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Abstract

Plants produce a diverse range of specialized metabolites that play pivotal roles in
mediating environmental interactions and stress adaptation. These unique chemical
compounds also hold significant agricultural, medicinal, and industrial values. Despite the
expanding knowledge of their functions in plant stress interactions, understanding the
intricate biosynthetic pathways of these natural products remains challenging due to gene
and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with
broad substrate specificity. In the past decade, substantial progress in genomics,
transcriptomics, metabolomics, and proteomics has made the exploration of plant
specialized metabolism more feasible than ever before. Notably, recent advances in
integrative multi-omics and computational approaches, along with other technologies, are
accelerating the discovery of plant specialized metabolism. In this review, we present a
summary of the recent progress in the discovery of plant stress-related specialized
metabolites. Emphasis is placed on the application of advanced omics-based approaches
and other techniques in studying plant stress-related specialized metabolism. Additionally,
we discuss the high-throughput methods for gene functional characterization. These
advances hold great promise for harnessing the potential of specialized metabolites to

enhance plant stress resilience in the future.
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1 Introduction

In recent years, climate change, anthropogenic activities, and natural resource
depletion have emerged as critical global threats to agriculture (Zhao et al., 2017; Fadiji et
al., 2021). Climate change has engendered severe abiotic stresses such as salinity, drought,
and extremely high and low temperatures (Fadiji et al., 2021), which pose a significant
threat and drastically reduce plant productivity. It has been estimated that with every 1°C
increase in the world’s average temperature, plants, such as maize (Zea mays), Sorghum
(Sorghum bicolor), wheat (Triticum aestivum), rice (Oryza sativa), and soybean (Glycine
max), experienced yield losses 3- 8% over 29 years of warming trends (Zhao et al., 2017).
Particularly, drought and salinity caused by climate change pose a threat to approximately
50% of the global cultivated and irrigated agricultural land (Orimoloye, 2022; Singh, 2022).
Climate change not only imposes abiotic stress on plants but also exacerbates the
occurrence of biotic factors, such as bacteria, fungi, herbivores, and insects. Research has
shown that up to 40% of crop production is affected by pests and diseases that are
exacerbated by climate change (Savary et al., 2019). Given these limiting factors, scientists
are continuously making efforts to search for novel, safe, and environmentally friendly
approaches to enhance plant performance under stress conditions, including those that
harness plant specialized metabolites to mitigate biotic and abiotic stresses.

Extensive research has suggested that each biotic and abiotic stress perceived by
plants triggers systemic signaling and acclimation responses, leading to the accumulation
of specialized metabolites (Marone et al., 2022). Despite the significant energy expenditure
involved in their production, these specialized compounds provide plants with an effective
defense mechanism to cope with biotic and abiotic stress challenges, like protecting plants
against herbivores, insects, and pathogens, as well as mitigating the adverse effects of
environmental factors (D'Amelia et al., 2021; Ding et al., 2021b; Marone et al., 2022).
Meanwhile, these unique defensive compounds have wide-ranging applications in
industries such as food, pharmaceuticals, and chemicals, owing to their nutritional and
therapeutic values. For example, artemisinin, a well-known sesquiterpenoid produced by
Artemisia annua, has been widely utilized in the treatment of malaria, a life-threatening

parasitic disease caused by Plasmodium parasites (Chen et al., 2021). Accordingly,
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understanding the genetic basis of specialized metabolite biosynthesis and their ecological
functions will contribute to fully exploring the potential of these natural products and
enable the innovation of novel strategies to improve plant stress resilience.

Undoubtedly, the advancement of analytical chemistry has equipped diverse research
groups with the capability to explore the existence of both unknown and known plant
specialized metabolites as traits in various biological investigations. However, specialized
metabolites are typically restricted to specific plant populations or lineages, presenting
challenges in determining their exact roles in ecological interactions and understanding the
genetic mechanisms responsible for their biosynthesis and accumulation (D'Amelia et al.,
2021). Over the last decade, these limitations have been increasingly overcome through the
rapid expansion of omics technologies, including metabolomics, genomics,
transcriptomics, and proteomics (Ding et al., 2019; Ding et al., 2020; Jacobowitz and Weng,
2020; Ding et al., 2021b). While previous reviews have covered various aspects of plant
specialized metabolism (Fang and Luo, 2019; Jacobowitz and Weng, 2020; D'Amelia et
al., 2021; Ding et al., 2021b; Singh, 2022), it was necessary to provide an overview on the
most recent research and advanced methodologies for studying plant specialized
metabolism, particularly in the context of plant stress responses. Here, we review the recent
advancements in the field of plant specialized metabolism and discuss the application of
omics-based approaches to study the genetic mechanisms underlying the biosynthesis,

accumulation, and biological functions of plant stress-related specialized metabolites.

2 Biological roles of specialized metabolites in plant stress responses

Plant specialized metabolites play crucial roles in various physiological processes,
such as plant growth, development, and response to diverse biotic and abiotic stress
(Marone et al., 2022). Differing from primary metabolites, specialized metabolites are
typically produced in response to specific environmental stimuli or other signaling cues, as
well as during specific developmental stages (Jacobowitz and Weng, 2020; Garagounis et
al., 2021). When plants face adverse growth conditions, the production of various
specialized metabolites enhances their chances of survival (Figure 1).

One of the prominent functions of specialized metabolites in plants is to act as a

defense mechanism against biotic stressors, such as pathogens, herbivores, and other pests.



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

Defensive phytochemical specialized metabolites can be categorized into two groups:
phytoanticipins and phytoalexins (VanEtten et al., 1994; Piasecka et al., 2015).
Phytoanticipins are constitutively present or synthesized from preexisting precursors
(VanEtten et al., 1994). Notable examples of phytoanticipins include saponins, cyanogenic
glucoside, glucosinolates, and benzoxazinone glucosides. For instance, a-tomatine, a major
saponin in tomato (Solanum lycopersicum), has the capability to induce programmed cell
death in fungi (Piasecka et al., 2015). Dhurrin, a cyanogenic glucosides present in sorghum
(Sorghum bicolor), can undergo degradation, leading to the release of toxic cyanide,
thereby deterring pests (Laursen et al., 2016). In contrast, phytoalexins are synthesized de
novo when plants detect a pathogen or pest (Piasecka et al., 2015). Non-volatile terpenoids
are well-documented and fascinating examples of phytoalexins (Schmelz et al., 2014). In
maize, diterpenoid phytoalexins like dolabralexins and kauralexins, as well as
sesquiterpenoid phytoalexins such as o/B-costic acids and zealexins, have been identified
as part of the maize's defense response against fungal infections (Ding et al., 2017; Mafu
et al., 2018; Ding et al., 2019; Ding et al., 2020). Likewise, rice plants are capable of
producing various diterpenoid phytoalexins, known as momilactones, phytocassanes, and
oryzalexins, which have been shown to contribute to the rice’s stable resistance against
major fungal diseases (Wang et al., 2012; Schmelz et al., 2014). Additionally, other classes
of specialized metabolites, such as benzoxazinoids and flavonoids, have also been reported
to play similar defensive roles (Singh et al., 2023a; Valletta et al., 2023). A rice-flavanone-
type phytoalexin, namely sakuranetin, is one such example, which inhibits the germination
of the conidia of fungal pathogens (Hasegawa et al., 2014).

