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Life on the Edge: Squirrel-Cage Fringe Fields and Their
Effects in the MBE-4 Combiner Experiment*

William M. Fawley
Lawrence Berkeley Laboratory, University of California
Berkeley, CA 94720 USA

Abstract

The MBE-4 combiner experiment employs an elec-
trostatic combined-function focusing/bending element, the
so-called “squirrel-cage” just before the actual merging re-
gion. There has been concern that non-linear fields, pri-
marily in the fringe regions at the beginning and end of the
cage, may be strong enough to lead to significant emittance
degradation. This note present the results of numerical
calculations which determined the anharmonic, non-linear
components of the 3D fields in the cage and the resultant,
orbit-integrated effects upon the MBE-4 beamlets. We find
that while the anharmonic effects are small compared to
the dipole deflection, the resultant transverse emittance
growth is significant when compared to the expected value
of the initial emittance of the individual beamlets:

1 Introduction

The present MBE-4 combiner experiment was designed to
examine many of the physics and engineering issues asso-
ciated with the transverse combining and merging of mul-
tiple, space-charge-dominated, heavy-ion beams. In order
to be a “good” model of a driver combiner, it is impor-
tant that the relative size of various effects in the MBE-4
experiment be appropriately scaled from what is expected
in a driver. One such effect is the emittance growth in
the bending and focusing optics of the combiner. This
must be compared with both the upstream beam emit-
tance and the growth expected from the merging process
downstream of the combiner. Of particular concern in
the MBE-4 experiment are the anharmonic fields present
in the “squirrel-cage” combined-function focusing/bending
element, the last in the combiner section. This element
has four transport channels (the “cages”), one for each of
the MBE-4 beamlets (see Fig. 1). Each cage comprises
approximately twenty, small diameter, conducting wires
(some prefer using the word “rods” but due to their small
diameter I prefer “wires”). The upstream end of each wire
is held by an insulating, ceramic plate and connected via
a lead to a voltage divider network, while the downstream
end is freely suspended in space. Presently (early 1996),
details of the exact path the leads follow from the voltage
divider to the upstream end of each cage remain undeter-
mined, as will their effect, if any, on the beam particle
dynamics. However, the cages themselves are composed of
straight wire elements.

* Work supported by the Director, Office of Energy Research,
Office of Fusion Energy, U.S. Dept. of Energy under Contract No.
DE-AC03-76SF00098 at LBL

The remainder of this note consists of the following
sections: §2 describes the cage geometry and the meth-
ods for determining the necessary voltages on the indi-
vidual wires. §3 introduces the capacitance matrix and
multipole decomposition methods in order to determine
the strengths of the fringe and interior anharmonic fields
while §4 presents the actual numerical decomposition re-
sults for the top and right cages versus z. In §5 we cal-
culate the cumulative anharmonic effects by integrating
them in z along the nominal trajectory of the beam cen-
troid. The concluding section, §6, compares these results
with some previous analytical and simulation work on the
MBE-4 squirrel-cage.

2 Wire, Charge, and Electrostatic
Field Distribution in the MBE-4
Squirrel-Cage

2.1 Adopted Geometry

As mentioned in the Introduction, the full geometry of the
squirrel-cage element in the MBE-4 combiner experiment
remains somewhat tentative. For the analysis presented in
this note, we adopted the configuration depicted in Fig. 1
and include only the straight section of each wire. The
transverse (i.e. £ — y) cross-section of the ensemble (here
the transverse origin corresponds to the symmetry cen-
ter of the four cage ensemble) is tapered and shrinks self-
similarly with z from the upstream end to the downstream
end, i.e.

