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Abstract 

This paper describes automated identification of the milling stability boundary using Bayesian machine learning and experiments. The Bayesian 

machine learning process begins with the user’s initial beliefs about milling stability. This “prior” is a distribution that uses all available 

information, which may be based only on experience or may be informed by physics-based model predictions. Experiments are then completed 

to update this prior by calculating the “posterior,” a modified probabilistic description of the milling stability limit based on the new information. 

The approach is demonstrated and results are presented for both numerical and experimental cases. 
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1. Introduction  

High speed machining remains an important capability for 

discrete part manufacturing. To select operating parameters, the 

stability lobe diagram, which separates the stable axial depth of 

cut-spindle speed combinations from unstable (or chatter) 

combinations, may be used [1].  

 

 

Nomenclature 

A uncertain event 

B experimental result  

N spindle speed  

b axial depth of cut 

 

i axial depth of cut grid point index 

j spindle speed grid point index 

p probability 

s stable 

u           unstable 

G   arbitrary grid point in the domain  

T  test grid point 

Ug  total grid uncertainty 

+  stable result 

-  unstable result 

σN  standard deviation in spindle speed 

σNbT  standard deviation in spindle speed at test axial depth 

σb  standard deviation in axial depth of cut 

Ks specific cutting force coefficient 
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The regeneration of surface waviness during material 

removal is the primary mechanism for chatter in machining [1-

5]. Stability lobe diagrams enable the best spindle speeds to be 

selected that provide stable machining at increased axial depths 

of cut. These best spindle speeds occur where the tooth passing 

frequency is an integer fraction of the natural frequency that 

corresponds to the most flexible structural mode of vibration 

[1]. For a given tool-material combination, calculating the 

stability lobe diagram requires knowledge of the tool point 

frequency response function and the cutting force coefficients.  

These two input requirements can impose a significant hurdle 

for implementing the stability lobe diagram to maximize 

material removal rate in a production environment. Without 

knowledge of the tool point FRF and the cutting force 

coefficients, machining parameters are typically determined 

using tool supplier and handbook recommendations, or 

previous experience (i.e., what worked before). Furthermore, 

although analytical and numerical models exist to predict 

stability, they are typically treated as deterministic and do not 

consider the uncertainty in the stability boundary location due 

to uncertainties in the model inputs [6-8].  

The objective of this study is to identify the stability 

boundary in a production environment by: 1) ‘learning’ the 

stability boundary using experimental results within a Bayesian 

updating framework; and 2) minimizing the number of required 

experiments. Previously, Karandikar et al. used a Bayesian 

random walk approach to identify optimal stable parameter 

combinations using profit as the objective function [9]. Li et al 

used an ensemble Markov Chain Monte Carlo method to 

update stability model parameters using experimental data 

[10]. Freidrich et al used online learning with a combination of 

reinforcement learning and nearest neighbor classification to 

determine the stability boundary [11]. There are two main 

contributions of this paper. First, a novel Bayesian learning 

approach to determine the stability boundary from 

experimental results is implemented by defining a prior and 

likelihood function that consider the underlying physics and the 

nature of the stability behavior. Second, an adaptive 

experimental strategy to identify the stability boundary is 

presented. The advantages of the proposed approach over the 

methods in the literature are: 1) the method works with and 

without an underlying stability model; 2) updating is possible 

with a single data point, and; 3) the method is computationally 

efficient. The remainder of the paper is organized as follows. 

Section 2 describes the Bayesian learning approach for stability 

boundary identification. Section 3 describes the experimental 

strategy for optimal parameter identification and the 

experimental results. Section 4 describes the influence of the 

prior. Conclusions are provided in Section 5. 

2. Bayesian learning for milling stability 

Bayes’ rule offers a normative method for updating 

probabilities when new information is made available. Let p(A) 

be the prior probability of an uncertain event A, p(B | A) be the 

likelihood of obtaining an experimental result B given event A, 

and p(B) be the probability of experimental result B. Bayes’ 

rule calculates the posterior probability of event A given 

experimental result B, denoted by p(A | B), as shown in Eq. 1. 

 

𝑝(𝐴 | 𝐵) =  
𝑝(𝐵 | 𝐴)𝑝(𝐴)

𝑝(𝐵)
                    (1) 

 

For milling stability, each axial depth-spindle speed 

combination is characterized using a probability of stability. 