Furthermore, it is increasingly evident that plants employ specialized metabolites to
attract symbiotic bacteria and arbuscular mycorrhizal fungi, as well as shape microbiomes
in the rhizosphere and phyllosphere (Sasse et al., 2018; Garagounis et al., 2021; Singh et
al., 2023a). Among the well-studied models are the interactions between legumes and their
rhizosphere bacteria. The roots of legume plants release specialized metabolites such as
isoflavones and saponins into the rhizosphere as signaling compounds to attract symbiotic
bacteria, such as Azorhizobium, Rhizobium, and Pararhizobium (Pang et al., 2021). In
addition, many root-derived specialized metabolites have been shown to have impacts on

rhizosphere microbial compositions. For example, a recent study revealed that daidzein, a



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

specific isoflavone secreted from soybean roots, plays a role in regulating the assembly of
bacterial communities in the rhizosphere (Okutani et al., 2020).

Specialized metabolites in plants also serve another important function: assisting
plants in alleviating stresses caused by abiotic factors, such as extreme temperatures,
drought, salinity, and ultraviolet radiation. Under abiotic stress, plants generate harmful
reactive oxygen species (ROS), such as singlet oxygen (O.), reactive superoxide anion
radical (O2"), hydrogen peroxide (H20z), and hydroxyl radical (*OH) (Agati and Tattini,
2010; Barnes et al., 2016; Piasecka et al., 2017). Disruption of the balance between ROS
generation and endogenous antioxidant defense mechanisms results in oxidative stress
(Chan et al., 2016). In cases where the production of antioxidant enzymes is insufficient to
counteract the level of oxidation, specialized metabolites with antioxidant activity become
a vital tool in buffering ROS accumulation, mainly flavonoids and phenolic compounds
(Agati and Tattini, 2010; Nakabayashi et al., 2014; Barnes et al., 2016). The UV-B-
responsive flavonoids function as quenchers of ROS involved in the UV-protection
mechanism (Agati and Tattini, 2010; Barnes et al., 2016). The excessive accumulation of
flavonoids with antioxidative properties has been found to enhance drought stress tolerance
in maize (Li et al., 2021). Additionally, specialized metabolites with antioxidant activity
can also provide protection against biotic stress. For instance, metabolic engineering of
antioxidative pigments, like anthocyanins and betalains, can enhance plant resistance
against the necrotrophic fungal pathogen, Botrytis cinerea (Zhang et al., 2013; Polturak et
al., 2017).

3 Major classes of plant specialized metabolites

Plant specialized metabolites exhibit remarkable structural diversity surpassing that
of primary metabolites, with many originating from primary metabolic precursors (Ding et
al., 2021b). The exact number of plant specialized metabolites remains unknown, but it has
been estimated to range from 200,000 to 1,000,000 (Dixon and Strack, 2003; Afendi et al.,
2012). Here, we present a concise overview of the major classes of specialized metabolites

involved in plant-abiotic and biotic interactions (Figure 1).

3.1 Phenylpropanoids
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Phenylpropanoids consist of a phenyl ring and a three-carbon side chain, which are
derived from phenylalanine through the shikimic acid pathway (Agati and Tattini, 2010;
Vogt, 2010). The diverse substituents on the benzene ring and the position of the propenyl
double bond, lead to the generation of a wide range of compounds with various biological
activities (Dong and Lin, 2021). The general phenylpropanoid pathway involves three key
enzymes: phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-
coumarate-CoA ligase (4CL), which provide precursors for the synthesis of flavonoids and
lignin (Agati and Tattini, 2010; Dong and Lin, 2021). Lignin polymers are typically
composed of three fundamental monolignols: p-hydroxyphenyl (H), guaiacyl (G), and
syringyl (S), which are derived from p-coumaryl alcohols, coniferyl alcohols, and sinapyl
alcohols, respectively. The most recent advancements in the lignin biosynthetic pathways
and how flux through the pathway is regulated in plants have been comprehensively

reviewed (Vanholme et al., 2019; Yao et al., 2021).

3.1.1 Flavonoids

Flavonoid metabolism is another important branch of phenylpropanoid metabolism,
and research has identified over 8,000 different flavonoid compounds to date (Shomali et
al., 2022). Flavonoids can act as antioxidants, signal molecules, pigments, phytoalexins,
and detoxifying agents (Agati and Tattini, 2010; Barnes et al., 2016; Zhang et al., 2023).
Moreover, flavonoids possess numerous medicinal benefits, including anti-inflammatory,
antidiabetic, anticancer, and antiviral properties (Dias et al., 2021; Shomali et al., 2022).

Almost all flavonoids possess a C6-C3-C6 structural backbone, which consists of two
benzene rings with phenolic hydroxyl groups (A and B rings) connected to a three-carbon
pyran ring (C) (Dias et al., 2021). The core skeleton of the flavonoid biosynthetic pathway
has been extensively studied in terms of the biochemical, molecular, and genetic
mechanisms of the enzymes involved. This synthesis involves two primary pathways: the
phenylpropanoid pathway, which generates the phenyl propanoid (C6-C3) skeleton, and
the polyketide pathway, which provides the building blocks for polymerized C2 units (Dias
et al., 2021; Shomali et al., 2022). The naturally occurring basic skeleton of C6-C3-C6
commonly undergoes various enzymatic modifications, including hydroxylation,

glycosylation, methylation, and acylation (Liu et al., 2022b; Shomali et al., 2022). Based
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on the oxidation level or the substitution patterns of the middle C-ring, flavonoids can be
classified into six major sub-classes: flavonols, flavones, isoflavones, flavanones, flavan-
3-ols, and anthocyanins (Tohge et al., 2018; Liu et al., 2022b; Shomali et al., 2022).

Chalcone synthase (CHS) initiates the synthesis by utilizing malonyl-CoA molecules
from the polyketide pathway and p-coumaroyl CoA from the phenylpropanoid pathway to
produce naringenin chalcone, which is then converted into flavanone naringenin by
chalcone isomerase (CHI) (Tohge et al., 2018; Dias et al., 2021). Flavanone naringenin
serves as a biochemical precursor in the biosynthesis of other flavonoids, such as flavones,
flavonols and anthocyanins (Tohge et al., 2018; Liu et al., 2021). Basic hydroxylation is a
common occurrence in naringenin at positions C4’, C5, and C7, while additional hydroxyl
groups can also be found at positions C3°, C3, C5°, C6, and C8 (Liu et al., 2022b).
Hydroxylases play an important role in the biosynthesis of hydroxylated flavonoids.
Flavanone 3-hydroxylase (F3H) is a key enzyme for the hydroxylation of the C ring,
converting naringenin into dihydroquercetin, which further contributes to the biosynthesis
of flavonols and anthocyanidins (Lara et al., 2020). Overexpression of SbF3H1 in sorghum
deficient in 3-hydroxylated flavonoids redirects carbon flow towards the production of 3-
hydroxylated flavonoids, leading to an enriched flavonoid profile in various tissues,
potentially enhancing defense response and improving the nutraceutical value of sorghum
grain/bran (Wang et al., 2020). Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-
hydroxylase (F3'5'H) play crucial roles as enzymes facilitating the hydroxylation of the B
ring. Dihydrokaempferol can be further catalyzed by F3'H and F3'S'H, respectively,
resulting in the formation of either dihydroquercetin or dihydromyricetin. Subsequently,
dihydroflavonol reductase (DFR), an enzyme relying on NADPH, facilitates the reduction
of dihydroflavonols such as dihydroquercetin and dihydromyricetin, resulting in the
production of colorless anthocyanins. These colorless anthocyanins are then converted into
colored anthocyanins through anthocyanidin synthase (ANS) catalysis before being
transformed into stable anthocyanins (Liu et al., 2021).