[z, 9ll: = [za,yd] x <1+C ( FoA )) 2y Sz 24
2y — 24

(1)
where the subscripts v and d refer to the upstream and
downstream quantities respectively. The scaling factor ¢
is determined by the requirement that the outermost wire
(whose downstream position is 20.5 mm from the origin)
expand from the origin with a slope equivalent to a 6-
degree angle (= 0.1radian). Hence,

_ Lw x tan 6°

¢ = 0.403 (2)

Ymaz

for L, = 78.6 mm, the cages’s length in 2. W. Ghiorso
kindly provided a file containing the downstream trans-
verse coordinates of each wire and a simple conversion pro-
gram determined the (z,y,z) coordinates of the discrete
charge locations along each wire for purposes of capaci-
tance matrix inversion and multipole decomposition (see
§I1T).
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The voltages on each wire were calculated following
the reasoning of A. Falten’s[l]. Within each of the four
cages, the vacuum electrostatic field must include both a
dipole component to bring {z’) and (') to zero at the end
of the squirrel-cage where the four beams actually begin
to merge and a quadrupole component to keep the beam
envelopes in approximate equilibria with their upstream
values.

The squirrel-cage quadrupole field gradient was de-
termined by setting the phase advance of the beam to
that necessary to bring the calculated envelope parame-
ters < @’ > and < b’ > of the individual beams to zero at
the exit of the squirrel-cage. According to the latest en-
velope code calculations provided by P. Seidl, the average
quadrupole field gradient must be 18.1 V/mm?, presuming
an effective length of 78.6 mm.

To lowest order (i.e. ignoring the taper of the wires,
the approximately parabolic orbit of each beam’s cen-
troids, the effects of both edge fringe fields at the cage
ends and those due to the discrete nature of the wires az-
imuthally), the required dipole field is \

Az’

ED:Z;XQVB:

tan 6°

r—————— = . S
78 B x400kV =5.35x10°V/m

3)
This field may be produced by displacing the centroid
quadrupole field toward the transverse origin of the com-
plete ensemble and away from the geometric centroid of
each wire cage. Using the aforementioned quadrupole gra-
dient and expression (3), the required quadrupole field cen-
troid displacement must then be 29.5 mm from the beam
centroid position in each cage. With the nominal, down-
stream centroid position of the right (vertically-elongated)
beam lying at (z., 0.0) and that of the top (horizontally-
elongated) beam at (0.0, y.), the wanted potential func-
tions in the right and top cages are

Brigni(z,9) =9.0[—(2+ 295 —z.) 2+ 4% + & (4)

Biop(z,9) = 9.0[2° — (¥ +295-4)’] + &7 (5)
with all positions measured in mm. The constants 2 and
®? are found (or more exactly, their relative difference) by
realizing ®,i45:(z, y) must be identical to $;p(z,y) on the
three electrodes they share along the line

y=2z+3.0mm (6)

Setting [ + §] - VBright = [& + §] - V®e0p along this
line forces ‘
(M

With y. = 12.5mm, then ¢, = 6.5mm which differs
slightly from Falten’s choice of z, = 6.0 mm. If relations
(6) and (7) are inconsistent, this results in much larger
anharmonic forces, especially those associated with a sex-
tupole component. Substituting (7) into relations (4) and
(5), we find ®2 —®? = 1.08kV. Finally, forcing the voltage
at position (0.0, 3.0) mm to be exactly zero then deter-
mines the “absolute” values of ®2 and ®7 as 4.66 and 3.58
kV respectively.

Yo — 2. = 6.0mm

Figure 1: Hlustration of the squirrel-cage geometry, show-
ing the upstream insulating ceramic plate and the 71 indi-
vidual wires and their taper toward the cage center from
the upstream to the downstream end.

2.2 “Higher Order” Analytical Solution

for Wire Potentials

Primarily because the taper with z in the transverse lo-
cations of the wires affects the effective length of the
quadrupole component with a different power of (1 + ¢)
than it does the dipole component, it is prudent to calcu-.
late a somewhat more exact solution to the wire potentials.
Moreover, the approximately parabolic orbit of the beam
centroid also tends to lower the effective dipole deflection
than would be calculated from expression (3) because on
the average each beam is closer to the ensemble origin than
would be true for an exactly linear path with z.

