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Abstract . @ S;T ﬂ

We describe an infeasible-interior-point algorithm for monotone variational inequal-
ity problems and prove that it converges globally and superlinearly under standard con-
ditions plus a constant rank constraint qualification. The latter condition Tepresents a
generalization of the two types of assumptions made in existing superlinear analyses;
namely, linearity of the constraints and linear independence of the active constraint
gradients.

1 Introduction
We consider the monotone variational inequality over a closed convex set C C RY:
Find z € C such that (2 — 2)T®(2) >0, forall 2/ €C. (1)

The mapping @ : RY — R" is assumed to be continuously differentiable (C 1) and monotone;
the latter property means that

(2" — 2)T(®(2) - ®(2)) > 0 for all'z’, z € R™.

We assume that C is defined as an intersection of finitely many algebraic inequalities; that
is,

C = {zeR"|g(z) <0}, (2)

where g : RY — R? is 4 02 function for which each component function g;, 1 = 1,2,..., P,
is convex.
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The mixed nonlinear complementarity (NCP) formulation of this problem is: Find the
vector triple (2, A,y) such that

[0]=[f(za/\)], (A\y) >0, ATy=0, 3)

y —9(z)
where f: RY — RV is the C! function defined by
f(z,A) = ®(2) + Dg(2)T ) (4)

Note that f is monotone with respect to z € R for all vectors A € RF with nonnegative
components (that is, A € lRi). The mapping

- | 1] o

is monotone because monotonicity of ® and of each function Dg; means that its Jacobian

atrix
matri D.f Dg" | _[ D2(z) + X%, \D?u(z) Dg(z)T (6
—Dg Dk —Dg(z) 0 )

is positive semidefinite for all (z,A) € RY x RE.

It is well known [2] that, under suitable conditions on g such as the famous Slater con-
straint qualification, 2 solves (1) if and only if there exists a multiplier A such that (z,A)
solves (3).

We solve (1) by a method based on the interior-point algorithm of Wright and Ralph [10].
Besides being easier to adapt to the case of mixed NCP (3), it is also considerably simpler
than the algorithm in [10], in fact, closer in spirit to the method of Wright [8] for monotone
linear complementarity problems. We show that under certain assumptions the method
converges globally and superlinearly to the solution set of (3), even in some situations in
which the solution does not satisfy a strong uniqueness and nondegeneracy condition.

Superlinear convergence for interior-point methods was discussed first by Zhang, Tapia,
and Dennis [15]; see also Zhang and Tapia [14] and Ye, Giiler, Tapia, and Zhang [13].
Infeasible-interior-point methods for the latter class were described by Wright in [9], with
improvements in [7, 8]. For nonlinear monotone complementarity problems, Wright and
Ralph [10] describe a superlinearly convergent method that requires invertibility of the prin-
cipal submatrix of the Jacobian corresponding to basic rows and columns. This condition
actually guarantees uniqueness of the solution point (2*, \*), that is, uniqueness of the mul-
tiplier A* in (3). Similar assumptions almost always are made in the asymptotic analysis
of nonlinear programming algorithms. The main point of this paper is to show that super-
linear convergence also occurs under weaker assumptions that allow the multiplier A to be
nonunique. In fact, the algorithm here is the only one we know of for nonlinear programs
with nonlinear constraints and nonunique multipliers for which convergence is superlinear.

Loosening of degeneracy assumptions has practical importance for large-scale problems,
where degeneracy or near-degeneracy at solution points is typical. In this paper, we assume




that the active constraint gradients satisfy a constant rank constraint qualification at the
solution. This condition can be thought of as an interpolation between the two most com-
monly made assumptions, namely, linear independence of the active constraint gradients and
linearity of the constraint function g(2).
Possibly the best known application of (1) is the convex programming problem defined
by
min #(z)  subject to z € C, (M

where ¢ : R¥ — R is C? and convex. Let & = D¢. Tt is easy to show that the NCP
formulation (3),(4) is equivalent to the standard Karush-Kuhn-Tucker (KKT) conditions for
(7). If a constraint qualification holds, the solutions of (1) and (7) coincide.

The paper is developed as follows. In the remainder of this section, we summarize the
notation and terminology to be used in the paper. (Because of the technical nature of our
analysis, it is useful to have this material gathered in one place.) In Section 2, we describe
the algorithm for solving (3), but omit some of the details because of the similarity to Wright
and Ralph [10]. In Section 3, we prove the global convergence result for this algorithm and
state the local superlinear convergence result. The analysis in this section is quite similar to
that of [10], but it differs in some of the details. The rest of the paper is devoted to outlining
and proving the superlinear convergence theorem. In Section 4 we state and discuss the
assumptions that are used in this theorem. Section 5 shows that the steps generated by the
algorithm during its final stages satisfy the estimate required by the proof of the superlinear
convergence theorem. We divide Section 5 into subsections and provide ample motivating
discussion so that readers can see the thrust of our argument without our going into the
details. Section 6 describes conditions under which one of our key assumptions—existence
of a limit point—is satisfied, and also proves some auxiliary results that follow from the
assumptions of Section 4.

Notation and Terminology

Unless otherwise specified, || - || denotes the Euclidean norm of a vector, while
RE={yeRF|y>0}, RE ={yeRP|y>0}.

For any two vectors c and d, we frequently use (¢, d) as shorthand for (cT,dT)T. The vector
(1,1,...,1) is denoted by e, while z; is obtained by replacing all negative components in
the vector z by zero. The closed unit ball is denoted by IB. Derivatives are indicated by D,
or D, for a partial derivative with respect to z.

Iteration indices (usually k) appear as superscripts on vectors and matrices and as sub-
scripts on scalars. Subscripts are used to indicate components of vectors and matrices.

If 9 is a function mapping IRy to IRy, we write (1) = O(7) if there are constants 7 > 0
and C > 0 such that () < C7 for 7 € (0, 7).

The kernel or null space of a matrix H € IRP*? is

ker H = {d € R?| Hd = 0},




while the range space is denoted by
ran H = {Hd|d € R}.

Given§ #Z C {1,2,...,p} and 0 # J C {1,2,...,q}, we define three submatrices of H as
follows:

Hrz = [Hijliez jer, H.7 = [Hjliz1,...pi5e7 Hr. = [Hijliezjm,..q-

Ifw e RPand Z C {L,2,...,p}, then wr denotes the subvector [wi];cz. In dealing with the
function g : RY — R? in (2), we use Dgz(z) to denote the |Z| x N Jacobian of gr with
respect to z.

Often the arguments are omitted from the functions and Jacobians f (2,A), 9(2), D.f(z,A),
and so on. In such cases, the arguments should be assumed to be z, ), and Y, or any appli-
cable combination thereof. '

We use S to denote the solution set for (3) and Sz to denote its projection onto its first
N + P components; that is,

S ={(zMy)|(z,Ay) solves (3)},  Sz={(2,1) (2,1, —g(2)) € S}. (8)
We can partition {1,2,..., P} into two index sets B and NV such that
Ay =0, yg =0, all (z*,A*,y*) € S. (9)

The solution (2*, A", y*) is strictly complementary if \* +y* > 0; that is, A > 0 and yi > 0.
We also use this term when referring to just the z and A components of the solution. That
is, we say (2%, X*) is strictly complementary if A > 0 and g;(2*) < 0 for i € V.

The distance of a vector w € R? to a set 7 C IR? is

distr(w) = inf{|lw — w*]| |w* € T}.

Given H C RP*9, we say H has constant column rank (CCR) if for each sequence {H*} C
H converging to some H € IR?*? and each § # J C {1,2,...,q}, we have

rank H,’} — rank H. 7.

Given the current point (z,),y) and a search direction (Az, A), Ay), we define the
complementarity measure y as

p=xTy/P,
and the intermediate quantities (2(c), A(a), y()) and p(c) by

(2(@), Ma),y(a)) = (2,4, 9) + (A2, AN Ay),  ple) = Me)Ty(a)/P.




2 An Algorithm for Mixed NCP

We now outline an infeasible-interior-point algorithm for mixed NCP that synthesizes two
earlier methods: the algorithm described by Wright and Ralph [10] for monotone NCP
and the algorithm of Wright (8] for linear complementarity problems. Neither of these
formulations applies explicitly to the mixed problem. In the case of linear problems, a
mixed framework is unnecessary in any case, since there are strong equivalence relationships
between mixed problems and nonmixed problems.

Our description is terse because much of the motivation can be found in the papers cited
above.

Given a starting point (2% A% y°) with (A% %) > (0,0), the algorithm generates a se-
quence of iterates (2*, \¥, y¥) that satisfies this same positivity condition. For each vector
triple (2, A, y) for which (,y) > 0, we define the residuals r; and r, by

[ f-jﬁii ] - [ ;{L(;(;\)) } ' | (10)

Another useful quantity is the vector e, defined by e = (1,1,..., 1)7. As is usual in descrip-
tions of interior-point methods, we turn positive vectors into diagonal matrices by capitalizing
their names; that is,

A =diag(A, Az, ..., ), Y = diag(y1,¥2,-- - » Ym)-

When (z, A, y) = (2%, A%, y¥), we sometimes attach a subscript or superscript k to the quan-
tities g, 7, A, Y to make the dependence on (2*, \*, y*) explicit.

The algorithm can be thought of as a modified Newton algorithm applied to the following
system of constrained nonlinear equations.

—f(z,}) rs(2,A)
y+9(z) | =] rezy) | =0, (A\y)>0. (11)
—AYe —AYe .

The “modifications” are needed to keep A* and y* from prematurely approaching the bound-
ary of the feasible region defined by the conditions y > 0 and A > 0. Line searches are used
and, on some iterates, the search direction is skewed toward the interior of the positive or-
thant, so that longer steps can be taken without violating positivity. Near the solution, the
algorithm reverts to pure Newton steps, allowing the rapid local convergence properties of
this method to take effect.