In addition, flavone synthase (FNS) enzymes, including two distinct types known as
FNS-I and FNS-II, are responsible for catalyzing the conversion of flavanones into
flavones. FNS-I belongs to the Fe?'/2-oxoglutarate-dependent dioxygenase (2-OGDD)
family. Previous studies have identified OsFNS in rice and ZmFNSI-1 in maize as FNS-I
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enzymes that catalyze the conversion of naringenin to apigenin, a major plant flavone (Kim
et al., 2008; Falcone Ferreyra et al., 2015). On the other hand, FNS-II is a member of
cytochrome P450 enzymes derived from the CYP93B subfamily in dicots and the CYP93G
subfamily in monocots (Lam et al., 2014; Lam et al., 2017). In rice, OsCYP93G2 converts
eriodictyol and naringenin into the corresponding 2-hydroxyflavanones, which are
essential components required for the biosynthesis of C-glycosylflavones (Du et al., 2010).
In the monocot family Poaceae, tricin, a notably prevalent flavonoid form, is commonly
observed as an O-linked conjugate in vegetative tissues. The biosynthesis of tricin
conjugates involves the conversion of naringenin to apigenin by FNSII, followed by
sequential hydroxylation and O-methylation of tricin to generate various downstream tricin
derivatives (Lam et al., 2017).

Besides hydroxylation, glycosylation is commonly found in flavonoids. Glycosylated
anthocyanidins are a common type of flavonoid derivatives responsible for the colors in
most flowers and fruits (Rinaldo et al., 2015). In dicots crops, O-glycosylated
flavonols/isoflavones are predominantly accumulated as the major type of flavonoids,
while monocot crops primarily produce C-glycosylated flavones (Tohge et al., 2018). O-
glycosyltransferases utilize oxygen to link the sugar moiety to the flavonoid skeleton in O-
glycosyl flavones, whereas the glucose moiety in C-glycosyl flavones directly binds to the
flavone backbone (Funaki et al., 2015; Sun et al., 2022). For instance, in soybean, daidzein
(4°,7-dihydroxyisoflavone) and genistein (4°,5,7-trihydroxyisoflavone) undergo
enzymatically glycosylated by 7-O-glycosyltransferase, resulting in the production of
genistin and daidzin, respectively (Funaki et al., 2015). In rice and maize, C-
glucosyltransferases, including OsCGT, ZmUGT708A6, and ZmCGT]1, catalyze flavone
C-glycosylation at either the C-8 or C-6 position of 2-hydroxyflavanone, leading to the
formation of flavone-C-glycosides after dehydration (Brazier-Hicks et al., 2009; Sun et al.,
2022). The flavone glycosides, especially C/O- glycosyl flavones, play a positive role in
plant UV-B protection (Brazier-Hicks et al., 2009; Peng et al., 2017). More importantly,
C-glycosyl flavones have been shown to potentially enhance crops responses to abiotic and
biotic stress like nitrogen limitation (Zhang et al., 2017), defense against pests (Casas et

al., 2014), and fungal diseases (McNally et al., 2003).
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3.1.2 Hydroxycinnamate amides

Other phenylpropanoid metabolites include hydroxycinnamate amides (HCAAs),
phenylpropanoid esters, lignans, and sporopollenin (Agati and Tattini, 2010; Vogt, 2010).
HCAAs, alternatively known as phenylamides or phenolamides, are also a broad array of
plant specialized phenylpropanoid metabolites, serving important roles in stress tolerance
(Liu et al., 2022a). In particular, the accumulation of HCAAs in plants has been linked to
enhanced resistance against various plant pathogens (Muroi et al., 2009; Seybold et al.,
2020; Ding et al., 2021b). These HCAAs are synthesized through the conjugation of
hydroxycinnamic acids (HCAs) such as cinnamic, p-coumaric, caffeic, ferulic, and benzoic
acids with amines such as serotonin, tryptamine, putrescine, and agmatine (Zeiss et al.,
2021). Recent studies have identified several HCAAs that function as phytoalexins in
Poaceae. For instance, in rice, these HCAAs exhibited inducibility and antimicrobial
activity against the pathogen X. oryzae (Morimoto et al., 2018). In barley (Hordeum
vulgare), the accumulation of HCAAs, specifically 9-hydroxy-8-oxotryptamine and 8-
oxotryptamine, has been observed in response to Fusarium infection, which are
synthesized through the oxidation of N-cinnamoyl tryptamine (Ube et al., 2019b). In wheat,
the accumulation of N-cinnamoyl-8-oxotryptamine and N-cinnamoyl-9-hydroxy-8-
oxotryptamine has been shown to act as phytoalexins against pathogen infection caused by
Bipolaris sorokiniana (Ube et al., 2019a).

During HCAA syntheisis, the condensation of hydroxycinnamoyl-CoA esters and
amines is mediated by various hydroxycinnamoyl transferases (HCTs), which catalyze the
transfer of hydroxycinnamoyl moieties from CoA esters to acceptor molecules. (Ube et al.,
2019b; Zeiss et al., 2021; Liu et al., 2022b). The HCT family includes various isoforms
and members with distinct substrate specificities, allowing them to acylate a wide variety
of acceptor molecules, such as shikimate, quinate, and other related compounds. This
diversity in substrate specificity enables HCTs to participate in different biosynthetic
pathways, such as HCAAs, lignins, lignans, and flavonoids, contributing to the complexity

and diversity of specialized metabolism in plants.

3.2 Terpenes

10
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Terpenes, with over 65,000 known structures, constitute the largest and most diverse
class of plant natural products, playing crucial roles in plants, such as defense against
herbivores and attraction of pollinators (Schmelz et al., 2014; Zi et al., 2014; Shahi and
Mafu, 2021). These compounds are derived from the five-carbon units, isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), generated through the
mevalonate (MVA) or the 2-C-methylerythritol-4-phosphate (MEP) pathway (Jacobowitz
and Weng, 2020; Ding et al., 2021b). Farnesyl diphosphate (FPP, C15) is typically
synthesized via the MVA pathway and serves as the precursor for sesquiterpenes (C15),
triterpenes (C30), and sterols. In contrast, within the MEP pathway, IPP and DMAPP,
derived from pyruvate and glyceraldehyde-3-phosphate, undergo condensation catalyzed
by geranyl diphosphate synthase (GPS) to yield geranyl diphosphate (GPP, C10), serving
as the direct precursor for monoterpenes (C10), or by geranylgeranyl diphosphate synthase
(GGPPS) to generate geranylgeranyl diphosphate (GGPP, C20), which acts as a precursor
for diterpenes (C20) and tetraterpenes (C40) (Jacobowitz and Weng, 2020; Ding et al.,
2021b). Terpene synthases (TPSs) catalyze the cyclization of each class-specific building
block, acting as gatekeepers in terpenoid production by converting prenyl diphosphates
with different chain lengths or distinct cis/trans configurations into diverse terpenoid
skeletons (Ding et al., 2021b; Zhan et al., 2022). The P450 enzymes, frequently belonging
to the CYP71, CYP76, CYP81, CYP99, and CYP701 families, further enhance the
structural complexity and bioactivity of plant terpenoids (Hussain et al., 2018; Ding et al.,

2021b).