The probability can be updated using Bayes’ rule when 

experimental results are available. The prior represents the 

initial belief and is constructed by incorporating all available 

information (from analytical models, theoretical 

considerations, available experimental data, and expert 

opinions) [9]. Bayesian learning offers two main advantages. 

First, process knowledge can be incorporated in the prior and 

the likelihood functions. Second, the prior (or initial beliefs) 

can be updated using limited data, as opposed to the larger 

datasets required by neural networks or support vector 

machines, for example.  

 

2.1 Constructing the prior 

 

As noted, the prior represents the user’s initial beliefs and 

can incorporate all available information. In the first portion of 

this study, it is assumed that the tool point FRF and the cutting 

force coefficients combination are not known. The prior 

probabilities are defined using only the knowledge that it is 

more likely to get an unstable cut as the axial depth is increased 

at any spindle speed. To illustrate, let the axial depth of cut, b, 

range be 0.01 mm to 20 mm and the spindle speed, N, range be 

10000 rpm to 20000 rpm. The axial depth of cut and spindle 

speed range is divided into grid points where each grid point 

has a probability of being stable, s, denoted by p(s), and a 

probability of being unstable, u, denoted by p(u). As each grid 

point can either be stable or unstable, the sum of p(s) and p(u) 

is equal to 1. Figure 1 shows the prior probability of stability in 

the axial depth-spindle speed domain, where the colorbar 

denotes the probability of stability. It decreases linearly from 1 

at an axial depth of cut equal to 0.01 mm to 0.05 at an axial 

depth of cut equal to 20 mm.  

Figure 1. Prior probability of stability. 

 

2.2 Bayesian updating at the test point using test result 

 

Let a stable result test be denoted by ‘+’ and an unstable test 

by ‘-’. Consider a stable result at the test grid point, denoted by 

T. The axial depth of cut and the spindle speed at the test point 

T are bT and NT, respectively. Equation 2 shows the application 
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of Bayes’ rule to update the probability of stability at the test 

point for a stable test result at that point. In Eq. 2, p(sT) is the 

prior probability of stability at T, p(+T | sT) is the likelihood 

probability of observing a stable result at T given that T is 

stable, and p(+T) is the probability of observing a stable result 

at T. The posterior probability of stability at T given a stable 

result at T is p(sT | +T). The likelihood probability of observing 

a stable result at T given T is stable is 1. The probability of 

observing a stable result at T is calculated as shown in Eq. 3 

using the law of total probability. In Eq. 3, p(uT) is the prior 

probability of T being unstable and p(+T | uT) is the likelihood 

probability of a stable result at T given that T is unstable. 

 

𝑝(𝑠𝑇|+𝑇) =
𝑝(+𝑇 | 𝑠𝑇)𝑝(𝑠𝑇)

𝑝(+𝑇)
                          (2) 

  

    𝑝(+𝑇) = 𝑝(+𝑇  | 𝑠𝑇)𝑝(𝑠𝑇) + 𝑝(+𝑇  | 𝑢𝑇)𝑝(𝑢𝑇)       (3) 

          

In Eq. 3, as stated, the likelihood probability of a stable 

result at T given that T is stable, p(+T | sT), is equal to 1. The 

likelihood probability of a stable result at T given that T is 

unstable, p(+T | uT), is equal to 0. Substituting the probability 

values in Eq. 2, the posterior probability of stability at T given 

stable result at T is 1, as shown in Eq. 4. Similarly, it can be 

shown that the posterior probability of stability at T given an 

unstable result at T, p(sT | −T), is 0.  

 

            𝑝(𝑠𝑇 | +𝑇) = 
1 ×𝑝(𝑠𝑇)

1×𝑝(𝑠𝑇)+0×𝑝(𝑢𝑇)
= 1            (4)       

 
2.3 Bayesian learning of stability in the axial depth-spindle 

speed domain 

  

Bayes’ rule can be used to update the probability of stability 

in the entire axial depth-spindle speed domain. The goal is to 

calculate the posterior probability of stability at each grid point 

given test result, stable or unstable, at T. Let G denote any 

arbitrary grid point in the axial depth-spindle speed domain. 