Once again ignoring fringe fields, the quadrupole field

gradient is given approximately by
Eo(z) ~ Ej(za) x (1 + oza — 2))™° (8)
where the fields at 2 = z; are evaluated without fringe field
effects and a = {/(24 — 2). Integrating in z, the average

quadrupole gradient through the cage is then
< B>~ El(z2) X —ar ©)

AN (RN

Hence one must increase the quadrupole component of the
wire potentials by a factor of & 1.4 to 25.3 V/mm’ to take
into account the reduced effectiveness caused by the taper.
The reduction in the effective dipole field is somewhat
more complicated because both the variation in E’Q and
the variation with z in the beam centroid offset y. from the
quadrupole centroid ygo must be considered. Analytically,

Ep(z)~ Ep(za) x 1 + a(za—2))"" +
S (yc(2) — yq(2)) Eg(2) (10)

Here y.(2) = ye(za) + 1/2 x ¢, (24 — 2)? and yo(z) =
yo(za) x [1+ a(zq4 — 2)]. The first term in expression (10)
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reduces the dipole effective length by about 16% wheteas
(after a fair amount of boring algebra) the second term
is equivalent to an average offset of the beam centroid of
0.8 mm and thus reduces the dipole effective length by an
additional &~ 3%. Consequently, the net effect of the ta-
per is to reduce the estimated required quadrupole offset
(at z = z4) from 29.5 to 25.7 mm.

2.3 Numerical Determination of Wire Po-
tentials

The analytical solution presented above still neglects ef-
fects from the up- and downstream fringe fields, which due
to both the tapered geometry and the offset angle of the
cage centroid, will modify the effective lengths of both the
dipole and quadrupole fields. For purposes of guiding the
MBE-4 experimentalists, we used the multipole method to
be discussed in the next solution to obtain a far more accu-
rate solution. By iterating on both V, and the quadrupole
offset yo(z4), the dipole and quadrupole fields can be ad-
justed until the wanted integrals are satisfied:

/ Ep(2')dz = Az’ x 2V = 41.8kV (11)

/E’Q(z')dz'z 18.1V/mm’ x 78.6mm = 1.43kV/mm
(12)

where the field values are calculated along the parabolic
path of the beam centroid. Using the “higher order” solu-
tion of the last section as our starting point, we found that
setting Eg(zq) = 27.9 V/mm’ and yo(za) = 21.6 mm re-
produced relations (12) to within 1.5% and (11) to within
0.7% in both the top and right cages. These values of Eg/
and yo are about 11% higher and 16% lower respectively
than the “improved” (i.e. taper-cognizant) analytic solu-
tion of the last section.

The “ultimate” solution would be to replace 2’ in the
last two expressions by s - the actual path - and evaluate
both E/, and Ep in the non-paraxial limit. Given the total
neglect of the effects of the upstream wire leads, we did not
feel that the additional programming effort was sufficiently
worthwhile. Hence, all the results of the following sections
presumed that the orbit of each beam centroid was linear
outside the cage extent in z and exactly parabolic inside,
with no non-paraxial effects either in the orbit or in the
multipole expansion. We expect that the greatest devi-
ation from these approximations will be upstream where
{2’} is largest.

3 Electrostatic Potential Solution
and Multipole Decomposition

Since the individual wire voltages are provided by time-
invariant power supplies and we are neglecting fields due
to the ion beam, we may take E = ~V®. If we model
the continuous surface and line charge densities by a finite

number of discrete point charges, the electrostatic poten-
tial at any given point r may be mathematically expressed
by
Q;
&(r) = —_— 13
CEpp 03)
J

where for convenience we have taken 4we, = 1. In order to

determine the values of the Q;, one must find the capacity
matrix Cj; where

j=N
Q=) Cyd; (14)
ji=1

with the elements of the inverse matrix C~! given by
[C™Yi; = 1/ max(je; — x;l,70) (15)