3.2.1 Monoterpenes and sesquiterpenes

Despite the distinct biosynthetic pathways of monoterpenes and sesquiterpenes, these
two classes of compounds collectively contribute to a significant portion of the volatile
organic compounds (VOCs) emitted by plants, and have been reported to be involved in
plant defense through their pesticidal and antibacterial activity, as well as repellent
properties (Lanier et al., 2023). For example, y-terpinene (monoterpene) exhibits
significant antibacterial activity against the rice pathogen Xanthomonas oryzae (Y oshitomi
et al.,, 2016); a-pinene (monoterpene) demonstrates toxicity against maize weevil

(Sitophilus zeamais) (Langsi et al., 2020); a-farnesene (sesquiterpene) acts as an insecticide

11
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(Lin et al., 2017), and other monoterpenes such as o-terpinene, p-cymene, and -
phellandrene, have been identified as repellent compounds (Bleeker et al., 2009).
Furthermore, monoterpenes and sesquiterpenes are frequently utilized by plants to attract
pollinators or repel florivores, as exemplified by linalool, limonene, and B-pinene (Boncan
et al., 2020; Lanier et al., 2023). In addition, certain non-volatile sesquiterpenes act as
phytoalexins, providing direct protection against fungal and bacterial pathogens in plants
(Kollner et al., 2013; Schmelz et al., 2014; Ding et al., 2020).

To date, numerous monoterpene synthases and sesquiterpene synthases have been
functionally characterized in plants. For instance, in rice, OsTPS24 and OsTPS19 have
been identified as monoterpene synthases, producing vy-terpinene and (S)-limonene,
respectively (Yoshitomi et al., 2016; Chen et al., 2018). In maize, four monoterpene
synthases and thirteen sesquiterpene synthases have been characterized (Block et al., 2019;
Saldivar et al., 2023). In tomatoes, TPS5 and TPS39 are involved in the production of the
monoterpene linalool (Cao et al., 2014), while TPS9 and TPS12 synthesize several
sesquiterpenes, including germacrene C and B-caryophyllene/a-humulene, respectively
(Schilmiller et al., 2010). In grapevine (Vitis vinifera), specific TPSs, namely
VvPNLinNerl, VvPNLinNer2, and VvCSLinNer, have been found to possess the ability
to produce linalool (Martin et al., 2010). Indeed, recent studies have provided insights into
the synthesis of certain monoterpenes by multi-substrate sesquiterpene synthases in the
cytosol (Mercke et al., 2004; Pazouki and Niinemets, 2016). In the case of TPS from
cucumber (Cucumis sativus), it exhibits C10/C15 multi-substrate characteristic that utilizes
GPP as a substrate to produce (E)-B-ocimene, while employing FPP to form (E,E)-a-
farnesene (Mercke et al., 2004). This multi-substrate utilization capacity offers an
alternative mechanism for regulating the production of monoterpenes and sesquiterpenes
by modifying the sizes of different substrate pools in the cytosol, especially under stressful
conditions (Pazouki and Niinemets, 2016).

After the initial biosynthesis of terpenes by TPSs, their backbone undergoes various
modifications, including oxidation, hydroxylation, or glycosylation. These modifications
can lead to the formation of a wide range of structurally diverse terpenoid compounds. A
well-studied example is linalool, where CYP76F14 from grapevine catalyzes the

oxygenation of linalool, forming (E)-8-carboxylinalool (Bosman and Lashbrooke, 2023).

12
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Additionally, CYP76F14 is involved in the synthesis of wine lactone. In another intriguing
case, three tandemly duplicated genes of the CYP71Z subfamily in maize encode enzymes
that catalyze various oxidation reactions on sesquiterpenes, resulting in the formation of

zealexin antibiotics (Ding et al., 2020).

3.2.2 Diterpenes and triterpenes

Plants produce a series of diterpenoid compounds, including the widely distributed
gibberellin phytohormones and specialized diterpenoids that are exclusively found in
specific plant species or families (Hedden and Thomas, 2012; Zerbe and Bohlmann, 2015;
Ding et al., 2019). To date, over 7,000 labdane-related diterpenoids have been identified in
plants, and they play diverse physiological roles in plant development, defense, and
ecological adaptation (Zerbe and Bohlmann, 2015). In angiosperms, the biosynthesis of
labdane-related diterpenoids follows a modular process initiated by the carbocation-driven
cyclization of the diterpene skeleton through the sequential activity of class II and class I
diterpene synthases (di-TPSs) and subsequently enriched by P450-mediated backbone
decoration (Ding et al., 2019; Ding et al., 2021b). Firstly, the precursor GGPP undergoes
proton-initiated cyclization by class II di-TPSs, resulting in the production of dicyclic ent-
copalyl diphosphate (ent-CPP), (+)-CPP and syn-CPP (Ding et al., 2021b). In maize, the
class II di-TPSs, ZmAN1 and ZmAN2, are catalytically redundant CPP synthases, with
ZmANT1 essential for gibberellin phytohormone biosynthesis, whereas ZmAN2 for the
formation of defensive dolabralexin and kauralexin diterpenoids (Mafu et al., 2018; Ding
et al., 2019). Other examples of class II di-TPS include maize ZmCPS3 and foxtail millet
(Setaria italica) SiITPS9 functioning as (+)-CPP synthases, foxtail millet SiTPS6 and rice
OsCPS4 acting as syn-CPP synthases, and rice OsCPS2 and maize ZmCPS4 serving as ent-
CPP synthases and 8,13-CPP synthase, respectively (Otomo et al., 2004; Prisic et al., 2004;
Murphy et al., 2018; Karunanithi et al., 2020). Subsequently, class I di-TPSs convert these
intermediates through ionization-dependent cyclization and rearrangement, leading to the
formation of a series of distinct labdane scaffolds (Zerbe and Bohlmann, 2015; Ding et al.,
2021b). For instance, ZmKSL2 and ZmKSL4 sequentially convert the ent-CPP into ent-
isokaurene and dolabradiene, respectively (Mafu et al., 2018; Ding et al., 2019). Likewise,
OsKSL4 catalyzes the product from OsCPS4, forming the tricyclic momilactone scaffold,
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while OsKSL7 contributes to the formation of the phytocassane scaffold from the product
of OsCPS2 (Otomo et al., 2004). Finally, diterpene backbones are functionalized by other
enzyme classes, with the CYP71 clan of cytochrome P450s being the most common,
through oxidation and subsequent conjugation processes to enhance their bioactivity
(Zerbe and Bohlmann, 2015; Ding et al., 2021b). For example, ZmCYP71Z16 and
ZmCYP71Z18 are involved in the oxygenation of ent-kaurene, ent-isokaurene, and
dolabradiene, playing a crucial role in the formation of antibiotics crucial for Fusarium
stalk rot resistance (Mafu et al., 2018; Ding et al., 2019).

Triterpenoids are also common natural plant defense compounds with potential
applications as pesticides, pharmaceuticals, and other high-value products (Singh et al.,
2023b). Saponins, for instance, play a key role in promoting plant defense against a wide
range of pathogens, insect pests, and herbivores (Hussain et al., 2019). The carbon
skeletons of triterpenoids are derived from the common precursor, 2,3-oxidosqualene,
through cyclization reactions catalyzed by enzymes such as oxidosqualene cyclases (OSC),
including cycloartenol synthases and B-amyrin synthases (Cardenas et al., 2019). The
oxidation of these skeletons is mediated by P450s, contributing to their structural diversity.
Subsequent  modifications involving  UDP-glycosyltransferases (UGTs) and
acyltransferases (ATs) further enhance the complexity of triterpenoid structures (Miettinen

etal., 2017; Cardenas et al., 2019).