The major computational operation in the algorithm is the repeated solution of 2P + N-
dimensional linear systems of the form

D.f Dg* 0 Az r#(z,A)
-Dg 0 ~—I Al | = re(2,9) , (12)
0 Y A Ay —AYe+ Gure




where the centering parameter & lies in the range [0,1]. These equations are simply the
Newton equations for the nonlinear system mentioned earlier, except for the & term. The
algorithms searches along the direction obtained from (12).

In the algorithm of Wright and Ralph [10] (which applies to nonmixed NCP), the search
for a takes place along a curved arc rather than a straight line. The curvature on this arc
ensures that the residual term decreases linearly with «. It is not clear how to extend this
strategy to the mixed case, so the algorithm in this paper uses a simpler straight-line search.
The global and local convergence properties are essentially the same as in [10].

At each iteration, the algorithm computes a fast step—a pure Newton step for which
¢ = 0 in (12). If the fast step fails to give a sufficiently large decrease in g, we revert to
a safe step by assigning a positive value to &. This modification allows a longer step to be
taken, so that a certain minimal amount of progress toward the solution can be made. In
choosing the step length o, we require not only that all iterates (2, \*,y*) remain strictly
positive, but also that they satisfy

’\fyglc?_’ﬂc.uk, :=12,..., P (13)

for positive values of 4; bounded away from zero. This condition ensures that the pairwise
products );y; stay roughly in balance as they approach zero, so that no single one of them
vanishes much faster than the others. On fast steps, we expand this region by decreasing
slightly, to allow steps of length near 1 to be taken.

The algorithm is parametrized by a variety of positive scalar constants, which we specify
now for easy reference. Their roles are explained as they arise in subsequent discussions:

x€(,1), &€(0,3), @a€(0,1], «e€(0,1), +e(0,1),
Penin > 0 such that ||r7|| < Bminto and ||rgll < Buinto,  Bumax = Prine™?,  (14)
0<Vmin <Tmax <3,  T€(0,3),  p€(0,min((37)%,1 - &)).

The starting point (2%, A%, y°) is assumed to satisfy
’\?y? 2 “YmaxHo- ) (15)

The main algorithm can now be specified.

o — 0; Y0 + Ymax; Bo < Prmin;
for £=0,1,2,...,
if Kk = 0,
terminate with solution (2F, \¥, y¥);

(2FF1, ARFL g1y o fast(2*, MF, y, t, i, Br);

if pryr < ppx
Yi41  Ymin + T* (Ymax — Ymin); Brs1 — (1 +F#¥1)Bs;
lepr —te+1;




else
(2FH1 NEHL ki1 safe(2*, M, y* tr, v, Br);
Ye+1 < V&5 Bryr — Pk;
Tl e B3
end for.

The fast step is taken only if it decreases the complementarity gap u by at least a factor of
p. The counter # keeps track of the number of successful fast steps prior to iteration k. As
we see in the definitions of the subroutines fast and safe below, the value of #; indirectly
governs the distance oy that we move along the current search direction.

The coefficient matrix in (12) is the same for both fast and safe steps, so only one matrix
factorization is required per iteration.

The safe-step procedure is defined as follows.

safe(z, A, y,t,7, 8):
choose & € [7, 1], o° € [&,1];
solve (12) to find (Az, A, Ay);
choose « to be the first element in the sequence o2, xa?, x2a9, .. .,
such that the following conditions are satisfied:

Ai(oyi(a) 2 v p(e), (16a)
lirs(z(a), Ma))l < Bu(a); (16b)
lIrs(2();y( < Bp(e); (16c)

Ma) £ 1—-ax(l-35)p (16d)

return (z(a), A(a),y(a)).

A nonzero centering term is used, allowing us to move a nontrivial distance along the search
direction while staying in the set defined by

{(z, M) | My: = 70} (17)

The second and third acceptance conditions (16b), (16¢c) ensure that the infeasibility re-
mains bounded by a multiple of the complementarity. The infeasibility is “squeezed” to
zero at least as rapidly as the complementarity measure. Similar conditions are enforced
in infeasible-interior-point algorithms for linear complementarity and linear programming;
see, for example, Wright [8]. The fourth condition (16d) is a “sufficient decrease” condition
of the kind often found in algorithms for nonlinear optimization. Its purpose is to ensure
that the decrease in objective function (in this case, u) achieves at least a fraction & of the
decrease promised by the linearized model (12).

Fast-step calculations are a little more complicated. Since they use no centering (6 = 0),
it may not be possible to satisfy the acceptance criteria (16) regardless of how small we choose
a. Hence, these criteria must be relaxed but not abandoned. The amount of relaxation is




large enough to allow near-unit steps to be taken near the solution, but small anough to
keep the iterates inside a neighborhood of the central path. These opposing considerations
are balanced by making the amount of relaxation geometric in the fast step counter .

faSt(z7 ’\1 ¥4, ﬂ)
solve (12) with & = 0 to find (Az, A), Ay);
set ¥ = Ymin + ’_7t+1(7max - 7min); set B = (1 + ’—)’t+l),3;
define

=1-=

5 (18)

if a°<0 return(z, ), y);
choose c to be the first element in the sequence a°, xa®°, x2a2, . . .,
such that the following conditions are satisfied:

N@(e) 2 Fa(e), (192)
Irs(z(@), Mol < Bi(e); (19b)
Iro(=(@),y(@)ll < Bu(a (19¢)

return (z(a), A(«),y(@)).

Note that a sufficient decrease condition is not needed in (19); the acceptance test e < pp
in the main algorithm performs this check.

Before embarking on the convergence analysis, we note that the following conditions are
satisfied by every iterate (z¥, A, y¥):

MYE > sk > Y,  i=1,2...,P (20a)
max([[rfll, 7)) < Bre. (20b)

Note too that fi is bounded. In fact,

Buin < Bt = fin LI (L + %) < Brsin TL(L + (2)%) < Brnin€™/® = o 1)

i=1 J=1

where e in this case is Euler’s constant and not the vector of 1s.

3 Convergence

In this section we first prove global convergence and then discuss superlinear local conver-
gence.




3.1 Global Convergence

We prove here a global convergence result: either the sequence of iterates terminates finitely
at a solution, or all limit points are solutions of (3). To prove this result, we use a simple
technique due to Polak [6, Chapter 1].

We start by formalizing our assumptions on ® and g.

Assumption 1 ® : RY = RY is C? and monotone; and each component function g; of
g:RY = RP is C? and conves.

It follows immediately from this definition and (6) that

D.f DgT
-Dg 0

is postive semidefinite for each (z,A) € RV x RZ.
Recall that S is the solution set for (3). All 1tera.tes of the algorithm are conﬁned to the
set €, defined by

Q= {(za A y) l (’\ay) >0, (22)
"rf(z’ M L Braxtts o (2, Y < Bmaxpts iy = Yok, ¢ =1,2,...,P}.
We also define
Q4 =N (RY x R, xRY,)
and note that
Q=Q++US, Q.H.OS:@.

In this definition, lRi + is the strictly positive orthant in R¥ and g = ATy/P as before.
The result that (z*, A\¥,y¥) € Q for all  follows from (14) and (21).
By monotonicity, we know that the submatrix D.f in the Jacobian is positive semidef-
inite. To ensure that the Newton-like equations (12) have a unique solution, we impose a
slightly stronger condition.

Assumption 2 The two sided projection of the matriz
P
D.f(2,A) = D®(z) + > \iD?gi(2)
i=1
into ker Dg(z) is positive definite for all z € RY and )\ € lRf "

To verify that (12) has a unique solution, eliminate Ay and AX from (12), and note that the
coefficient matrix in the reduced system defined by

[D-f + (Dg)TAY=Y(Dg)] Az = —f(2,) - (Dg)TAY " (g(2) + meFA~e)

is positive definite.

Assumptions 1 and 2 imply that the algorithm takes a nontrivial step oy along the
computed search direction—and therefore makes a nontrivial amount of progress—at every
iteration. The first result indicates that this claim is true in the case of safe steps.
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Lemma 1 Suppose that Assumptions 1 and 2 hold. Let (2,;\,3)) € Q\S. Then there are
scalars 6 > 0 and & € (0,1] such that if the algorithm takes a safe step from any point

(2, A, y) satisfying
(z,My) € BE (3,1,9) + 6B, (23)
the calculated step length o will satisfy o > 4.
Proof. We define é by
6= %1-={%§3,p (min(A;, 3:)) > 0.

For (2, ),y) € B, we then have
My > (M= 8)(§:—8) =8,  p=iTy/P> & (24)
Note from (20a) that, if the safe step routine is called at the point (z,),y), then
AiYi = Y, 1=1,2,..., P,

for the value of « that is passed to the routine safe.

Since A > 0 and y > 0 for all (z,A,y) € B, the coefficient matrix in (12) is nonsingular
and continuous in an open set containing B. The right-hand side in (12) is also continuous
with respect to (z,,y) and &. Hence, there is a constant Cs > 0 such that

(A2, A%, Ap)]| < Co (25)

for all (2,),y) € B, & € [5,1].
Define &() = §/(2Cs). We then have for all a € [0, 4] that

-

X + AN > :\;—3——5—|A/\;|223—5—%3>0,
2Cs

and similarly for y; + aAy;.
Now define

- . - 5'(1 - 7max)32
a(z) = min (a(l), —'2—6,62-— .

We now show that the first acceptance criterion (16a) is satisfied for all « € [0, &?)]. From

the last block row in (12), we have
Ai(@)yi(@) Ay — a\iy; + adp + P ANAY;

711 — @) + adp — &*CE,

AV |

since A;y; > . Using (12) again, we also have

Me)Ty(a) My —a(1 = 5)ATy + 2ANT Ay

My — (1 — 5)ATy + o*C2. (26)

IA
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By combining these two estimates, we find that (16a) is satisfied if
(1 = @) + adp ~ o?C3 2 u(1 — a) + ayép + o*yCE/ P,

which, in turn, is satisfied if
da(l —y)p = 2a°C2.