Q:/r, represents the effective self-potential of the charge
Qi-

One’s choice of the exact value of r, depends upon
the nature of the problem (e.g. surface charges versus line
charges) and spatial resolution (higher resolution generally
implies a smaller value for r,). For the current problem of
the squirrel-cage, we used a constant spacing As between
adjacent charges on a given wire and chose the value

L= (L - _
To = (m) As = 0.3607 As= 0.45mm (16)

for As = 1.25mm. For an isolated, infinitely long wire
parallel to the z axis with equal charges at positions z =
+kAs, k=0,1,2,..., this choice sets ®(z = nAs) = ®(z =
(m + 1/2)As). Although the exact value of 7, has a small
effect on the spatial structure of the potential far from
individual wires, it will affect the structure within a couple
As of any individual wire.

A small set of numerical experiments involving varying
the value of r, showed that for a series of charges equally
spaced in azimuth and length (i.e. A6 = As) the best
choice for r, is 0.25As. “Best” was defined as that which,
for a test case of an azimuthally uniformly-spaced, 32-wire
single cage with comparably-sized monopole through do-
decapole potential components, gave a numerical charge
solution whose resulting potential multipole decomposition
closely (better than 1%) reproduced the chosen wire val-
ues. When As exceeds rA@ by a relatively small factor
< 2, it appears 7, should be close to (but somewhat larger
than) the 0.25 times the geometric mean of As and rAf.
For the particular case of the tapered squirrel-cage, the
average value of rA# is about 2.2 mm while 0.25 times the
geometric mean is 0.41 mm which is pleasantly close to our
value of 7, = 0.45 mm. ,

We wrote a simple FORTRAN code to set up the posi-
tions of the individual charges and the resultant inverse ca-
pacity matrix. Inasmuch as the inverse matrix is symmet-
ric (z.e. [C1;; = [C~1);:), this permits a somewhat more
rapid solution than would be true for the more general
case. We chose the IMSL routines LCHRG, PERMU,
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and LFSDS to perform the inversion. A 2520x2520 matrix
(2-mm discrete charge spacing) required 1.5 minutes CPU
time (single-processor equivalent) on the NERSC Cray-2
C machine whereas a 4544x4544 matrix (1.25-mm spacing)
took about 49 seconds on the C90. With normal memory
size limitations (in interactive mode) on the NERSC Cray-
2’s preventing direct inversion of matrices greater than
about 3000x3000 in size and 6000x6000 in the C90, a dif-
ferent method or algorithm must be used if much greater
resolution is sought for this problem. Once the capacitance
matrix is found, one directly obtains the corresponding in-
dividual charge values for any arbitrary set of wire volt-
ages. Then, from expression (13), the potential at any
point may be determined.

The anharmonic components of the electrostatic fields
can be found via multipole decomposition. We used a
method based on Hahn’s[2] algorithm, itself an improve-
ment over that of Berz ef al.[3]. When doing this decompo-
sition, we used a “moving” origin in the z — y plane which
followed the nominal parabolic path (i.e. that correspond-
ing to a constant Ep) of the beam centroid within each
cage. However, the multipole decomposition was always
done in the z — y plane exactly perpendicular to the “true”
z—axis rather than perpendicular to the beam centroid’s
instantaneous velocity vector. In the absence of voltage
or alignment errors, symmetry arguments imply that the
the multipole decomposition of the left cage is identical to
that of the right cage (and that of the top to that of the
bottom) apart from a sign change in the dipole. Following
the notation of [2], the harmonic portion of the potential
in the £ — y plane at a given z may then be expressed

Moo(2) + My1(z)z + Nyy(2)y +
Mz,z(Z) [232 - y2] + Nz,z(z) 2zy (17)

where z and y are measured relative to the moving origin.
The non-linear, anharmonic portion of the potential is thus

(18)

This portion of the potential can produce significant emit-
tance growth depending upon the size of the beam and
whether there is significant cancellation of the upstream
fringe fields by those downstream.