3.3 Alkaloids

Alkaloids are a class of natural nitrogen-containing products, often derived from
amino acids such as tyrosine, lysine, ornithine, and phenylalanine (Glenn et al., 2013).
Based on their heterocyclic ring system and biosynthetic precursors, alkaloids are classified
into diverse categories, including tropane, piperidine, indole, purine, imidazole,
pyrrolizidine, isoquinoline, quinolizidine, pyrrolidine, and steroidal alkaloids (Yan et al.,
2021). Most alkaloids function as nitrogen storage reservoirs, protective agents against
both biotic and abiotic stress, and/or growth regulators (Glenn et al., 2013). For example,
o-tomatine, a steroidal alkaloid extracted from various organs of tomato, exhibits

antimicrobial and antinutritional activities (You and van Kan, 2021).
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Nicotine, the predominant alkaloid found in Nicotiana species (Shimasaki et al., 2021).
It exhibits strong toxicity and plays a role in plant defense against insects. Additionally, it
functions as a potent allelopathic substance, exerting significant growth effects on other
plants (Cheng et al., 2021). Nicotine itself comprises heterocyclic pyrrolidine and pyridine
rings, with the pyrrolidine ring forming through consecutive reactions catalyzed by Orn
decarboxylase (ODC), putrescine N-methyltransferase (PMT), and N-methylputrescine
oxidase (MPO), while the pyridine ring results from the involvement of enzymes such as
Asp oxidase (AO), quinolinate synthase (QS), and quinolinate phosphoribosyl transferase
(QPT) (Kajikawa et al., 2017). The coupling of these two rings is believed to be catalyzed
by Berberine Bridge Enzyme-Like Proteins (BBLs) (Kajikawa et al., 2017; Schachtsiek
and Stehle, 2019). Recently, CRISPR/Cas editing of genes encoding BBL has been used
to obtain nicotine-free non-transgenic tobacco (Schachtsiek and Stehle, 2019).

Another well-known example is Benzoxazinoids (BXs), which are indole alkaloids
found in several monocot crop species, such as wheat, maize, and rye (Secale cereale)
(Ding et al., 2021b; Stahl, 2022). BXs are involved in plant defense against herbivorous
arthropods, demonstrating direct insecticidal activity by inhibiting insect digestive
proteases through their breakdown products (Zhang et al., 2021). Additionally, BXs play
vital roles in plant-microbe interactions and have regulatory effects on various biological
processes, including flowering time, auxin metabolism, iron uptake, and potentially
aluminum tolerance (Zhou et al., 2018). Given the extensive availability of genetic
resources in maize, significant progress in BXs research has been achieved. The core maize
BX biosynthesis pathway has been extensively studied and involves seven BX enzymes
(BX1-BXS5, BX8, and BX9) that catalyze the formation of DIMBOA-Glc from indole-3-
glycerol phosphate (IGP) (Meihls et al., 2013; Zhang et al., 2021). These compounds can
be further hydroxylated by O-methyltransferases (BX10 to BX12) to form 2-hydroxy-4,7-
dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-GIc). Moreover, DIMBOA-Glc
can be converted to 2,4-dihydroxy-7,8-dimethoxy-1,4-benzoxazin-3-one-O-glucoside
(DIM2BOA-Glc) by BX13 and BX7, while DIM2BOA-GIc can be further methylated to
form 2-hydroxy-4,7,8-trimethoxy-1,4-benzoxazin-3-one glucoside (HDM2BOA-GlIc) by
BX14 (Handrick et al., 2016). In rye, the genes ScBxI-ScBx7, Scglu, and ScGT have been
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experimentally confirmed to regulate the majority of BX biosynthesis reactions (Tanwir et

al., 2017).

3.4 Other specialized metabolites

There is no doubt that numerous other structural types of specialized metabolites exist
that may not fit into the categories discussed above. For instance, oxylipins, derived from
the oxidation of unsaturated fatty acids such as a-linolenic acid and linoleic acid, play
critical roles in plant defense mechanisms (Mufioz and Munné-Bosch, 2020). Plant
oxylipins are initiated through enzymatic pathways by 9- and 13-lipoxygenases (LOXs),
which oxidize polyunsaturated fatty acids. Among them, the jasmonates (JAs) branch is
initiated by 13-lipoxygenase (LOX), leading to the formation of 13-hydroperoxyliolenic
acid (13-HPOT), which is further converted to 12-oxo-phytodienoic acid (OPDA) by allene
oxide synthase (AOS) and allene oxide cyclase (AOC) (Wasternack and Song, 2017).
OPDA is then reduced by OPDA reductase (OPR) and undergoes -oxidation to generate
JA. The JAs are a vital class of plant hormones necessary for regulating plant growth,
development, specialized metabolism, defense against insect attack and pathogen infection,
and tolerance to abiotic stress. A similar pathway involving 9-LOX activity on linolenic
and linoleic acid leads to the 12-OPDA positional isomers, 10-oxo0-11-phytoenoic acid (10-
OPEA) and 10-oxo-11-phytodienoic acid (10-OPDA), respectively (Christensen et al.,
2015). Notably, 10-OPEA exhibits broad toxicity to insects and fungi, likely through the
activation of cysteine proteases (Ding et al., 2021b)

Additionally, sulfur-containing metabolites have also been identified in plants. For
example, glucosinolates are found in cruciferous plants with defensive roles against insects,
(Halkier and Gershenzon, 2006). A recent review has listed up to 137 natural glucosinolates,
describing their variability in the R group (Blazevi¢ et al., 2020). Moreover, small
molecules such as halogenated compounds and peptides also contribute to the formation of

numerous functional specialized metabolites (Jacobowitz and Weng, 2020).
4 Omics-based approaches for specialized metabolism discovery in plants

Although our understanding of the functions of these specialized metabolites is

growing, there is still much to explore in terms of biosynthesis and regulation of these
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natural products, owing to gene and pathway redundancy, the multifunctionality of proteins,
or the activity of enzymes with broad substrate specificity (Ding et al., 2021b; Garagounis
et al., 2021). In the past decade, omics approaches, such as metabolomics, genomics,
transcriptomics, and proteomics, as well as integrative multi-omics approaches, have had
an increasing impact on plant specialized metabolism discovery (Figure 2), enabling
researchers to uncover the intricate mechanisms underlying the biosynthesis, regulation,

and biological functions of diverse specialized metabolites in plants.

4.1 Metabolomics

Metabolites are often regarded as the bridges between genotypes and phenotypes, and
changes in metabolite levels could directly reflect gene function, revealing biochemical
and molecular mechanisms underlying phenotypes and facilitating related breeding
procedures (Fiehn, 2002). Metabolomics analysis typically relies on a variety of analytical
chemistry techniques, such as gas chromatography-mass spectrometry (GC-MS), liquid
chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR)
spectroscopy (Salem et al., 2020). GC-MS is an ideal tool for the identification and
quantification of small metabolites with a molecular weight below 650 daltons, which are
either volatile metabolites or metabolites easily to volatilize after derivatization, including
alcohols, hydroxy acids, fatty acids, and sterols (Ding et al., 2021b; Ma and Qi, 2021).
Compared to GC-MS, LC-MS analysis does not require a derivatization step and can
measure a broader range of analytes, making it a highly powerful and comprehensive
analytical tool. Nowadays, LC-MS has become the most commonly used analytical tool
for identifying plant metabolites, including phenylpropanoids, terpenoids, and alkaloids
(Lisec et al., 2006; Ma and Qi, 2021). Complementing MS-based analyses, NMR
spectroscopy is a fundamental and reliable method for structure elucidation in plant
metabolism research, providing valuable insights into the chemical composition and
connectivity of plant metabolites (Ma and Qi, 2021). Historically, effectively reducing
false-positive peaks, analyzing large-scale metabolic data, and the lack of a comprehensive
database for annotating plant metabolites have posed significant challenges in