Since p > 32, ¥ € (Ymin, Ymax), and & > &, this last condition holds for all & € [0, &), so
the condition (16a) is satisfied for « in this range.
We now prove that the fourth condition (16d) holds for all « € [0, &®)], where

52
&(3) = min (&(2), P(l - E)ﬁ) .

For « in this range, we have from p > 42, in (24), and & < 3 that

'y
?C2 < aP(1 - n)% < a(l — )1 —-&)ATy.
Hence, from (26), we have
Ma)Ty(a) < ATy — a1 — 5)A Ty + o1 — k)(1 — 5)A Ty < [1 — ar(l — &)\ Ty,

as required.
We turn next to the second condition (16b). From Taylor’s theorem and (12), we have

f(e), X)) = f(zX)+a[ D.f Dxf][ﬁi]

+a /0 " [Df(z + bz, A + 8aAN) — Df(z, )] [ gi ] do
= (1 —-a)f(z,A) +aAry, ) (27)

where we have defined
1 Az
Ary = / [Df(z + 6alz, ) + 8aAX) — Df(z,))] [ AN ] dé. (28)
0

By taking norms, we obtain
Iaryl < gmax DS + 00z, A +028N) ~ DI VI (A= AN (29)
Therefore, by continuity of Df (Assumption 1) and the bound (25), there is a scalar &4 €

(0, &3] such that )
a€ 0,6 = [JAr|| < 16Bmind?, (30)
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for all (z,A,y) € B from which a safe step is calculated. By reducing &), if necessary, we
can also assert that X
a€0,6¥] = aCf<1i7P§. (31)

By taking norms in (27) and using (20b), we find that
1/ (z(a), el < (1= )|l f(z, ]| + | Arg|
< (1—a)Bp+afArg). (32)
Meanwhile, we have by a slight change to (26) (bounding below instead of above) that
A@)Ty(@) 2 ATy(1 — o+ a5) — a*C2.
Trivial rearrangement of this expression gives
(1-a)p < ple) — adp+ o*CZ/P.
By substituting into (32), we obtain
1f(z(a), M)l < Bu(e) — BaGp + Ba®C/ P + of|Ary]|
= Bu(e) ~ a[psu— BaCl/P — ||Ar]]. (33)
Since & > & and B > Prin, we have from (24), (30), and (31) that
|Arfl < 35Bu,  BaCi/P < 15Bp,
for all a € [0, ™). Hence, the bracketed term in (33) is nonnegative, and we have

lirs(z(e); ANl = Il f(2(e), M)l < Bu(a),

for all @ € [0, 4], as required.

By an almost identical argument, we can show that the third condition (16c) holds for
a € [0,&%)], though we may have to choose &(*) smaller (but still positive).

We have shown that the criteria (16) are satisfied for all « € [0,&*]. Hence, the step
length selected by safe will be at least as long as the first value of « below &® that is tried
by the Armijo backtracking strategy. We deduce that

2

@ > & = min(a, &),

and our proof is complete. =

The global convergence result and its proof are similar to Theorem 3.3 of Wright and

Ralph [10].

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then either
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(A) (2%, )¢, y%) € S for some k < oo, or
(B) all limit points of {(z*,\¥,y*)} belong to S.

Proof. Suppose for contradiction that the sequence {(z*, \*,y¥)} is infinite, with a limit
point (2,A,9) that does not belong to S. Since the sequence is contained entirely in the
closed set §, we must have (2,),§) € Q\S. We must have (:\,g}) > 0, since otherwise it
would follow from the definition of £ that i = :\Tﬁ/ P = 0 and hence (2,;\,33) € S. Hence,
i > 0.

Let K be an infinite subsequence such that

{5, X%, 4F) e — (3,4, )-

Since {} is monotone decreasing, we have yi > ji for all k. If a safe step is taken from the
k-th iterate, for some k € K, we have from (16d) and Lemma 1 that the (k +1)-th iterate
must satisfy X
ék ,
pesr < (1= ewr(l — on)] pe < o — 5. (34)

If a fast step is taken, we have from the acceptance test in the main algorithm that
(1-») P
2 ?

The estimates (34) and (35) show that, whatever kind of step is taken, the reduction in p
from iterate k is at least a small constant. Therefore, since {4} is monotone decreasing and
K is infinite, we have p | —oco. This is a contradiction, since p is bounded below by zero,
so the proof is complete. ]

i1 < ppe = pir — (1 = p)pe < px — (35)

3.2 Superlinear Local Convergence

By making various assumptions about the functions ® and g and about the solution set
S (see the next section), we can show that the algorithm converges superlinearly. The
sequence of duality measures {y1} converges with Q-order at least 1 + 7, where # € (0,1) is
the parameter used to choose the initial step length for the fast step in (18).

We state our main result here. The remainder of the paper lays the groundwork for its
proof, which is given at the end.

Theorem 2 Suppose that Assumptions 1, 2, 8, 4, 5, 6, and 7 are satisfied and that the
sequence {(2*, A%, y¥)} is infinite, with a limit point (2%, X*,y*) (in the solution set S). Then
the algorithm eventually always takes fast steps, and

(i) the sequence {u} converges superlinearly to zero with Q-order at least 1+, and

(i) the sequence {(2*,)\*,y¥)} converges superlinearly to (2*,\*,y*) with R-order at least
147,
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4 Assumptions for Superlinear Convergence

We have already shown in Section 3.1 that Assumptions 1 and 2 are enough to guarantee
global convergence of the kind described in Theorem 1. In the remainder of the paper, we
focus on case (B) of this theorem, in which the iterate sequence has a limit point in the
solution set S. In this section, we state and describe the assumptions that will be used in
the proof of Theorem 2.

Assumption 3 is the Slater constraint qualification.

Assumption 3 There is a vector Z € C such that g(z) < 0.

Assumption 4 concerns strict complementarity for at least one member of the solution
set.

Assumption 4 There is a strictly complementary solution (z*,\*,y*), that is, (2%, A%, %)
satisfies (8) with A\* +y* > 0.

The next assumption concerns smoothness of ® and Dg around the vector z* defined by
Assumption 4.

Assumption 5 The matriz-valued functions D® and D?g;, i = 1,2,..., P are Lipschitz
continuous in a neighborhood of z*.

We show in Lemma 3 below that the z* component of the solution is unique. This fact,
together with Assumption § and the observation that D, f(z, ) is linear in A, ensures that
D.f(z,)) and Dg(z) are Lipschitz continuous in a neighborhood of Sz.

For the next assumption, we recall the definition of the index sets B and A from Section 1.
All strictly complementary solutions (z*, A*,y*) have A > 0, A} =0, y5 = 0, and Yy > 0.
This assumption concerns invertibility of the projection of D, f(z*, A) onto the null space of
the active constraints, which are the components g;(z) for i € B.

Assumption 6 Let Sz and B be defined as in Section 1, and z* be as defined in Assump-
tion 4. Let A* be the set of A € RY such that (2*,X) € Sz. Then for each extreme point
A® of A*, the two-sided projection of D, f(z*,)°) onto ker(Dgy) is invertible; that is, for any
basis Z of ker(Dgg), the matriz Z¥ D, f(2z*,X°)Z is invertible.

This assumption looks similar to Assumption 2, but it applies to a different set of points
(2,A) and also refers to a different subspace—that of the active constraint Jacobian, not of
the entire constraint Jacobian.

Assumption 6 appears to be weaker than the more usual condition, in the context of
nonlinear programming, that D, f(2*, ) is positive definite on ker(Dg}) for each A € A*.
It is an easy exercise, however, to show that these two conditions are equivalent, though
checking the former is certainly more convenient in that it requires consideration of only
finitely many matrices.
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Lemma 2 Suppose that Assumptions 1, 2, 3, 4, and 6 are satisfied. Then the set of multi-
pliers A* defined in Assumption 6 is polyhedral, convez, and compact, hence is equal to the
convez hull of its extreme points.

Proof. Clearly A* is a polyhedral, convex set. Boundedness follows from Gauvin [1] if
we can show that the Mangasarian-Fromovitz constraint qualification holds at z*. Given the
Slater point (Z,\) from Assumption 3, we have for i € B that

9:(2) 2 gi(z") + Dgi(z")(2 - 2) = Dgi(")(z - =7),

so that Dg;(z*)(Z — z*) < 0 for all ¢ € B, as required. n

We return to our earlier claim that the z* solution component is uniquely determined.

Lemma 3 If Assumptions 1, 8, 4, and 6 hold, then
Sz = {z*} x A*,
where A* C IRi is the set of multipliers referred to in Assumption 6.

Proof. Convexity of Sz follows from Proposition 3.1 of Harker and Pang [2], since the
NCP (3) is a equivalent to a monotone variational inequality over a closed convex set. The
invertibility condition, Assumption 6, implies that for (z,A) in Sz near (z*,X*), we must
have z = 2*.

Suppose Sz contains (z,A), where z is remote from 2*. By convexity, we also have

(1 —a)(z",X") + a(z,A) € Sz

for all @ € [0,1]. Since (1 — a)z" + az — 2~ as a | 0, it follows from local uniqueness that
z=2z" n

Note that Lemmas 2 and 3 together imply that Sz is compact.
Finally, we state the constant rank assumption. See Pang and Ralph [5] for some discus-
sion on this and related conditions.

Assumption 7 The constant rank constraint qualification (CRCQ) holds for the system
9(z) < 0 at z*: For some neighborhood U of z*, the set of matrices {Dgp(z)|z € U} has
constant column rank.