The axial depth of cut and the spindle speed at the grid point G 

are bi and Nj, respectively, where i and j increments in the axial 

depth of cut range and the spindle speed range, respectively. 

Using Bayes’ rule shown in Eq. 2, the objective is to determine 

probability of stability at G given test result at T (sT  is replaced 

by sG). At the test point T, bi = bT and Nj = NT. To calculate the 

posterior probability of stability at each grid point, the 

likelihood probabilities, p(+T | sG) and p(+T | uG), need to be 

determined. If the likelihood probabilities, p(+T | sG) and p(+T | 

uG), are equal, the posterior probability is equal to the prior 

probability; see Eq. 2 and Eq. 3. The distance from the test 

point beyond which the likelihood probabilities are equal 

determines the influence of the test result in updating the 

probabilities of stability.  

The first step is to calculate p(+T | sG) and p(+T | uG) as a 

function of the axial depth at the test spindle speed, NT. At bi ≤ 

bT, a stable result at T implies all axial depths of cut smaller 

than the test axial depth of cut are also stable; for simplicity, a 

stable result was added at smaller axial depths of cut. 

Therefore, at bi ≤ bT, p(+T | sG) was replaced by p(+G | sG) which 

is equal to 1 and p(+T | uG) was replaced by p(+G | uG) which is 

equal to 0. At bi > bT, p(+T | sG) is also 1, since if a grid point is 

known to be stable, a test at a smaller axial depth of cut will 
give a stable result with certainty. At bi > bT, p(+T | uG) increases 

from 0. The influence of the stable test result at bi > bT is 

defined using a standard deviation along the axial depth, 

denoted by σb. p(+T | uG) is calculated using non-normalized 

Gaussian probability densities with (bT + 3σb) as the mean and 

σb as the standard deviation giving p(+T | uG) = 1 at bT + 3σb. 

p(+T | uG) is kept equal to 1 at bi > bT + 3σb; this ensures the 

posterior probability of stability equals the prior probability of 

stability at bi ≥ bT + 3σb and, therefore, the influence of the 

stable result is restricted to bT + 3σb. p(+T | sG) and p(+T | uG) as 

a function of axial depth at NT is given by Eq. 5 and Eq. 6, 
respectively: 

 

   𝑝(+𝑇  | 𝑠𝐺)𝑁𝑇 , 𝑏𝑖 = 1            (5) 

  

 𝑝(+𝑇  | 𝑢𝐺)𝑁𝑇 , 𝑏𝑖 =

          {

0,

𝑒
−0.5(

(𝑏𝑖−(𝑏𝑡+3𝜎𝑏)

𝜎𝑏
)

2

,     
1,

𝑏𝑖 ≤  𝑏𝑇

 𝑏𝑇  <  𝑏𝑖  ≤   𝑏𝑇 + 3𝜎𝑏

𝑏𝑖 >   𝑏𝑇 + 3𝜎𝑏

         (6) 

 

 

The influence of the test result along the spindle speed was 

defined by a Gaussian standard deviation, denoted by σN. The 

influence of a stable result increases at smaller axial depths of 

cut due to the nature of the stability lobe diagram where the 

width of the stability lobe increases at smaller axial depths. 

Therefore, σN  is varied as a function of axial depth of cut. The 

influence of the test result along spindle speed at bT, denoted 

by σNbT, is first defined. At larger axial depth of cut values, σN 

value reduces linearly from σNbT at bT to zero at bT + 3σb. At 

axial depths of cut smaller than bT, σN increases at the same rate. 

Eq. 7 describes the relationship of σN as a function of the axial 

depth of cut for a stable test result. 

 

𝜎𝑁𝑏𝑖
=  {−

𝜎𝑁𝑏𝑇

3𝜎𝑏
𝑏𝑖 +  

𝜎𝑁𝑏𝑇
(𝑏𝑇+3𝜎𝑏)

3𝜎𝑏

0
  

𝑏𝑖 ≤  𝑏𝑇 + 3𝜎𝑏

𝑏𝑖 >   𝑏𝑇 + 3𝜎𝑏
   (7) 

 

At bi ≤ bT, p(+T | sG) is calculated using Gaussian probability 

densities with NT as the mean and σN as the standard deviation, 

scaled between 0.5 to 1. A probability of 0.5 implies that it is 

equally likely to get a stable result or an unstable result at T 

given grid point is stable or unstable, implying maximum 

uncertainty. Since p(+T | uG) increases from 0 along the spindle 

speed, it is calculated by subtracting p(+T | sG) from 1. As a 

result, p(+T | sG) and p(+T | uG) converge to 0.5 at NT ± 3σN; this 

restricts the influence of the test result to ± 3σN . p(+T | sG) and 

p(+T | uG) as a function of spindle speed at bi ≤ bT is given by 

Eq. 8 and Eq. 9, respectively.  