metabolomics.
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In recent years, the study of plant metabolites has significantly been supported by the
availability of numerous databases, advanced analytical techniques, and computational
tools. Databases like NIST, MoNA, and METLIN provide comprehensive resources for
accurate and reliable metabolite identification. Meanwhile, the emergence of more
sensitive, accurate, and versatile instruments has dramatically improved our ability to
identify and quantify low-abundance compounds, even from highly complex mixtures
(Fang and Luo, 2019; Jacobowitz and Weng, 2020). In addition, numerous computational
tools, such as CANOPUS and GNPS, have been developed, employing MS fragmentation
spectra and deep neural networks to accurately assign annotations to unknown metabolites
in sample extracts, and construct molecular networks of detected features (Wang et al.,
2016; Diihrkop et al., 2021; Ma and Qi, 2021). With the continuous advancement in
analytical techniques, mass-spectra databases, and computational approaches,
metabolomics has emerged as a valuable tool in plant research, providing plant scientists
an exceptional opportunity to comprehensively explore specialized metabolism in plants
(Yang et al., 2021). The utilization of metabolomics as a tool for monitoring the dynamics
of plant metabolites is gaining increasing interest in identifying crucial metabolites
associated with tolerance to both biotic and abiotic stresses (Zhang et al., 2017; Christ et
al., 2018; Billet et al., 2020). For instance, UPLC-DAD-MS-based metabolomics enabled
the analysis of downy mildew symptomatic grapes leaves, revealing certain stilbenoids as
significant biomarkers of the infection (Billet et al., 2020). Similarly, utilizing UPLC-
QTOF to assess the effects of low nitrogen stress on wheat flag leaves during two crucial
growth periods, the study revealed that flavonoids likely serve as biomarkers of low
nitrogen stress (Zhang et al., 2017).

Other new technologies, such as flavoromics, have been also developed to study
specific groups of metabolites. Metabolomics utilizes both targeted and untargeted
methodologies to identify and characterize a diverse range of small molecule metabolites.
In contrast, flavoromics is specialized in pinpointing metabolic components directly linked
to flavors. Flavoromics represents an extensive interdisciplinary domain that integrates
analytical chemistry, bioinformatics, and sensory science. Its primary aim is to
comprehensively explore flavor compounds found in various substances, particularly in

food and beverages. This field encompasses intricate processes involved in the
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identification, quantification, and understanding of the complex composition of both
volatile and non-volatile compounds that influence sensory perceptions associated with
taste and aroma (Pérez-Jiménez et al., 2021; Keawkim and Na Jom, 2022).

4.2 Genomics

With the increasing speed and decreasing costs of sequencing and genome assembly
platforms, a large number of high-quality plant genomes have been assembled and released
(Kress et al., 2022), providing a powerful foundation for studying plant specialized
metabolism. Unlike metabolic pathway genes forming biosynthetic gene clusters (BGCs)
in prokaryotes, genes involved in plant specialized metabolism are often randomly
distributed across the plant genome. However, studies have revealed the existence of
operon-like clusters of specialized metabolic pathway genes in plants, providing a strategy
to identify genes involved in plant specialized metabolism in the post-genomic era
(Jacobowitz and Weng, 2020; Zhan et al., 2022). To date, the majority of plant BGC-
encoded products that have been characterized demonstrate activity against a wide range
of pests, pathogens, and competing plants (Polturak and Osbourn, 2021).

Phylogenetic analysis can offer valuable insights to enhance the prioritization of
candidate genes. The combined use of genomic sequence and phylogenetic-based gene
discovery has been successfully applied to identify genes involved in plant specialized
metabolism, such as terpenoid metabolism. In the study on the foxtail millet 7PS gene
family, a total of 39 genes were identified by mining available genomic data using the
BLAST against a curated protein database of known plant TPSs, with 32 of these genes
having full-length sequences. Next, functional classification of these 7PS genes was
conducted through analysis of signature sequence motifs and phylogenetic analysis to
further narrow down the number of candidates, revealing that SiTPS6, SiTPS9, SiTPS34,
and SiTPS35 belong to class II di-TPS enzymes, SiTPS28 and SiTPS29 show similarity to
ent-kaurene synthase activity, and SiTPS5, SiTPSS8, and SiTPS13 are closely related to
class I di-TPSs (Karunanithi et al., 2020). Similarly, in the bioenergy crop switchgrass
(Panicum virgatum), mining of genome and transcriptome inventories suggested a large
TPS gene family with over 70 members, consisting of 44 mono- and sesqui-7PS genes and
30 di-7PS genes, and phylogenetic analyses confirmed that 35 of these members belong to
the TPS type-a clade (Muchlinski et al., 2019). Such approaches have also been applied in
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studying P450-catalyzed biosynthesis of furanoditerpenoids in switchgrass. Through
systematic phylogenetic analysis of the switchgrass P450 CYP71Z subfamily gene,
CYP71Z25-CYP71Z29 were identified as candidate enzymes for subsequent biochemical
analysis (Muchlinski et al., 2021).

4.3 Transcriptomics

Transcriptomics provides direct insights into real-time gene expression profiles and is
one of the most commonly used types of omics. RNA sequencing (RNA-Seq) has emerged
as a powerful and effective method for conducting large-scale transcriptomic research,
particularly in most non-model plants that lack a high-quality reference genome (Yang et
al., 2021; Wang and Huo, 2022). The expression of functionally related genes involved in
specialized metabolic pathways is often highly correlated in spatial and temporal
dimensions (Schmelz et al., 2014; Ding et al., 2020). Therefore, gene expression can
facilitate the discovery of metabolic pathways by mining organ-specific genes, gene
expression clusters, and performing coexpression analysis. Transcriptional coexpression
analysis, which is based on the premise that a set of genes involved in a biological process
are co-regulated and co-expressed under given conditions, has been successfully employed
to identify genes involved in plant specialized metabolism, such as terpenoids, glucosides,
benzoxazinoids, flavonoids and others (Ding et al., 2021b). For example, gene
coexpression analysis identified three CYP71 family P450s in maize terpenoid
biosynthesis, which were not identified by extensive forward genetic studies (Ding et al.,
2021b). To accurately measure the relationship among genes, an unbiased RNAseq
database is essential. With increasingly affordable next-generation sequencing
technologies, large-scale transcriptomic datasets are routinely generated and are becoming
publicly available. Various statistical correlation-based approaches are used for
coexpression analysis, such as Spearman Correlation Coefficient (SCC) and Pearson
Correlation Coefficient (PCC). Mutual Rank (MR), the geometric mean of the ranked
PCCs between two genes, has been used to measure gene coexpression (Poretsky and
Huffaker, 2020). When using coexpression analysis to identify unknown biosynthetic

genes in a target pathway, a key bait gene with a known function is often required for the

20



638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

analysis (Singh et al., 2022). The cutoff scores used to identify candidate pathway genes
or construct coexpression networks are often selected arbitrarily.

Additionally, coexpression analysis plays a unique role in identifying non-enzymatic
components, such as transcription factors and transporters, which are crucial for the
efficient functioning of metabolic pathways. In the context of investigating the molecular
mechanisms underlying apple (Malus x domestica) color formation, the utilization of
pairwise comparisons and weighted gene coexpression network analysis (WGCNA) led to
the identification of MdMYB28 as a key regulatory gene that negatively regulates
anthocyanin biosynthesis (Ding et al., 2021a). Similarly, employing the same method, a
pepper MYB transcription factor, CaMYB48, was identified as a critical regulatory
component in capsaicinoid biosynthesis (Sun et al., 2020).