Clearly the CRCQ holds if g is affine. It also holds if (Dg3)” has full column rank (that is,

if the linear independence constraint qualification holds).
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5 Proof of the Superlinear Convergence Result

In this section, we prove the main result, Theorem 2. Most of the effort is spent in estimating
the size of fast steps (Az, A), Ay) that are calculated from points (z,A,9) € Q close to the
limit point (Z, A, 7). The ultimate result, Corollary 1, shows that the estimate

I(Az, AX, Ay)|| < Cop (36)

holds for all steps of this type. In Subsection 5.6, this estimate is used together with Lipschitz
continuity to complete the proof of Theorem 2.

The task of proving the estimate (36) turns out to be highly technical, so we have
organized our argument into subsections and provided considerable motivating discussion.
Readers should be able to follow the outline of our argument without delving into the details.
The difficulty is due entirely to our wish to use weaker conditions than the usual nondegen-
eracy conditions. When the latter hold, the condition (36) follows from a simple application
of the implicit function theorem.

Most results in this section follow from the same set of assumptions, which we define here
to avoid repetition:

Standing Assumptions: These are the assumptions of Theorem 2; namely, As-
sumptions 1, 2, 3, 4, 5, 6, and 7, together with an assumption that the sequence
has a limit point but does not terminate finitely.

Assumption 7 is needed only from Subsection 5.4 onwards, but we include it among the
standing assumptions for simplicity.

In Subsection 5.1, we define a partition of the vector (Az, A, Ay) into two compo-
nents (¢,u,v) and (¢,4,v’). Subsection 5.2 gives a relatively easy part of the proof: show-
ing that the components A\y and Ays are O(ui). Subsections 5.3 and 5.4 show that
(¢,4/,v') and (up,vy), respectively, are also O(p). All these results, taken together, estab-
lish [|(AX, Ay)|| = O(y). We summarize this result in Subsection 5.5 and deduce that the
remaining step component [|Az|| is also O(g). .

Throughout the section, we assume that the sequence (¥, A, y*) has a limit point that
we denote by (Z,1,7). Of course, we know from Theorem 1 that (2,},7) € S. When
Assumption 4 and the result of Lemma 3 hold, all solutions have the vector z* as their z
component. In this case we have 2 = 2*, so we sometimes write the limit point as (2*, },y*),
where y* = —g(z*).

Another quantity that appears repeatedly in the remaining analysis of this section is the
restricted neighborhood Q(6) of the limit point defined by

Q(6) £ {(z. M) € 1ll(2, A y) — (% X, )] < 6} (37)
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5.1 Computation of Fast Steps
Recall that each fast step is obtained by solving (12) with & = 0; that is,

D.f (Dg)T 0 Az s
—Dg 0 -1 AN | = Tg . (38)
0 Y A Ay —AYe
For convenience, we restate the following notational definitions from Section 2:
ry=—f(z,]), re =y + g(2), p=ATy/P.

We are particularly interested in the fast step calculation when the current iterate (z,\y)

A

is close to the limit point (2*,A,y*). To establish bounds on the step (Az, AN, Ay) in this
situation, we split it into two pieces. The splitting is defined implicitly in terms of the
following minimization problem: .

[ £",m) = (e, + Def (5 )" = 2) 4 Dol (e =0 ][ g
9(z") = [9(2) + Dg(2)(z* — 2)]

Existence of the vector (z*, ) follows from compactness of Sz. We use (z*,7) to define the

vectors 7y, 74, €f, €, as follows:

(2*,%) € argmin
(z*,7)eSZ

1t = D.f(z,))(z" — 2) + Dg(2)" (7 — X), (40a)
Mg = y—Dg(2)(z" —2)+g(z%) (40Db)
¢ = —f(2,4) = D.f(2,A)(z" — z) — Dg(z)" (7 — A), (40c)
& = g(z) —g(2") + Dg(2)(z" — 2). (40d)

The right-hand side of (38) can now be partitioned as

Tf Ui i €f
Tg = g +1 €& |,
—AYe —YAe 0

and the splitting (Az, AX, Ay) = (¢,u,v) + (¥, ', ") of the right-hand side follows accord-
ingly:

D.f (Dg)* o } [ t} [ 1y
—Dg 0 -1 u | = Mg 3 (41)
0 Y Ajlvw —AYe
D.f (Dg)" o0 ][ €
-Dg 0 I u’} = l: €g (42)
0 Y A ||V 0

Because of Assumption 2, the systems (38), (41), and (42) all have unique solutions.




18

5.2 Bounds for A)\y and Ayg

It is relatively easy to obtain size estimates for about AAy and Ayg, which together make
up half the components of (AX, Ay). We start by deriving some upper and lower bounds on
the components of A and y for (2, ,y) in a neighborhood of the form (37), which will prove
useful throughout the remainder of this section.

Lemma 4 Suppose that the standing assumptions hold. Then there is a constant C, such
that the following bounds hold for all (z,),y) € Q(1):

/\,‘ S 04[1. (Z € JV), Yi S C4/L (Z € B), (43&)
Ai 2 Ymin/Cs (i € B), Yi 2 Ymin/Ca (2 €N), (43b)
Yi 2 Tmint/Cas (¢ € B), Ai 2 Yainpt/Cy (2 € N). (43c)

Proof. Let (z*,X*,y") denote the strictly complementary solution from Assumption 4.
By monotonicity of the mapping (5), (10), and the fact that g(z*) = —y*, we have"

0< [f(z,,\)-f(z*,x) ]T[ z— 2" } _ [ —ry ]T [ z—2* ] .
L —9(z)+9(27) A= X y—re—y | [A=X
By rearranging this expression, we have from (A*)7y* = 0, (20b), and (21) that
ATy + @A < My +lrellllz = 2l + lirglllIA — x|
S Ppt Bacp (ll21 + 11271+ AL+ 1A -
Since (2, A, y) € Q(1), we have
Gz DI < N DI+ NI = 20 = W< DI D+ 1, (49)
so we can bound the term in parentheses by a constant, giving
W)y + (y7)A < Capsy
for some positive constant Cy. Since A} =0 and y3 = 0, .this inequality implies that

S Xvi+ > uih < Cap.
ieB iEN

Since (A5, y}) > 0 and (A,y) > 0, each term in the summations is positive, so we have

1 - ] 1
/\;S—?;;C’w, ieN; y<=

_/\26_'4#, ZGB

T

From these bounds, we can define Cj is an obvious way to satisfy (43a).
For any i € B, we have from (22) and (43a) that

Ymink  Tminft _ Ymin
A 2 > =
Yi Cap Cs’
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giving the first part of (43b). The second part is proved similarly.
For i € B, we have from (22) and our choice of (z,,y) € (1) that

Ymin Ymin
;> > = )
vi= A T A1

A similar lower bound can be proved for \;, i € V. Hence (43c) holds, for a suitable redefi-
nition of Cj. n

Lemma 5 Suppose that the standing assumptions are satisfied. Then there are constants
61 € (0,1] and Co > 0 such that for all (2,),y) € Q(61), the solution of the linear system

Y a]E] [

S

-Dg 0 I A Tg
0 Y A Ay 0

(45)

satisfies

I1A2]| < Co (1 + 1B35])) -

Proof. Because é; < 1, the estimates (43) apply for points (z,X,9) € Q(61). Note too
that these points also satisfy g = O(é;), since

Pp =Ny = Xgys + Muw < (IAsll + 61081 + 1(llawll + &) = O(61).

By eliminating Ay and Ay from the system (45), we obtain

(D:f) + (Dgw)"An(Yn)"'Dgy  (Dgs)* Az | _ [ s — (Dgn) Aw(Ya) ™ (ro) ]
—Dgp (Ag)™ Y5 | | ANg | — (r9)5 )
(46)
From Lemma 4, we have [|Ax(Yy)~!|| = O(r) and ||A5'Ys]| = O(k). Because of Lipschitz
continuity (Assumption 5) and (z, A, y) € Q(6;), we have

Dg(z) - Dg(=") = O(llz— ") = O(8)
D.f(z,0) = Dof(z",3) = O(llz =)+ O(I1A - Al}) = O(&).

By perturbing the coefficient matrix in (46) and substituting these estimates, along with
p = O(61), we obtain

[sz(z*,ﬁ) Dgs(z*)TH Az ]

_DgB(z*) 0 A’/\\B
rs — (D )T An(Ya)(rg)w Az
[ f (ro)s ]+0(51>[ @]- (47)
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By partitioning Az _into its components in ker Dgs(2*) and ran Dgs(2*)T, we have from
Assumption 6 that Az is bounded in norm by the right-hand side of (47). Hence, since Il
and ||rg|| are both O(g), and Dgy is bounded on bounded sets, we can write

132]] < Cs (s + 61(1R2]] + | A%51)))
for some constant Cy. By choosing &, small enough that
Coby < 1,
we can combine terms in ||Az|| on the left-hand side and divide to obtain
142 < 205 (4 + 6111 A%5]]) < 2Cop + | AX5],
proving the result. | . n

In subsequent results, we often will refer to the positive definite diagonal matrix D*
defined by
D = A~Y2y12, (48)

We can obtain bounds on ||D|| and ||D~|| for points (z, A,y) € Q(1) by applying Lemma 4.
For ||D7Y||, we have

N (A +1)v2
—1 — 3 < 1 < _1/2
[0 = ,max. 7 S o min(, DG = Cru™1?, (49)

for some constant C7. Similar logic shows that
1Dl < Cru'72, (50)

after a possible redefinition of C5.
The next result is a bound on the scaled vectors DAX and D~1Ay.

Lemma 6 Suppose that the standing assumptions hold. Then for the constant 6, defined in
Lemma 5, there is a constant Cs > 0 such that the solution (Az, AN, Ay) of (38) satisfies

[DAM| < Cap?,  ||D7'Ay|| < Capt?, (51)

for all (z,M,y) € Q(&;).