𝑝(+𝑇  | 𝑠𝐺)𝑁𝑗,𝑏𝑖 ≤ 𝑏𝑇  = 0.5 +  
𝑒

−0.5(
(𝑁𝑗− 𝑁𝑡)

𝜎𝑁𝑏𝑖

)

2

2
          (8) 

 

 𝑝(+𝑇  | 𝑢𝐺)𝑁𝑗,𝑏𝑖 ≤ 𝑏𝑇  = 1 −  𝑝(+𝑇  | 𝑠𝐺)𝑁𝑗,𝑏𝑖 ≤ 𝑏𝑇         (9) 

 

As noted, at bi > bT, p(+T | sG) = 1 and p(+T | uG) increases 

from 0 at bT to 1 at bT + 3σb (Eqs. 5 and 6). p(+T | sG) is calculated 
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as shown in Eq. 8. p(+T | uG) is calculated by scaling the 

Gaussian probability densities between 0.5 to the likelihood 

value given by Eq. 6 for p(+T | uG) as shown in Eq. 10. 

 

𝑝(+𝑇  | 𝑢𝐺)𝑁𝑗, 𝑏𝑖 > 𝑏𝑇  = 0.5 +  
𝑒

−0.5(
(𝑁𝑗− 𝑁𝑡)

𝜎𝑁𝑏𝑖

)

2

(
1

𝑝(+𝑇 | 𝑢𝐺)𝑁𝑇, 𝑏𝑖> 𝑏𝑇 − 0.5
)

  (10) 

 

 

The posterior probability of stability at each grid point is 

calculated from Eq. 2 and Eq. 3 using the prior probability of 

stability and the likelihood probabilities calculated using Eqs. 

5-10. Figure 2 shows the posterior probability of stability in the 

defined axial depth-spindle speed domain given a stable result 

at T = {10 mm, 15000 rpm}; the filled ‘o’ denotes a stable 
result and the colorbar gives the probability of stability. 

Figure 2. Posterior probability of stability given stable result at {10 mm, 15000 

rpm}, denoted by the filled ‘o’. 

 

For an unstable cut, the likelihood probability values are the 

opposite of a stable result. An unstable cut implies that all axial 

depths of cut higher than the test axial depth of cut are also 

unstable. Therefore, at the test spindle speed, an unstable result 

can be added at each axial depth of cut higher than the test axial 

depth. At the test axial depth of cut, p(−T | sG) increases from 0 

to 0.5 and p(−T | uG) reduces from 1 to 0.5 along the spindle 

speed. At axial depths less than the test axial depth, p(−T | uG) 

is equal to 1 and p(−T | sG) increases from 0 at bT to 1 at bT - 3σb. 

σN increases linearly at bi > bT  with the same slope. Eqs. 5-10 

would be modified for an unstable result and are not shown 

here for brevity. Figure 3 shows the updated probability of 

stability given an unstable result at {10 mm, 15000 rpm}; the 

‘x’ denotes the unstable result. 

3. Experimental validation 

The Bayes’ learning procedure for stability boundary 

identification was validated using experiments. As shown in 

Sections 2, each test result updates the probability of stability 

in the axial depth-spindle speed domain. The updated 

probability of stability is used to predict the stability boundary 

corresponding to a probability of stability equal to 0.5. A 

method to minimize the number of experiments required to 

identify the stability limit is as follows. 

 

Figure 3. Posterior probability of stability given unstable result at {10 mm, 

15000 rpm}, denoted by the ‘x’.  