Successful coexpression analysis depends on the correlation of biosynthetic genes
with their respective metabolites in planta. This approach will not be useful in some cases
if the site of biosynthesis is different from the site of metabolite accumulation. Also, this
approach may not be applicable in situations where biosynthetic intermediates are
produced in one part of the plant and then transported to another part, where biosynthesis
is completed.

As multicellular organisms, plants have evolved different cell types for cellular
responses uniquely to different environmental cues. Single-cell sequencing technologies
are being employed to explore cell-type-specific responses to stresses in plants (Cole et al.,
2021). In addition to elucidating the spatiotemporal distribution of metabolic pathways at
single-cell resolution, these technologies offer a valuable strategy for identifying candidate
pathway genes. For example, Sun et al. utilized single-cell RNA sequencing to localize the
transcripts of 20 MIA (monoterpenoid indole alkaloids) genes in different cell
compartments and predicted several candidate transporters likely involved in shuttling

MIA intermediates between inter- and intracellular compartments (Sun et al., 2023).

4.4 Proteomics
The development of high-quality sequenced genomes enables proteomics to
effectively facilitate the prioritization of candidate biosynthetic enzymes in plant

specialized metabolic pathways (Ding et al., 2021b). High-throughput protein sequencing
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technology includes iTRAQ (isobaric tags for relative and absolute quantification) and DIA
(data-independent acquisition). Recent advances in mass spectrometry (MS)-based
proteomics technologies have enabled the comprehensive identification, quantification,
validation, and characterization of a diverse range of proteins in specific organs, tissues,
and cells (Champagne and Boutry, 2016). For example, untargeted proteomics using data-
dependent acquisition (DDA) with a quadrupole time-of-flight (Q-TOF) tandem mass
spectrometer allows the quantification of thousands of detectable proteins in samples (Hart-
Smith et al., 2017). A comparative proteomic analysis using mass spectrometry (MALDI-
TOF/TOF) was conducted on resistant cotton (Gossypium barbadense) infected with
Verticillium dahliae, revealing 188 differentially expressed proteins and identifying several
genes involved in secondary metabolism, reactive oxygen burst, and phytohormone
signaling pathways (Gao et al., 2013). However, owing to higher costs and lower sensitivity,
proteomics is being utilized less frequently than other omics techniques for metabolic

pathway gene discovery.

4.5 Integrative multi-omics approaches

Metabolites are interconnected and form a complex and tightly regulated metabolic
network, making the use of a single-omics technique prone to inherent biases. With
technological advances in profiling metabolites, genes, and proteins, the application of
combined multi-omics technologies provides new strategies and opportunities to discover
stress-related metabolic pathways in plants.

Metabolite-based genome-wide association studies (mGWASs), which make use of
both genomics and metabolomics data, have emerged as a powerful tool for linking
metabolites with biosynthetic and regulatory genes (Fang and Luo, 2019; Ding et al.,
2021b). mGWASs greatly facilitate large-scale gene—metabolite annotation and
identification in plants, offering valuable insights into the genetic and biochemical basis of
the plant metabolome. For example, mGWASs have been successfully performed to
identify biosynthetic genes involved in maize specialized metabolisms, such as
benzoxazinoids, terpenoids, and flavonoids (Zhou et al., 2019; Ding et al., 2021b; Forster
et al., 2022). For mGWASs, increasing the number and diversity of accessions in the panel

is prioritized over having multiple replicates of the same accession since a larger diversity
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panel can provide a broader representation of genetic variation and increase the power to
identify significant associations between metabolites and genes across different accessions
(Zhou et al., 2019).

In addition to mGWASs, metabolite-based quantitative trait locus analysis (mQTL)
based on bi-parental populations has also been employed for pathway gene discovery in
plants. For instance, mQTL analysis was performed and successfully identified three P450s,
ZmCYP81A37, ZmCYP81A38, and ZmCYP81A39, for the biosynthesis of
sesquiterpenoid antibiotics zealexins in maize (Ding et al., 2020). mQTL and mGWAS are
two complementary forward genetic approaches, and their combination provides effective
information for candidate gene mining. These metabolite-based genetic mapping
approaches also complement other methods in metabolite identification, including
coelution tests with known compounds and feature network analysis.

Using metabolite concentration ratios (metabolite ratios) as mapping traits in
mGWASs has been found to reduce overall biological variability in population datasets
and improve statistical associations (Petersen et al., 2012). The nature of a metabolite ratio
may directly reflect the biochemical function of an enzyme or transporter associated with
the pair of metabolites. This approach is particularly useful when prior knowledge of the
biosynthetic pathway is available. By employing metabolite ratios as traits in mGWASs,
researchers have successfully identified biosynthetic genes involved in plant specialized
metabolism. For example, in a maize flavonoid biosynthesis study, an additional FOMT
(flavonoid O-methyltransferase)-encoding gene was identified by an mGWAS using the
apigenin/genkwanin ratio as a trait. This gene was not detected by mGWASs directly using
the concentrations of either apigenin or genkwanin (Forster et al., 2022).

Due to linkage disequilibrium (LD), genetic markers (e.g., SNPs) identified by
mGWASSs often reside outside the candidate genes and can sometimes be relatively far
away from them, making it challenging to select the candidate genes. Transcriptomics, in
combination with mGWASs, offers an efficient approach to prioritize the candidate genes
at mGWAS loci. For example, we recently used this approach to prioritize a reductase
catalyzing A-series kauralexin biosynthesis at an mGWAS locus, which spans ~800 kb
containing 58 predicted genes (Ding et al., 2019). In addition, transcriptome-wide

association studies (TWASs) in combination with mGWASs have been proven to be very
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helpful in prioritizing causal genes at mGWAS loci in humans (Ndungu et al., 2020). Its
potential in prioritizing candidate biosynthetic genes in plants is also promising.

In addition to the integration of omics approaches discussed above, other integrative
multi-omics analyses are also highly valuable in discovering plant specialized metabolism.
For example, the mechanism of light-induced anthocyanin biosynthesis in eggplant was
analyzed using a combination of transcriptomics and proteomics, revealing a regulatory
model for light-induced anthocyanin biosynthesis (Li et al., 2017). Moreover, the
integration analysis of transcriptomics and metabolomics data enables mutual validation,
facilitates the discovery of key genes, metabolites, and metabolic pathways from extensive
datasets, and provides a comprehensive understanding of complex biological processes.

Single-cell transcriptomics and single-cell metabolomics are also valuable tools in the
study of plant specialized metabolism. These techniques allow researchers to examine the
molecular profiles of individual cells, providing insights into cellular heterogeneity and
revealing rare or transient metabolic states that might be overlooked in bulk analyses
(Vandereyken et al., 2023). For example, the combination of single-cell transcriptomics
and single-cell metabolomics allowed the identification of a reductase for
anhydrovinblastine biosynthesis in the MIA pathway (Li et al., 2023).

Collective analyses of the transcriptome, proteome, and metabolome can uncover
metabolic pathway inter-conversions and drive gene discoveries in plants, by associating
temporal and spatial expression levels of genes and enzymes with metabolite abundance
across different samples. (Ding et al., 2021b). For example, a time-course experiment was
conducted on maize stem tissues to study zealexin biosynthesis in response to fungal
elicitors, and the data clearly showed that genes, enzymes, and metabolites involved in the
zealexin pathway had a similar expression pattern (Ding et al., 2020), providing a valuable
strategy for studying plant specialized metabolism.