Proof. We break the solution into two pieces and prove that the required bounds hold
for each part. We write

(Az, A\ Ay) = (Bz, AN, Ay) + (Az, AX, Ay),




where
D.f DgT 0 Az 0 D.f DgT 0 Az r
-Dg 0 -—I A | = 0 , -Dg 0 -1 AX | =1 |.
0 Y A Ay —YAe 0 Yy A ZZ 0

(52)
For the first component, we multiply the last block row by the diagonal matrix (Y'A)~1/2
to obtain

DAX+ D™'Ay = —(YA)/?e. (53)
From (52), we also have
AX'Ry = —BX (Dg)Az = A" (D.f)Az > 0,
so by taking inner products in (53), we obtain
IDAX? + |\ D-*AF|1? < | DAX|? + A7 (D. fYBz + || DVBg|? = |(YA)?e|? = Pp.

Hence, we have
|DBX| < P2, DA < PV, (54)

For the second component of the solution, we obtain from the last block row in (52) that
DAX=-D"'Ay = |DAX| =|D"*Ay|, (55)
and so we seek a bound for || DAX]|. Using (52) again, we obtain
—DgAz — Ay = Ty = —DgAz + D?*AX = Tq.
By taking inner products with AX, we obtain
|DAX||? = E\Trg + E\T(Dg)z\z.
From the first block row in (52), we have by positive semidefiniteness of D, f(z, ) that
AX'(Dg)Az = (r; — (D.f)A2)TAs < rTAz.
By combining the last two expressions, we obtain
IDAXP < BX'ry + 1§82 < X Iryll + i NIAZ]. (56)
Because of (20b) and Lemma 5, we have
Irsll < Bmaxtts  Mrgll < Bmaxts  1A2I] < Co(p + |AX]]).
It follows from (49) that
IAX] < | D7 ||DAX) < Crp=/?|| DAN].
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By substituting all these estimates into the right-hand side of (56), we find that there is a

constant Cjq such that .
IDAX> < Cuo (#*/*| DAXI| + 42) .

It follows immediately from this expression and (55) that
IDAX|| < G2, || D71y < Capl?,
for some constant C3. The result of the lemma is obtained by combining this estimate with
(54). n
Bounds on half the components of (A), Ay) follow easily.

Theorem 3 Suppose that the standing assumptions hold. Then for the constant 01 defined
in Lemma 5, there is a positive constant Cs such that the solution (Az, AN, Ay) of (38)
satisfies

IAMAl < Csp,  |Ays|l < Csp, - (87)
for all (z,)\,y) € Q(61).
Proof. From the definition (48) and the bounds (51), we have that

N\ 1/2
(%) ax

Hence from (43a) and (43b), we have for i € A that

< |DAN| < Capt/?.

1

/\{ 1/2 1/2
|AN| < (—) Captl? < 0452 Cap/?,
“Ymin

which proves that ||AAy|| < Cspy for an obvious definition of Cs. The bound on ||Ays|| is
derived in the same way. ]

5.3 A Bound for (¥, v/,?)

In this subsection we find bounds for the components (¢, ’,v’) defined by (42). The difficult
part of the analysis appears in the following two lemmas, in which we estimate the size of
(€1, €) in (40c),(40d).

Under our standing assumptions, we can define the following set:

S%o = {(Z, ’\) € SZI’\i 2> 7mi.n/C4, 1€ B; g,'(z) < —7min/047 2 GN}y (58)

where Cj is defined in Lemma 4. Because of (43b), all limit points of the sequence {(z¥, \F)}
lie in §2°; in particular, (2*,1) € 8. Obviously, (2,1, —g(2)) is a strictly complementary
solution of (3) whenever (z,1) € S.

Our first result, like the results in the preceding subsections, considers points (z, A,y) € 0
near the solution set S and shows that dists,(z,A) can be bounded in terms of the amount
by which (z, A, —g(2)) violates feasibility and complementarity.
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Lemma 7 Suppose that the standing assumptions hold. Then there ezist constants I and
b2 € (0,61] such that the following bound holds for all points (z, A) € RN x lRf with
distsg (2,A) < 6o

dists; (2,A) < L|| (f(2,2),9(2)+, AT g(2)) |- (59)

Proof. By Lemmas 2 and 3, we know that Sz is compact. Since 8% C Sz and SP is
closed, S too is compact.

We prove the result by contradiction. If the claim is false, we can choose a sequence
{(¢5,65)} C RY x RE with the properties

distsg (¢,€8) L0, (60)

and

10625 €0) — = X)) = BRI (F(€E,45), 9(65)+, ()T a(eMN I, (61)
where (z*,)*) is the nearest point in Sz to £* for each k. (Note that (z*,X*) exists, by
compactness of Sz, and that the 2* component is uniquely defined.) By compactness of
87 and (60), we can take subsequences if necessary and assume that both {(¢¥,£5)} and
{(z*,)¥)} converge to (2*,)1) € S¥. By defining 7, = I(€5,€%) — (2*,X%)]| and taking a
further subsequence, we can assume that there is a vector (d,,dy) € (RV x RE) \ {0} such

that k ¢k * :\k
(£z7EA) — (Z ’ ) — (dz,d,\).
Tk
(In fact, (d,d,) is a unit vector.) Since Ak, = 0 and X5 > 0 for all £ sufficiently large, the
solution (2%, AF) is strictly complementary for all k sufficiently large.
The following analysis is devoted to showing that (d.,d)) = 0, a contradiction that proves
the result. First, we show that (d.,d)) is in the normal cone to Sz at (z*,A), namely,

T
d, z*—z* N
(d,\) (/\_:\)50 for all (2*,A) € Sz. (62)
Second, we show that (d.,d,) is in the tangent cone to Sz at (z*,)), indeed that
(z*,X) + 7(d;,dy) € Sz for small 7 > 0. (63)

Together, these two results imply that ||(dz,d))]| = 0, as required.
To show (62), we note that, since (2%, A¥) is the projection of (£¥,£%) onto Sz, we have

fk_z* T 2* — *
(d\zc_/-\k) (/\_/\-k>30, for all (2*,A) € Sz.

We obtain (62) by dividing this expression by 7 and taking limits.
The proof of (63) is longer. By the smoothness properties of f, and the fact that
f(z*, AF) = 0, we have

f(g‘l:,gf\c) — f(éf’ 61’{') — f(Z*, /_\k) g sz(z*7 ;\)dz + Dg(z*)Td/\' (64)

Tk Tk
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Taking ¢ € B, we have g;(z*) = 0 and so

Tk Tk

(£k AERY — q.(»*
g:l&)r _ [9=(5z) % )} — [Dgi(z)d.],, forall i € B. (65)
+
For the nonbasic components, we have
9:(2") <0 = g(&5); =0, forallic A, (66)
and all k sufficiently large. Also, we have

(E79(e) _ (E)70(€) = OT0() | ovry X Dg(z")d,. (67)

Tk Tk

By combining (64), (65), (66), and (67) and the property (61), we obtain
o = i LU e @TaEN

Tk
= [(D:f(z",A)d. + Dg(2")"dy, [Dgs(2*)d:] 1, g(z")7dx + AT Dg(z*)ds))||-

It follows immediately that

D.f(z*,\)d, + Dg(z")dr = 0, (68a)
Dgg(z*)d, < 0, (68b)
9(z")Tdy + XTDg(z*)d, = 0. (68c)
Since gs(z*) = 0 and Ay = 0, we can rewrite (68c) as
> gi(2")(dr)i + Y NiDgi(2")d: = 0. (69)
iEN ieB

Since (A*)y = 0 and ¢ > 0 for all k£, we have (da)x = 0. Therefore all product terms in
both summations in (69) are nonpositive, so we can use gn(2*) < 0 and Az > 0 to deduce
that

(d\)n =0, Dgg(z*)d. = 0. (70)

By multiplying (68a) by d7 and using (70), we obtain
dIDf.(z*,N)d, = —dT Dg(z*)Tdy = 0. (11)

Assumption 6, together with d, € ker Dgp(2*) (from (70)) and (71), implies that d, = 0.
Hence, (68a) reduces to
Dg(z)Tdy = 0. (72)
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Finally, we are in a position to verify that (63) is satisfied. Because of d, = 0 and
(dy)x =0, we have

98(2" + 7d;) = gp(z*) =
gn(z" +71d:) = gn(2") <
v +7(d)y =

XB + T(d,\)g >

)
?

b

, for T > 0 sufficiently small.

o O O ©

From (72) and the fact that f is linear in \, we have

f(z" +7dy A +7dy) = f(z*, X + Tdy) = f(z*,X) + 7Dg(z*)Td\ = 0.
Together, these formulae indicate that (63) holds, so we are done. n
Lemma 8 Suppose that our standing assumptions are satisfied. Then there ezist constants

L>0,L>0,and §; € (0,62] (where &; is defined in Lemma 7) such that for each (z, Ay) €
0(83) we have

[ G p L e |t
" iy’ i Al | B (74

where, as in (39), T is chosen from the optimal Lagrange multiplier set A* to minimize the

left-hand side of (73).

Proof. We start by proving (73). As in (39), we denote the minimand of the left-hand
side in (73) by (2*,7), whose existence follows from compactness of Sz. We show first that
l(z*,7) — (2, )]l = O() and then prove the result by a Lipschitz continuity argument.