Ppar(z,y,z) =

QIVL(:’:) Y, 2) = Q(l‘, Y, Z) - QHAR(xa Y, Z)

4 Numerical Results for the Line
Charge and Multipole Distribu-
tions versus z

Once the capacity matrix is determined, one uses expres-
sion (14) to find the discrete charges at each of the node
locations. Figure 2 plots the charge distribution versus z
for selected wires belonging to the top cage for a tapered
geometry cases using the numerical solution of the previ-
ous section. For this and the following figures, we used a
1.25-mm spacing in z for the discrete charge representa-
tion of the continuous line charge distribution along the

0573 7 ' ' T
N ]
0.0F T ++ . ittt T
:,,7 L
2 | 1
3
g
8 I * x
o 05 + (0.0, 6.5) 4
L x (0.0, 20.5) i
- o (9.0, 13.0) |
2 (6.0, 9.0)
5 (6.0, 18.5) ]
T *
-1.0F * -
| . | —_. n —l 1 — H
-40 20 L} 20 40
Z (mm)

Figure 2: Discrete line charge values along 5 wires in the .
top cage in a tapered geometry. The numbers within the
parentheses refer to the final, downstream (z, y) positions
in mm. Apart from the approximately 2X enhancements at
the wire ends, the equivalent line charge density is nearly
constant along each wire.

individual wires. One sees that over the bulk of the length
of each wire, the line charge density is nearly constant im- -
plying that a local 2-D approximation gives a reasonably
good answer. Beginning at about 10 mm from each end,
the line charge density begins to change strongly leading
to a point charge on the end of each wire whose value is
about 2-3 times greater than that of charges deep in the
interior. An equivalent plot (not shown) for the untapered
geometry is quite similar, with the line charge being nearly
constant over the length of a wire.

There is a much greater difference in the top cage mul-
tipole distributions versus z between the tapered and un-
tapered cases. For the untapered case (Fig. 3), the decom-
position was done along a path that was parabolic within
the cage beginning at with the z — y — z coordinate (0,
14.84, -35.0) mm and ending at (0, 11.16, 35.0) mm. Qut-
side the cage, the path was a straight-line with ¥ equal
to -0.105 upstream and exactly zero downstream of the
cage. The y starting point for the parabola was cho-
sen to approximately balance the sextupole components
at the upstream and downstream ends of the cage (as op-
posed to an alternative choice of ending the parabola at
y = 12.5mm, the approximate vertical midpoint of the
top cage. One sees that in addition to the dominant (and
wanted) dipole (N11) and quadrupole (M22) terms, there
are also sextupole (N33), octupole {(M44), and dodecapole
(M66) terms that are smaller by a factor of about 100 in
terms of their contribution to the local electrostatic poten-
tial at 7 = 5 mm. This smallness confirms that the number
of wires used per cage and their placement is sufficient to
give a reasonably good field topology. At the ends of the
wires, there is a four-fold enhancement of the sextupole.
Its fringes and those of the dipole extend out about 5 mm
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Figure 3: Multipole strength evaluated at » = 5 mm plot-
ted versus z for the potential distribution in the top cage
in an untapered geometry. Note the the dipole has been re-
duced by a factor of 10 while the sextupole (N33), octupole
(M44), and pseudo-octupole (M42) has been multiplied by
10.

further in z than do those of the quadrupole or higher order -

multipoles. There is also a rather strong pseudo-octupole
component {M42) at the upstream entrance to the cage
when compared with that predicted (see below) for the
tapered geometry.