Integrative multi-omics approaches hold great promise for advancing our
understanding of plant specialized metabolism. By combining data from various omics
techniques, researchers can overcome individual technique limitations, gain a more holistic
view of metabolic networks, and identify key genes and metabolic pathways involved in

plant stress responses.
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5 Functional validation of candidate pathway genes

Following candidate gene identification, the verification of enzyme function requires
robust biochemical and genetic approaches. Compared to traditional molecular cloning,
which requires a considerable amount of time and human resources, DNA synthesis is
becoming a cost-effective approach for the rapid assembly of candidate genes into
expression vectors for functional analysis (Blaby and Cheng, 2020). DNA synthesis, along
with synthetic biology and genetic engineering tools, allows for larger-scale enzyme
biochemical analyses and metabolic pathway reconstruction in heterologous hosts like
yeast, E. coli, and N. benthamiana (Figure 3). Biochemical approaches for functional
validation may face challenges such as low protein expression, low enzymatic activity, and
requirements for co-enzymes and substrates. To overcome these issues, in vivo expression
systems through combinatorial enzyme expression in microorganisms and plants have been
developed. Among them, Agrobacterium-mediated transient expression in N. benthamiana
has become a routine system for plant specialized metabolism research (Bach et al., 2014;
Tiedge et al., 2020). This plant expression system has expanded our understanding of
biosynthetic pathways, facilitated the identification of novel enzymes, and provided a
platform for efficient production of valuable metabolites. This system offers several
advantages, including the ease of coexpressing multiple genes in a combinatorial manner,
the presence of endogenous biosynthetic pathway precursors, and the ability to interrogate
enzyme activity without the need for protein purification (Ding et al., 2021b). Coexpression
of multiple genes using the Agrobacterium-mediated transient expression system in .
benthamiana is typically accomplished by co-infiltration of multiple Agrobacterium strains
that each contains one target gene. Recent advances in specialized metabolism discovery
using this approach include the demonstration of the 10-gene maize zealexin pathway, the
large-scale production of rice momilactones, and other valuable plant natural products
(Ding et al., 2019; Ding et al., 2020; De La Pefia and Sattely, 2021). Despite the benefits
of N. benthamiana as an expression system, the presence of endogenous enzymes and
similar pathways in this plant species could potentially interfere with introduced pathways.
For example, endogenous glycosyltransferases in N. benthamiana could derivatize the

early MIA pathway intermediates, and the removal of these endogenous enzymes could
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facilitate the production of the early MIA pathway product, strictosidine, in M.
benthamiana (Dudley et al., 2022).

Coexpression of multiple genes using the Agrobacterium-mediated transient
expression system in N. benthamiana is typically accomplished by co-infiltration of
multiple Agrobacterium strains that each contains one target gene. To improve the
efficiency of co-expressing multiple genes, researchers have explored the use of 2A
peptides, which enable the expression of multiple proteins under the control of a single
promoter (Sharma et al., 2012; Liu et al., 2017). For example, the F2A peptide was
successfully used to express three betalain biosynthetic genes under the control of
Cauliflower Mosaic Virus (CaMV) 35S promoter in Arabidopsis (He et al., 2020).
Potentially, 2A-containing peptides could be utilized to co-express multiple pathway genes
in the Agrobacterium-mediated transient expression system, enhancing the likelihood of
plant cells co-expressing multiple biosynthetic genes to increase the production of target
metabolites while reducing the formation of intermediate metabolites.

Gene function can also be validated by using genetic mutants obtained through
various methods, including genome-wide variation mining, classical ethyl methane
sulfonate-induced mutations, T-DNA insertion lines, or expanding transposon-insertion
mutant collections (Ding et al., 2021b). For plant species with available genetic resources,
these mutant lines can be valuable tools to study the effects of gene disruption on
specialized metabolism and the resulting phenotypes. To precisely create mutations in
candidate pathway genes, CRISPR/Cas9 genome editing approaches and RNA-guided
gene silencing techniques are commonly used in plant research. These tools allow
researchers to create stable and transient gene modifications for functional studies (Mei
and Whitham, 2018; Zhu et al., 2020). For example, we recently developed a maize zx/
zx2 zx3 zx4 quadruple mutant using a CRISPR/Cas9 approach, which lacks zealexin
production and has a changed root microbiome (Ding et al., 2020). The combination of
biochemical and genetic approaches, along with advancements in DNA synthesis, synthetic
biology, and gene editing technologies, has significantly enhanced our ability to validate
the function of candidate pathway genes in specialized metabolism. In addition, cell-free
systems have been used to characterize candidate pathway genes and study complex,

modular pathways of plant specialized metabolism in vitro (Tiedge et al., 2020). These
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tools and techniques discussed here will continue to play a vital role in advancing our
understanding of plant stress-related specialized metabolism and in harnessing these

specialized pathways for improving plant stress resilience.

6 Conclusion and future perspectives

The advancements in genomics, metabolomics, transcriptomics, and proteomics, as
well as integrative multi-omics, have significantly enhanced our understanding of
specialized metabolism in plants (Singh et al., 2022). Other omics, such as flavoromics and
lipidomics, also contribute to the study of plant specialized metabolites. These approaches
have paved the way for studying pathway genes and their biological functions more
efficiently, leading to a better understanding of the production of specialized metabolites
and their roles in plant defense and stress resilience. Additionally, with the continuous
improvements in high-throughput metabolic profiling and sequencing technologies,
mGWAS has become a potent forward genetics strategy to unravel the genetic and
biochemical basis of specialized metabolism in plants. Moreover, genetic engineering and
synthetic biology offer exciting possibilities for developing plants with modified metabolic
traits. By manipulating or introducing novel metabolic pathways, scientists can create
plants with enhanced stress resilience and other desirable traits in the coming years.
Techniques like CRISPR/Cas9 have revolutionized gene editing and made it easier to
engineer specific traits in plants.

The integration of multi-omics approaches, such as combining data from genomics,
metabolomics, transcriptomics, and proteomics, will be crucial in furthering our
understanding of plant specialized metabolism. These data-driven approaches, coupled
with advanced computational methods, biochemical techniques, synthetic biology, and
genetic approaches, can provide valuable insights into complex metabolic and biological
processes. Additionally, the development of efficient plant transformation methods will
play a vital role in applying the knowledge gained from specialized metabolism research
to crop improvement. Faster and more reliable transformation techniques will enable the
practical implementation of genetically modified plants with desired traits, such as stress

tolerance.
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The future of specialized metabolism research in plants looks promising, driven by
advances in various scientific disciplines and technologies. By leveraging the knowledge
obtained through omics-based approaches and genetic engineering as well as other
techniques, we expect to see the emergence of more stress-resistant plants with modified
metabolic traits, which will contribute to sustainable agriculture and global food security

in the future.
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Figure 1 Major classes of plant specialized metabolites and their biological functions.

The major classes of plant specialized metabolites, including phenylpropanoids, terpenes,
alkaloids, and other specialized metabolites are displayed. Specialized metabolites play
crucial roles in protecting plants against both abiotic stresses (e.g., light, heat, drought, cold,
flood, salinity, and metals) and biotic stresses (e.g., pests and pathogens).

Figure 2 Overview of omics-based approaches for specialized metabolism discovery in
plants. Single and combination of omics approaches, including metabolomics, genomics,
transcriptomics, and proteomics as well as integrative multi-omics, greatly accelerate the
discovery of plant specialized metabolism. mGWAS, metabolite-based genome-wide
association analysis; TWAS, transcriptome-wide association analysis.

Figure 3. Schematic overview of high throughput approaches for characterization of
candidate biosynthetic genes. The figure was created with BioRender.com.
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