By considering (2, ,y) € Q(6;), we have from (10), (22), and the fact that y > 0 that

I1£(2, )| < Brmaxie and
lg(2)+ll = lllrg = y)+ll < lrgll < Bemaxse- (75)
Since for all (2, A,y) € Q(8;), we have ||(z,)|| < C, for some constant Cy, it follows that
(2, 09) € Q&) = [XTg(2)| = [N (ry — 9)| < IMllirall + [ATy] < (CiBimax + P)ps-

We have shown that the right-hand side in (59) is O(x) and therefore, by the result of
Lemma 7, we have

I(z,A) = (z%, )| < Cipe (76)
for some constant C; and all (2, ),y) € 2(82).
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By the Lipschitz continuity assumption (see Assumption 5 and the comments that fol-
low) we can choose 83 € (0, 8,] such that D, f(z,A) and Dg(z) are Lipschitz continuous for
distsgo (z,A) < 83. Therefore, the matrix function

[ D;)fg((zz,)x) Dg(()z)T ]

is also Lipschitz continuous as a function of (z,A) in this neighborhood. Since (z*,7%) € Sz,
we have f(z*,7) = 0 and we have that

ST o R | s - o,

for some constant L > 0 and all (z, ) with distse (2,A) < 5. We obtain the result (73) by

combining (76) with (77) and defining L = LC2.
For (74), we have that

[ ~D.f(2,A)(z* — z) — Dg(2)7(7 — A) ]
y — Dg(2)(2" — 2) + g(2)

e )

| 7]

where the last term is a consequence of (73). Since ||(rs,7y)|| = O(z) by (22), we have the
result. »

and therefore

+ Lyp?,

R kgl E

We use Lemma 8 to estimate the quantities 7y, 7y, €7, and ¢, defined by (40). For
(2, A, ) € Q(83), we have from (39), (40c), (40d), and (73) that

ledl < L, llegll < Lo (78)
Similarly, we have from (39), (40a), (40b), and (74) that
lnoll < Loty limgll < L. (79)

Lemma 9 Suppose that the standing assumptions hold and 83 is given by Lemma 8. Then
there is a constant Ch1 such that the solution (¢',v',v") of (42) satisfies ||(¥',',v')|| < Cup
for all (z,\,y) € Q(83).
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Proof. Note that (#/,u’,v’) satisfies the equations (45) if we replace (r7,74,0) on the
right-hand side by (ey, €, 0). The main difference between the two systems is the size of the
right-hand sides: O(g) in (45), O(4?) here from (78). By using the same technique of proof
as in Lemma 5, we can show that

11l < Colp® + |[upll), (80)

for some constant Co. This estimate, together with the techniques of the second part of the
proof of Lemma 6, implies that

[Dw|| < Cap®2,  |D7H)| < Cap®?, (81)

where D is defined as in (48). The estimates ||D}| < Crp~V/? and ||D™!|| < Crp~1/2 obtained
from (49) and (50) can now be combined with (80) and (81) to complete the proof. n

5.4 Bounds for ug and vy

In this subsection we address the most difficult part of the proof: showing that the compo-
nents ug and vy from (41) are O(uk). As in the case of affine f, the key to our result is to
show that (up,vy) is the solution of a certain quadratic program (Theorem 5 below). Unlike
the affine case, however, the coefficient matrix in this quadratic program does not remain
constant. Instead, this matrix satisfies a constant column rank condition (Theorem 4), and
this condition is enough to yield the desired bound (Lemmas 10 and 11).

We start by proving a novel variant of a lemma from Monteiro and Wright [4, Lemma
2.2]. The definition of constant column rank appears at the end of Section 1.

Lemma 10 If'H is a bounded set in R?*? with constant column rank and || - || is any norm
on RY, there exists a nonnegative constant L = L(H) with the property that for each H € H
and h € ran H, there is a solution w € R? of the equation Hw = k for which

llwll < L|[A}.

Proof. The case of h = 0 is trivial, so we assume throughout the proof that & # 0.

To obtain a contradiction, assume there exist {H*} C H and {*¥} C R?\ {0} such that,
for each k, h* € ran H* and

distzrr)-14:(0) > K||AF. (82)
We may assume without loss of generality (by taking subsequences and dividing by ||¥| if
necessary) that H* — H € R?*? and h* — h € R?\ {0}.

Let J be a maximal set of column indices of H such that H.7 has linearly independent
columns. By the assumption of constant column rank, we find that for large enough &, J is
also a maximal set of column indices of H* for which H %, has linearly independent columns.
Since h* € ran H*, it follows that, for large %, there is a (unique) solution w¥, of the system

HEwh = Bk,
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Now choose a subset Z of the rows of H such that the submatrix Hzz is invertible, and let
wy = Hf}hz
It follows that w% — wy.

For each k we augment w% to form w* € (H¥)™'A*, by setting w¥ = 0 for j ¢ J.
Similarly, we can augment wy above by setting w; = 0 for j € J, to form w € H-14. Of

course w* — w, and since A* — h # 0, we have
[w®l _ ]l
- 5 < 09,
I2*I| &
contradicting (82). n

On the one hand, Lemma 10 extends Hoffman’s lemma [3] by allowing H to vary within
a set H rather than remain constant. On the other hand, Hoffman’s lemma is more general
in that it applies to linear systems of inequalities as well as equalities. We believe, however,
that the above result and proof can be adapted to linear systems that include inequalities.
In the following result, we partition the matrix H € H C IRPX? as

H=[# A],

where fI € R?? and H € RP*4, with §+ § = q. We use % and 1 to denote vectors in R?
and IR?, respectively. Below, as usual, || - || is the 2-norm.

Lemma 11 Let H be a bounded subset of RP*9 with constant column rank. Then there ezists
a nonnegative constant L = L(H) with the property that for any § x § diagonal matriz S > 0,
matriz H = [ H A ] € H and vector h € ran H, the (unique) @ component of the solution
of the following problem

min %”Sﬁz”z, subject to H + Ho=h (83)

(,)
satisfies

l[Blloo < Li|]|co-

Proof. We adapt the proof of Monteiro and Wright [4, Lemma 7].
Assume for a contradiction that there exist sequences of positive diagonal matrices {S k1,
matrices { H*} C H, and vectors {#*} such that h* € ran H¥ for each k, and

i ¥l
e Wl

where (@, %*) is a solution of (83), unique in the W* component, with S = S*, H = H*
and h = k*. By taking a subsequence if necessary, we can define a constant L; > 0 and a
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nonempty index set J C {1,2,...,4} such that

”/I’zzzlll < L, Vi¢J; (84a)
i L;:”I = o, Vied. (84b)
Consider the following linear system
Hep+ o9 = B
. ke . 85
w; = w;_c, VigJd, ( )

and note that (%, %*) is a solution of this system.
Consider the coefficient matrix in (85), which is [ H A ] followed by the row vectors

[ (e)T ], j & J, where €’ is the vector in R? composed of 0s except for a 1 in its jth
entry. The rank of this matrix is the sum of the cardinality of the set {1,2,...,4}\J and the
rank of [ H A, ] Hence, the family of coefficient matrices of (85) has constant column
rank. By Lemma 10, the system (85) has a solution (#*, z*) such that

18410 < 12 #lleo < Lo {1H¥) + max it}
where L, is a constant depending only on H and J. Therefore from (84a), we have
18*lc < Lsl|A*]lcs,
where Lz = Ly(1 + L,). From (84b) there exists K > 0 such that for all £ > K we have
(@51 > Lollh*lle, Vi€ T,

and therefore

[@%] > |1#*)|s Vi€ T, VE> K.

From this relation and the fact that @ satisfies the second equation of (85), we obtain

IS = S (Skaby+ (St

jieJg i¢T
<§%f”§%fz
j i
= ||S*2*|?, forall £ > K. (86)

This relation, together with the fact that 2* satisfies the first equation of (85), contradicts
the assertion that ¥%* is an optimal solution of (83) with § = S%, H = H* and h = h*. =
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In Theorem 4 below, we identify the matrix set 7 in Lemmas 10 and 11 with the set

{[ D-zfé(gz(’;)) DgBO(z)T —?.NJ ’ diSﬁS?(z’A)Se}’ (87)

for some ¢ > 0. To apply this result, we need to show that this set has constant column
rank, as we do in the next technical lemma and Theorem 4.

Lemma 12 Let 0 5 J C B and § # K C N. Let I denote the identity in RE*F. If the
two-sided projection of D, f(z,)) onto ker(Dgg) is positive definite, then for t € R™ and
77 € RV we have

D.f(z,A) Dggz(2*)T
(t,m5) € ker [ —Dgs(zH) 0 (88)
if and only ift =0 and 77 € ker(Dgs)T. In addition, we have
. D, Dgs)T 0 .
dlmker[ -Dj; ( %‘7) Ik J = dimker(Dg7)T. (89)

Proof. The reverse implication in the first statement is obvious. To prove the forward
implication, assume first that (88) holds. We then have

(D:f)t € ran (Dg7)T C ran (Dgg)~. (90)

Let Z be a basis of ker(Dgg), so that ZTran (Dgg)T = 0. Because Dggt = 0, we have t = Zi
for some £. From (90), we have ZT(D,f)t = 0, and so ZT(D,f)Zt = 0. Because of our
nonsingularity assumption on the projection of D, f(z,)), we have f = 0 and therefore ¢ = 0.
Hence, by substituting in (90), we obtain 75 € ker(Dgs)T, so the proof of the first part is
complete.

We now prove (89). Let the vector (¢,77,sx) have the property that

D, (ng)T 0
(t17r.7’3)C)€kel'[_Dg 0 . —Ig |

By partitioning appropriately, we have

(D:f)t +(Dgs)'ry = 0 (91a)
- DgBt = 0, (glb)
—(Dgpn)t — Iygsxe = 0. (91c)

Now we can apply the first part of the theorem to (91a) and (91b) to find that the system
(91) can be written equivalently as

t = 0,
(DgJ)TWJ = 0,
—-I_;wcs;c = 0.
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Since K C N, the last of these equations implies that sx = 0. Therefore the solutions of (91)
are the vectors of the form (¢,77,sc) = (0,77,0), for all 77 € ker(Dg7)T, and the proof is
complete. =

Under certain assumptions (including Assumption 7), it follows from (89) that the set
(87) has constant column rank for some € > 0. We state the result formally.