 

To identify the stability limit, the objective is to reduce the 

uncertainty in the probability of stability at all grid points in the 

domain. If every grid point has a probability of stability equal 

to either 1 or 0, there is no uncertainty. In this case, the stability 

boundary will bisect the axial depths of cut where the 

probability of stability reduces from 1 to 0 at each spindle 

speed. If every grid point has a probability of stability equal to 

0.5 (each grid point is equally likely to be stable or unstable), 

the uncertainty is maximum. In this case, a prediction of the 

stability boundary cannot be made. The uncertainty at a grid 

point is calculated as the minimum value from: [1 −  p(sG), 

p(sG) − 0]. If the probability of stability at the grid point is 

either 1 or 0, the uncertainty at that grid point is 0. If the 

probability of stability at the grid point is 0.5, the uncertainty 

at that grid is maximum and equal to 0.5. The average total grid 

uncertainty, denoted by Ug, is defined as the average of the 

uncertainty at all individual grid points in the domain. The 

value of Ug ranges from 0 (where each grid point has a 

probability of stability equal to either 1 or 0) to 0.5 (where 

every grid point has a probability of stability equal to 0.5). Each 

experimental result (stable or unstable) updates the probability 

of stability at each grid point and therefore, reduces Ug. The 

optimal experimental parameters maximize the expected 

reduction in Ug after testing [12, 13]. The expected reduction 

in Ug after test at a grid point G is calculated as:  

 

𝐸[𝑅(𝑈𝑔)] =  𝑈𝑔𝑝𝑟𝑖𝑜𝑟
− (𝑝(𝑠𝑔)𝑈𝑔𝑠

+  𝑝(𝑢𝑔)𝑈𝑔𝑢
)   (11) 

 

In Eq. 11, Ugprior  is the average grid uncertainty for the prior 

probability of stability, Ugs and Ugu is the average grid 

uncertainty calculated from the posterior probabilities of 

stability assuming G is stable and unstable, respectively. E is 

the expectation and R denotes reduction. 

The experimental strategy was validated using experimental 

results. Milling tests were performed using a 12.7 mm 

diameter, four flute helical solid carbide endmill to machine a 

6061-T6 aluminum workpiece. The axial depth of cut range 

and spindle speed range were selected as 0.01 mm to 4 mm and 

6600 rpm to 10600 rpm, respectively. The experimental 

parameters were selected using the maximum expected 

reduction in Ug criterion described in Section 3. Before any 

experiments were performed, Ug was 0.256 for the prior shown 

in Fig. 1. For each experiment, the audio signal was recorded. 
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Stability was determined by converting the audio signal into 

the frequency domain using the Fast Fourier Transform (FFT) 

and by calculating the ratio of the chatter frequency amplitude 

to the largest amplitude among the fundamental tooth passing 

frequency and its harmonics, referred to as the stability ratio. If 

the stability ratio was greater than 0.5, the cut was considered 

unstable. Although other methods for determining machining 

stability have been developed, the stability ratio was applied in 

this study [14]. The test procedure was: 

1. calculate the expected reduction in Ug at all grid points in 

the domain using Eq. 11; 

2. select the spindle speed and axial depth combination where  

3. the expected reduction in Ug is maximum; 

4. perform test cut at the selected parameters; 

5. record audio signal and determine if the test cut is stable 

and unstable 

6. calculate posterior probability of stability based on the test 

result using the Bayesian learning procedure; posterior 

probabilities become prior for the subsequent update 

7. repeat steps 1-5 for 20 tests. 

For the updating procedure, σNbT and σb  were selected as 120 

rpm (3% of the spindle speed range) and 0.4 mm (10% of the 

axial depth of cut range), respectively. Figure 4 shows the 

updated probability of stability after 20 tests, where Ug reduces 

from 0.256 before any testing to 0.063 after 20 tests. Figure 5 

shows the FFT of the audio signal for the experiment at {1.2 

mm, 8600 rpm} and {2.1 mm, 9300 rpm}. At {1.2 mm, 8600 

rpm}, chatter frequency is observed at 2065 Hz and the test was 

considered unstable. The results were validated by measuring 

the tool point FRF by tap testing and calculating the stability 

lobe diagram using the average tooth angle approach [1]. The 

cutting force coefficient was selected as 600 N/mm2. 

Figure 4. Posterior probability of stability after 20 tests. 