In Fig. 4 we plot the top cage multipole strength ver-
sus z for a tapered geometry with the decomposition be-
ing done along a parabolic orbit line passing through the
(z,y, z) points (0.0, 16.6, -39.3) and (0.0, 12.5, 39.3) mm.
With the exception of the sextupole, the z—dependent
n—pole strengths at » = 5mm appear to scale as the in-
verse n—th power of the local cage radius; i.e. the higher
order multipoles are suppressed at the upstream end of
the cage relative to their values at the downstream end.
It is interesting (and not understood) that the dodecapole
(M66) has odd symmetry with respect to the cage center
at z = 0 whereas in the untapered case (Fig. 3) it has a
nearly constant, positive value. The odd symmetry is not
repeated in the right cage multipole decomposition (see
Fig. 5) where M66 is generally positive and has a larger
amplitude than in the untapered case (not shown). More-
over, the sextupole component of the right cage is much
stronger than that of the top. This may be because the
right cage has fewer electrodes at large z than does the top
cage at large y or because of some other (but non-obvious)
difference in the electrode topography. It does not appear

Figure 4: Multipole strength evaluated at » = 5 mm plot-
ted versus z for the potential distribution in the top cage
for a tapered geometry. As in Fig. 3, the sextupole and
other anharmonic components have been enhanced rela-
tive to the quadrupole and dipole.

200 T T T T T T

A ot
\
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-100
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VOLTAGE @ r = 5.0 mm

-200
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-0.08

0.00
Z (m)

0.04 0.08

Figure 5: Multipole strength evaluated at » = 5mm plot-
ted versus z for the potential distribution in the right cage
for a tapered geometry. As in Fig. 3, the sextupole and
other anharmonic components have been enhanced rela-
tive to the quadrupole and dipole.
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Figure 6: z-integrated nonlinear potential (see Eq. 18) in
V-m for the top cage as a function of the transverse offset
from a parabolic path through the top cage. The contour
spacing is 0.2 V-m. Values exceeding +1 V-m have been
clipped. ’

to be due to the taper -itself as the untapered geometry
also produces a large, positive sextupole component in the
right cages.

5 Predicted Emittance Growth
due to Anharmonic Field Com-
ponents

Once one has the harmonic portion of the electrostatic po-
tential (see Eq. 17) from the multipole decomposition, one
can numerically determine the integral [ &z dz along a
given path of the beam centroid. If one presumes that
the offsets (Az;, Ay;) of individual particles from the
beam centroid remain constant during transport through
the cage (i.e. impulse approximation) and also neglects
any “energy effect” with the squirrel-cage due to the
transverse-position dependence of an ion’s energy when it
enters the cage (= 1% effect), one may use this integral to
estimate the associated emittance growth.

In Figs. 6 and 7 we portray this integral as a function
of transverse offset from the (presumed parabolic) centroid
path for the top and right cages respectively. The plotted
values are clipped at #+1 volt-m in order to emphasize the
topography of @ in the central region r < 4 mm. An ob-
vious sextupole dominates the core regions of both figures
but, to keep things in perspective, its absolute magnitude
is'small compared to a typical dipole field of 120 V-m (i.e.
40kV x 3mm).

To estimate the RMS emittance growth Ae? | we
use the net anharmonic impulse given a particle at offset

4

0.6

¥

£
b

Y {rm}

-0.2

0.8

R E

X {oem}

Figure 7: Same as Fig. 6 but for the right cage.

{Az, Ay) from the beam centroid:

=€
= 2Vp
If we presume that each individual beam has a trans-

verse density profile corresponding to a uniformly filled,
upright ellipse with major axis a and minor axis b,

%! v / d2' @np(ze + ATy, ye + Ay;, 2} (19)

A2 =(<z?>—<z>) x(<z'?>~-<2' >?) -
(<zz'> — <z><z' > (20)

where the average over configuration space is
1 +a ym(z)
<f>= — dx/ -
7rab -a ‘ym(z)

dy f(z,y) (21
and ym(z) = (b/a) x (a® — z2)1/2.