Theorem 4 Suppose that the standing assumptions are satisfied. Then there is a constant
€ > 0 such that the bounded set (87) has constant column rank.

Proof. Because of Assumption 6 and continuity of D, f(z, A) and Dg(z) with respect to
z, we can choose ¢ > 0 so that

- D.f(2,)) and Dg(z) are bounded on the bounded set Sz + BB, and
- the two-sided projection of D, f(z,A) onto ker Dgs(z) is invertible.

Hence, Lemma 12 applies.

Suppose for contradiction that (87) does not have constant column rank for any € > 0.
Then there is a sequence {(2*, A*)} converging to some (2*, ) € Sg° (hence, D, f(z*, \¥) —
D. f(z*,)1*)), and some index sets J C B, K C N such that

: D.f(z*,2*) Dgs(z*)T 0 , D.f(z",A%) (Dgz)* 0
dim ker [ “Dg(+) 0 Iy < dimker _Dg"* 0 N
Hence, from (89), we must have
dimker(Dg%)T < dimker(Dg3)T

for all k. This inequality contradicts Assumption 7, so no such sequence exists, and the proof
is complete. n

Finally, we state the quadratic program for which (¢, ug, vx) is a solution, and we use the
results above to estimate the size of these components. See (40) and (41) for the definitions
of 7y, 7y and t,u, v respectively.

Theorem 5 Suppose that the standing assumptions hold, and let (z, A, y) € Q(8;), where
64 = min(83, €), and 63 and € are defined in Lemma 8 and Theorem 4, respectively. Then the
solution (t,u,v) of (41) is also the solution of the following convex quadratic program:

minason) 3l Desisl® + 31| (Daw)~ on |,

. D.f(z)) Dgs(=® 0 1| | _[n - Don(z)Tun
subject to [ ~Dg(2) BO (L) J [ ;13 } = [ ! 7o + L5vs } . (92)

Moreover, there is a constant Cyo such that

llCus va)ll < Crzll (75, gy v, vB)- (93)
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Proof. Note first that the matrices D, D! (see (48)) are well defined because of the
restriction (2, A,y) € Q(64).

It is immediate from (41) that (t,us,vy) is feasible for (92). To prove optimality, we
need to show that the remaining KKT conditions hold; that is,

0 (D:f)F —Dg”
D% ug | €ran Dgs 0 )
Dl ron 0 —1Iy.
By using arguments similar to those of Ye and Anstreicher [12, Section 3], we can show that
(sz)T _DgT _sz "DgT
ran Dggp 0 =ran Dgg 0 .
0 —1Iy. 0 ~1Iy.

Hence, it suffices to show that

0 —sz _DgT *
[ D%ZBuB =| Dgg O J [ f\:’;‘_z?_r ] , (94)
DX[N‘UN‘ 0 —IN.

where 7 is defined in (39). To verify this claim, note first that by (40a) and (41), we have
D f(2, A}t + Dg(2)"u = ns = D, f(2,M)(2" — 2) + Dg(2)T (7 — X),

and therefore
0=-D,f(z,\)(z +t—z") — Dg(2)T(\ + u — 7).

For the second part of (94), we have from (40b) and (41) that

—(Dgs)t = vs + (ng)8 = vB + ys — (Dgs)(z* — 2),
D2u = A'I(Yu) = A—l(—AYe — A’v) =—y—v,

and therefore .
D?;Bug = (Dgg)(z +t—- z*).

Finally, we use (41) together with ¥y = 0 to write
Divon = YiinAwwow = =dv —uy = —Iv.(A +u — 7).
We now prove (93). For (2, \,y) € 2(4s), we have
distss (2,A) < ||(2,4) — (2%, V)] < ds < e

It therefore follows from Theorem 4 that the coefficient matrix in (92) lies in the set (87),
which has constant column rank. Our claim is proved by applying Lemma 11 to the quadratic
program (92). n
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5.5 The Fast Step Estimate

We are now in a position to tie together the results of Subsections 5.2, 5.3, and 5.4 and
therefore obtain an estimate for the length of the fast step.

Corollary 1 Suppose that the standing assumptions hold. Then for the positive constant
64 defined in Theorem 5 and all (z,\,y) € Q(84), the fast step (Az, AN, Ay) calculated by
setting & = 0 in (12) satisfies

for some constant Cj.
Proof. From Theorem 3, we have [[(AMw, Ays)|| = O(p) whenever (z,,y) € Q(8;) C

{}(61). We seek similar bounds on the remaining components, which are (AAg, Ayy) and
Az.

From Lemma 9, we have for (z,,y) € Q(63) that ||(¢,/,v")]| < Ci1. Therefore,
lI(ens vs)ll < H(AAN, Ays)|| + [l (uhrs vB)I| = O(n)- '
Since 74 and 7, are bounded by Ly over the set Q(83) (Lemma 8 and (79)), the right-hand
side of (93) is O(x). Hence, the second part of Theorem 5 yields ||(ug, va)|| = O(x). Hence,
(AAs, Aya)ll < ll(us, va)ll + i (us, vi) Il = O(). (96)

Finally, we show that the desired estimate holds for Az as well. The proof is almost the
same as the proof of Lemma 5, so we skip the details. Starting with (12), we perform block
elimination to obtain a system with the same coefficient matrix as in (46), but a different
right-hand side; namely,

[ rt — (Dgn )T AnYirt ((rg)w — yw) }

(r4)8 —ys o7)
_ [ ry = (Dgn)TAnYF (ro)w ] + [ (Dgw)T A ]
(rg)B —-YB )

The first vector on the right is exactly the right hand side of (46), hence its norm is O(g)
as shown in the proof of Lemma 5. The second vector on the right of the above equation
is also O(p) from Lemma 4. Thus the vector on the left hand side of (97) is O(y) for
(2,A,y) € Q(b4). Hence, as in (47), we have that

| I CET [ 5] = owrotia- 1= | A ]

= 0 +0G+80| A% |- (%9

By using the same argument as in Lemma 5, we have that ||Az|| = O(g) + O(JJAXs]]). (A
careful analysis shows that it is not even necessary to decrease §; to obtain this estimate.)
Because ||AAg|| = O(g) by (96), we have ||Az|| = O(), as required. n
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5.6 Proof of Theorem 2

At long last, we are in a position to prove Theorem 2. We look at a subsequence that
approaches the limit point (z*,:\,y*), and we show that once this subsequence enters a
sufficiently small neighborhood of this point, with a sufficiently large iteration count, the
following things happen: '

e When the fast step is tried, the initial choice (18) for « satisfies the conditions (19),
and the new iterate satisfies px41 < pus and is accepted by the main algorithm.

o The new iterate and all subsequent iterates cannot escape a (slightly larger) neighbor-

a

hood of (2%, A, y*), and fast steps are taken at all these iterates too.

e The entire sequence converges superlinearly to the limit point (z*, A, y*).

Proof. (Theorem 2) To prove the assertion that the initial choice of fast step length (18)
is eventually always accepted, we collect a few relevant facts. ,

First, note from the choice of constant &3 in the proof of Lemma 8 and the fact that
64 € (0,85] that Df(z,)) and Dg(z) are Lipschitz continuous on an open neighborhood of
§}(64). We denote the relevant Lipschitz constant by L.

Second, note that the sequence {u}/3%*} decreases monotonically to zero. On safe steps,
we have pp41 < py while ¢ (and therefore the denominator) remain unchanged. On fast
steps, we have from the relationship between p, ¥, and # in (14) that

Pha _ PEL _ AEE 14}

Fon S Fye S Tyge 2y 9
If there are infinitely many fast steps, the sequence is driven to zero because the factor 1 /2
in (99) occurs infinitely often. If there are only finitely many fast steps, the denominator 7%
eventually settles down to a constant, and the sequence is driven to zero by the fact that
pe L 0.

We now proceed with the main part of the proof. Let {k;}2, be the sequence of indices
such that

lim (24,3%,y%) = (2%, §,97). (100)
j—o
Now choose the index J sufficiently large that the following conditions are satisfied:
(25, 0%, 4%) € Q(8./4), (101a)
1 — p)é
wy < U200 (101b)
—F 1-7% max ~ Jmin
iy < E N ) (101
- ¥ Brain
KT S T B CF (1o
£ 1™ < pf2, (101e)
Pey < £ (101f)

2C%°
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Let us first show that the value @ = 1 — pf /7" from (18) satisfies the condition (19a);
that is,

-, (@) 2 (min + 7 (Ymax — Yonin) (). (102)

Ai(@yi(a) = (M +aAX)(y: + aAy:)
Aiyi(1 — @) + ®ANAy;
(7min + ’7t(7max - 7min))(1 - a)ﬂ - Cg 21

AV

where we used the relationships (38), (95), and A;y; > Yit With 7 = Ymin + 7 (Ymax — Vmin)-
For the right-hand side of (102), we have by the same logic that

pla) = (A+aANT(y +aly)/P
< (I=-au+®|Aylllar]/P :
< (1-a)u+Ci. (103)

Hence, for the condition (102) to hold, it suffices that

[Ymin + 7' (Yoax = Femin)](1 — @) — CZps?
2 [7min + :YH-I (7max - 7min)](1 - a)ﬂ + Cgﬂz.

This inequality is equivalent to
(7 = ) (Ymax — Ymin) (1 — @) > 2C3 4. (104)

By substituting 1 — & = p7/7* from (18) and rearranging, we find that (104) is in turn
equivalent to (101c). Hence condition (19a) is satisfied.