 

Figure 6 compares the predicted stability boundary after 20 

tests using the Bayes learning method and the analytical 

stability boundary. As seen from Fig. 6, the maximum expected 

reduction in Ug method identified several stable operating 

parameters in the stability lobes at 7400 rpm and 9800 rpm. The 

Bayes’ learning method captures the nature of the underlying 

stability boundary as well as uncertainty in the stability 

prediction using the deterministic model. As seen from Fig. 6, 

the analytical lobe underpredicts the width of the stability limit 

at 9800 rpm. One limitation of the proposed experimental 

strategy is that the method is slow to converge to the stability 

boundary peak as seen at {9800 rpm, 3.9 mm} in Figure 6.  

Figure 5. FFT for {1.2 mm, 8600 rpm} unstable test (left) and {2.1 mm, 9300 

rpm} stable test (right); the chatter frequency for the unstable test is 2065 Hz. 

Figure 6. Posterior probability of stability after compared with analytical 

stability limit shown in solid line.  

 

4. Influence of the prior 

 

As noted, the prior represents the initial belief and is 

constructed by incorporating all available information. In the 

absence of knowledge of the FRF and the cutting force 

coefficients, the prior was based on the domain knowledge that 

it is more likely to get an unstable result as the axial depth 

increases at any spindle speed; see Fig. 1. If the FRF can be 

modeled (or measured), the prior can be generated by 

propagating the uncertainty in the model inputs through the 

stability model using a Monte Carlo simulation. The procedure 

is as follows. First, the tool point FRF was predicted using 

receptance coupling substructure analysis (RCSA). The details 

are provided in [1, 8, 15]. Given the predicted tool point FRF 

and assumed force model for the workpiece-tool pair, the 

corresponding stability limit was calculated using the 

frequency-domain analytical solution [1]. However, it was 

understood that both inputs included uncertainty. Therefore, 

mean values and standard deviations were selected to identify 

Gaussian distributions for the top uncertainty contributors: tool 

fluted diameter (standard deviation was 5% of the mean), tool 

stickout length (1%), carbide tool elastic modulus (5%), tool 

density (5%), connection stiffness and damping between the 

tool and holder (20%), and cutting force coefficients (20%). 

For each iteration in the Monte Carlo simulation, values for 

these uncertain variables were randomly selected, the tool point 

FRF was predicted, and a stability boundary was computed. At 

each grid point, the probability of stability was determined by 

calculating the fraction of the number of stability boundaries 

where the axial depth is greater than the grid point axial depth 

chatter 

frequency 

tooth 

passing 

frequency 

tooth 

passing 

frequency 
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at the same spindle speed. Figure 7 displays the prior 

probability of stability calculated using the Monte Carlo 

simulation, where Ug is equal to 0.114 for the informative prior. 

Figure 8 shows the posterior probabilities of stability after 20 

tests, where Ug reduces from 0.114 before any testing to 0.042 

after 20 tests. Comparing Figs. 6 and 8, beginning with the 

informative prior yields 17 stable tests and 3 unstable tests, 

while starting with the non-informative prior gives 9 stable and 

11 unstable tests. As expected, an informative prior leads to a 

quicker convergence to the true stability boundary. 

Figure 7. Prior probability of stability from the Monte-Carlo simulation 

 

Figure 8. Posterior probability of stability after 20 tests using the maximum 

expected reduction in Ug criterion. 

 

5. Conclusion 

 

A novel Bayesian learning approach for stability limit 

prediction and optimal machining parameter identification was 

presented. The motivation for the approach was to enable 

learning of the stability boundary when the tool point frequency 

response function and cutting force coefficients are not known. 

The prior was selected based on the knowledge that at larger 

axial depths of cut, it is more likely to get an unstable result. 

Results showed that the Bayes’ learning method was able to 

identify the stability boundary using test data. The Bayes’ 

learning method does not require a large number of data points; 

a single test result updates the probability of stability. This 

enables continuous learning of the stability boundary in an 

industrial setting where large number of data points for every 

tool-material combination may not be available. As shown in 

Figure 4, 20 tests give a good prediction of the stability 

boundary for an uninformed prior.   

An experimental strategy to optimize the selection of 

experimental parameters to identify the stability boundary 

using the maximum expected reduction in grid uncertainty was 

presented. Results showed that the method performs better than 

traditional grid-based design of experiment methods which are 

not adaptive and do not consider the experiment objective.  
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