In order to get a feeling for the usable aperture of the
cage, we computed Ac? as a function of a keeping the ellip-
ticity ratio fixed at a constant value of 1.75 corresponding
to the predicied, downstream matched beam size of 6.5 ver-
sus 3.7 mm. Figure 8 plots the resultant edge emittance
growth where £.40c = 4(Ae?)*/? which should be com-
pared with the initial value of 11.2 mm — mrad (equivalent
to a normalized edge emittance of 2 x 10~¥m — rad). One
sees that for major axis values below about 5 mm, the pre-
dicted emittance increase is smaller than the initial emit-
tance while for values exceeding &6 mm, the increase domi-
nates the initial emittance. Not surprisingly, the emittance
degradation is worse in the plane corresponding to the ma-
jor axis elongation in the top and right cages. Although
the corresponding thermal angles remain small (with typi-
cal values of 3 mrad or less) when compared to the overall
dipole deflection of approximately 100 mrad, they are not
negligibly small when compared with the initial thermal
angle of about 2 mrad.
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Figure 8: Change in edge emittance in the two transverse
planes for an initially cold beam versus beam size for the
tapered top and right cages. The beam is presumed to be
a uniformly filled, upright ellipse with a major-to-minor
axis ratio of 1.75, with a horizontal(vertical) orientation in
the top(right) cage respectively.

6 Comparison with Earlier Studies
and Conclusions

D. Judd[4] has written an interesting note estimating the
fringe fields of the squirrel-cage by considering the impulse
force due to a single wire at a constant voltage. For volt-
ages typical of the squirrel-cage, he estimated that the re-
sultant angular deflection due to fringe fields at the wire
ends would be or order 1 mrad or less. He predicted a
similar value in the neighborhood of two adjacent rods of
differing voltages. Since this angle is quite small compared
to the 100 mrad dipole deflection angle, he concluded that
the fringe fields “may be regarded as negligible”.

Three comments are in order here. First, it is comfort-
ing that both Judd and myself find that the anharmonic
fringe fields contribute deflection angles of the order of
1 mrad and there are not factors of 10 differences. Second,
the interested, alert, and savvy reader should note that
Judd’s calculation is especially relevant quite close to the
individual wires, a region where the my results lose valid-
ity because of the discretization of the line charge (see §2).
Conversely, my calculation includes the global ensemble of
wires and thus picks up components such as the sextupole
which cannot appear in Judd’s highly localized solution.
Third, as pointed out before, while a 1 mrad angle is neg-
ligible compared to the bulk centroid deflection angle, it is
not small compared to the ~ 2-mrad initial thermal angle.

K. Hahn[5] also wrote a note presenting results of a
PIC simulation of beam dynamics in the MBE-4 beam
combiner and merging section. Although there is a state-
ment on p. 6 indicating that the normalized emittance
increases nearly ten-fold to ~ 10~ " m-rad due to field aber-

rations in the squirrel-cage, it appears that this corre-
sponds to RMS value of the eniire four-beam configuration
which Hahn correctly points out is rather artificial until
the beams actually merge beyond the squirrel-cage. More
recent work by Hahn (currently in preparation) suggests
that there may be a factor of two increase in the individ- -
ual beam’s emittance due to aberrations during transport
in the squirrel-cage. These simulation results have a grid
resolution of 2 0.2 mm and include both the highly local-
ized 1/r fields near the individual wires and the “global”
(1.e. sextupole-including) fields but not the fringe fields at
the cage ends. Hence, it is likely that the true emittance
growth in the squirrel-cage will be somewhat greater than
found in either Hahn’s PIC results or those of the present
study.

In summary, we find that the the 3-D anharmonic
fields of the squirrel-cage contribute ~ 10 mm-mrad of un-
normalized, edge emittance to an MBE-4 beamlet with
a major axis of 5 mm. The dominant component is the
sextupole term although the octupole is also important.
While this emittance increase is small compared to the
final predicted emittance of the merged beams (see [5]),
it is comparable to the initial emittance of the uncom-
bined beamlets. Beam particles that come extremely close
(£ 1mm) to the individual wires will probably pick up ad-
ditional deflection which is not resolved in this study (but
should be in Hahn’s{5] work). If it is deemed important to
reduce the emittance growth caused by the squirrel-cage,
it may be possible to optimize further the individual wire
voltage values in order to reduce the unwanted sextupole
and octupole terms.
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