We need the Lipschitz continuity assumption for the second condition (19b). Because of
(10) and the definition of 3 in the fast routine, we can rewrite this condition as

1 (z(e), M)l < (1 +74)Bu(e), (105)

where the current point (2, A) has ||f(z,)]| < Bu. Taylor’s theorem can be used to expand
f(z(a), Ma)), exactly as in (27). The difference here is that Lipschitz continuity can be used
to obtain a tighter estimate of Ar;. Note that the arguments of Df in (29) lie within the
domain of Lipschitz continuity, since by (101a), (101b), and (95), we have

|(z + 8z, A + 8aAN) — (2, A)||
< Nz=2% A= +[(Az, AX)|| < 64/4 + Copr, < 84/2.

Therefore we have from (28) and (95) that

Al < SLIAz AN < 1LCE2,
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As in (27), it follows that

1
I1£ (22, Ml < (1 — @)Bp + 5 LCTu®.
Meanwhile, a trivial change to the estimate (103) yields

we) 2 (1 —a)p - Copu’.

From these last two inequalities, we see that condition (105) is satisfied if
I, . 5
(1= @)+ 5LCop* < (1+7*)BI(1 — a)u — Cau?]-
Because (1 +3*')8 < fBmax, from (21), this last condition in turn is satisfied if

1 _
ELC(?,R S 7t+1ﬁ(1 - a)/‘ - ﬂmang#2°

By substituting from (18) and using the bound fny, < B, we find that this last condition is
implied by (101d), so we conclude that (105) is also satisfied. By similar logic, we can show
that the same conditions (101) also guarantee that the remaining condition (19¢) holds.

Finally, we verify that ps,41 < ppx,, so that the fast step is accepted by the main
algorithm. Because of (103), this condition is satisfied if

(1 —a)p+ Cip® < pp,
which, by substitution of (18), is equivalent to
£ 137 + Ciu < p.

Conditions (101e) and (101f) together guarantee that this conditions holds, so we are done.
At this point, we have shown that a fast step is taken from (z*7, A’ ,¥%7). The new
iterate does not move away too far from the limit point, if at all, because

I+ XEFL YR — @ Ly < IR A, 58) — (25 K, 97 + (A2, AXE, Ags))|
64/4 + CO,ukJ
54/2a

INIA

where the last inequality is a consequence of (101b) and (95). Hence, (z*7+1, \ks+1 yks+1) ¢
Q(364), and so the estimate (95) applies again at iteration ky + 1. The remaining conditions
(101b)~(101f) continue to apply at the new iterate, and the same logic as above can be used
to show that a fast step is again taken from this iterate. Because of these two consecutive
fast steps, we have

Pis+z < pkger < P (106)
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We can continue in this vein, inductively, to show that only fast steps are taken from this
point onwards, and that the iterates never leave the neighborhood Q(36). The last statement
follows from (95) and (106), since we have for all s > 0 that

distsgo (zk_;-}—s’ ”\kﬂ.s) < 5/4 + CO(/‘”CJ + Higg1+ -0+ :uk.l+s—-1)

§/4+ Copr,(L+p+p2 +--)

A Co
6/4

5/2.

IN

IA

IA

We now examine the rate of convergence of {¢+}. From (18) and (103), we have for all
k > k; that

i
Prtr < pk (’7—:;_) + CZud.

Hence for some K > k;, the first term on the right-hand side dominates the second, and we
have
prr < ppt At forall £ > K.

The proof that {u:} converges to zero with Q-order at least 1 + # follows by standard
arguments; see Wright [9, Theorem 6.3] and Wright and Zhang [11, Theorem 5.2]. Hence,
part (i) of the theorem is proved.

For (ii), we show that the sequence of iterates is Cauchy. For all K; > K; sufficiently
large, we have from (95) that

K>
|52, N2 ey — (LK K| <SS agfi(AZ, AN AgH)||
k=K
< Go Z 773
k=K,
< Cour, [L+p+72+--]

= CO#IG% — 0 as K]_ — 0. (107)

Hence the sequence is Cauchy, so it converges to a limit point, which must be the limit
point (2%, A,y*) of the subsequence (100). Its R-order follows immediately from (107) and
the result of part (i). n

6 Existence of a Limit Point

In our main result, Theorem 2, we assumed that a limit point of the sequence {(z%, Xk, y%)}
actually exists. This condition will follow immediately if we can show that the sequence is
bounded, by compactness.
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We show in Lemma 13 that boundedness of the solution set S is a consequence of bound-
edness of the feasible set C defined in (2). Then, in Lemma 14, we show that boundedness
of the iterate sequence {(z*, \¥, y*)} also holds under the additional assumption that u | 0.

Lemma 13 Suppose that Assumptions I and 3 hold and that the set C defined by (2) is
bounded. Then the solution set S is nonempty, bounded, closed, and therefore compact.

Proof. By Theorem 3.1 of Harker and Pang [2], the set of vectors z* that solves (1) is
nonempty. This set is also bounded because of the restriction z* € C. Boundedness of the
solution components y* follows trivially because y* = g(2z*) and g is smooth.

We prove boundedness of the optimal A\* components by contradiction. If the claim does
not hold, we can choose a sequence of solutions (2%, AF, #*) € S such that |1 A¥] o T co. (The
other components #* and §* remain bounded, by the argument of the preceding paragraph.)
We can assume without loss of generality that

(25,9%) > (2,9), with 2€C, §20,
and .
Ak s . .
lIA*¥]leo
Moreover, since (A¥)Tg(3*) = 0 for all k, we have that
>0 = g(3)=0. (108)
Because of (3) and (4), we have that
®(2*)+ Y Dg:(2¥)Ak =0, forall k.
i=1
Dividing by ||:\k||oo and taking the limit as £ — oo, we have
0=> Dg:(2)\i = Y Dagi(2). (109)
=1 ‘il:\i>0

Given the Slater point Z (Assumption 3), convexity of g, and the property (108), we have
that
Xi>0 = 0> g(2) 2 6:(2) + Dgi(2)7(2 — 2) = Dgs(2)7 (2 — 2). (110)

But this inequality implies that
Z (2 - E)TDgi(é):\i <0,

ilAi>0

which contradicts (109). Hence, {3* } cannot be unbounded, so our proof is complete.
Closedness of S follows immediately from the definition. n
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Lemma 14 Suppose that Assumptions 1 and 3 hold and that C is bounded and limy_, ., Uy =
0. Then the iterate sequence {(z*, \*,y*)} is bounded.

Proof. We start by showing that there is a constant B > 0 such that gi(zF) < B for all ¢
and k. From this observation together with Assumption 3, we deduce that {z*} is bounded.
Boundedness of {y*} follows directly from boundedness of {z*}. The final part of the proof
uses an argument like that in the proof of Lemma 13.

Since (2*, M, y*) € Q for all k, we have from (10), (22), and y* > 0 that
gi(zk) = [r_f;]i - yzk < [T_(I;]i < ”r_gl;” < ,Bma.x,uk < ﬁmax/‘O-
So if we define B = Braxfto, we have
gi(z)< B, forallk=0,1,2,...andi=1,2,...,m. ‘ (111)

Suppose for contradiction that {z*} is not bounded. I 7 is the vector from Assumption
3, we can choose a subsequence K such that

llzF — 2| T oo, for k€ K. (112)

We now define € = min;— 5. » —gi(2) and note that € > 0 by Assumption 3. We also define
an auxiliary subsequence {#*} for k € K by

sk < € E o
F=z+ B+€(z z), (113)

where B is defined in (111). By convexity of each g;, we have from the definitions of B and
€ that

€

.*k < — € ) A= . k
gi(2") < (1 Bre gz(Z)+B+Egz(z)
B €

< gz
= B+eg‘(z)+B+eB.
_ Be + Be
B+e B+e
= 0,

for all 1,2,...,m. Hence, 2f € C by the definition (2). On the other hand, we have from
(112) and (113) that

" €

F_ 3| =
I -2l =

|2¥ = 2|| T co, for k € K,

which contradicts boundedness of C. Hence, {2*} is bounded.
Boundedness of {y*} follows immediately from (10), since

1l = llrg — 9(z*) < Bumaxkto + llg(*)]|-
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The right-hand side of this expression is bounded because {z*} is bounded and g is contin-
uous.
Assume for contradiction that {A*} is unbounded. From (4) and (10), we have that

(zF) + > Dg:(zF) Ak = rk. (114)
=1 .
Because {2*} and {y*} are bounded, we can choose a subsequence X such that
(z5,4%) = (2,9)
and
2k
—_——
IA*leo

We have from (10) that

A, with |[Mlo=1 Ai>o0.

9(z*) = r§ — v* < Brmaxit — v*.
Hence, using g | 0 and y* > 0, and taking the limits of both sides for & € K, we obtain
9(2) = —§ < 0 and hence 3 € C. Moreover, if \; > 0, we must have gi(2) = 0, since otherwise
we would have i
Jim g > lim —|I\*|leoigi(2)/ P 1 co.

The remainder of the proof now follows exactly as in Lemma 13 above. u

We conclude with a corollary of Lemma 12 that throws extra light on our assumptions.

Lemma 15 Suppose that the standing assumptions are satisfied. Then for any (z*,)\) € Sz,

o o) 5|5 ]= [0 e

if and only if 6z = 0 and §) € ker Dgp(2*)T. In particular, the Jacobian matriz in (115) is
invertible if and only if Dgp(2*) has full row rank.

Assumption 6 is a weak version of the better-known condition that the “active” sub-
matrix (115) of the Jacobian (6) is invertible—an assumption that is made in most local
convergence analyses of nonlinear programming algorithms including Wright and Ralph [10].
Allowing nonzero vectors 6\ in the null space of the above Jacobian matrix amounts to al-
lowing nonunique optimal multipliers J; this flexibility relies on the constant rank condition,
Assumption 7. The main point of the current paper is that superlinear convergence still
holds when the weaker (but more complicated!) assumptions of this paper are used instead
of the standard ones.
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