slackness has been well established in [26] and
Error! Reference source not found.. All complementary
slackness constraints in this paper are dealt with via this
technique. For example, (B5) is equivalent to (E1)-(E2).
Similarly, other complementary slackness constraints can be
reformed. However, after this reformulation, they are still not
linear due to variable o V.
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Therefore, we add a new constraint (E3) to remove 6 ¥ from

(E1) and (E2). Similarly, 6 V in other constraints can be
removed.
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thereof. The views and opinions of authors expressed herein do
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