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Abstract

This paper describes automated identification of the milling stability boundary using Bayesian machine learning and experiments. The Bayesian
machine learning process begins with the user’s initial beliefs about milling stability. This “prior” is a distribution that uses all available
information, which may be based only on experience or may be informed by physics-based model predictions. Experiments are then completed
to update this prior by calculating the “posterior,” a modified probabilistic description of the milling stability limit based on the new information.
The approach is demonstrated and results are presented for both numerical and experimental cases.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

Keywords: Machining; stability; artificial intelligence; machine learning; Bayes’ rule

1. Introduction axial depth of cut grid point index

spindle speed grid point index
High speed machining remains an important capability for probability
discrete part manufacturing. To select operating parameters, the stable
stability lobe diagram, which separates the stable axial depth of unstable

arbitrary grid point in the domain
test grid point

g total grid uncertainty
stable result

cut-spindle speed combinations from unstable (or chatter)
combinations, may be used [1].

+C_|ch-c\_._.

unstable result
OoN standard deviation in spindle speed

Nomenclature

A uncertain event onpt  Standard deviation in spindle speed at test axial depth
B experimental result Ob standard deviation in axial depth of cut

N spindle speed Ks specific cutting force coefficient

b axial depth of cut
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The regeneration of surface waviness during material
removal is the primary mechanism for chatter in machining [1-
5]. Stability lobe diagrams enable the best spindle speeds to be
selected that provide stable machining at increased axial depths
of cut. These best spindle speeds occur where the tooth passing
frequency is an integer fraction of the natural frequency that
corresponds to the most flexible structural mode of vibration
[1]. For a given tool-material combination, calculating the
stability lobe diagram requires knowledge of the tool point
frequency response function and the cutting force coefficients.
These two input requirements can impose a significant hurdle
for implementing the stability lobe diagram to maximize
material removal rate in a production environment. Without
knowledge of the tool point FRF and the cutting force
coefficients, machining parameters are typically determined
using tool supplier and handbook recommendations, or
previous experience (i.e., what worked before). Furthermore,
although analytical and numerical models exist to predict
stability, they are typically treated as deterministic and do not
consider the uncertainty in the stability boundary location due
to uncertainties in the model inputs [6-8].

The objective of this study is to identify the stability
boundary in a production environment by: 1) ‘learning’ the
stability boundary using experimental results within a Bayesian
updating framework; and 2) minimizing the number of required
experiments. Previously, Karandikar et al. used a Bayesian
random walk approach to identify optimal stable parameter
combinations using profit as the objective function [9]. Li et al
used an ensemble Markov Chain Monte Carlo method to
update stability model parameters using experimental data
[10]. Freidrich et al used online learning with a combination of
reinforcement learning and nearest neighbor classification to
determine the stability boundary [11]. There are two main
contributions of this paper. First, a novel Bayesian learning
approach to determine the stability boundary from
experimental results is implemented by defining a prior and
likelihood function that consider the underlying physics and the
nature of the stability behavior. Second, an adaptive
experimental strategy to identify the stability boundary is
presented. The advantages of the proposed approach over the
methods in the literature are: 1) the method works with and
without an underlying stability model; 2) updating is possible
with a single data point, and; 3) the method is computationally
efficient. The remainder of the paper is organized as follows.
Section 2 describes the Bayesian learning approach for stability
boundary identification. Section 3 describes the experimental
strategy for optimal parameter identification and the
experimental results. Section 4 describes the influence of the
prior. Conclusions are provided in Section 5.

2. Bayesian learning for milling stability

Bayes’ rule offers a normative method for updating
probabilities when new information is made available. Let p(A)
be the prior probability of an uncertain event A, p(B | A) be the
likelihood of obtaining an experimental result B given event A,
and p(B) be the probability of experimental result B. Bayes’
rule calculates the posterior probability of event A given
experimental result B, denoted by p(A | B), as shown in Eq. 1.

_ pBlAp4)
p(4]B) = BEOED 1)

For milling stability, each axial depth-spindle speed
combination is characterized using a probability of stability.
The probability can be updated using Bayes’ rule when
experimental results are available. The prior represents the
initial belief and is constructed by incorporating all available
information ~ (from  analytical  models, theoretical
considerations, available experimental data, and expert
opinions) [9]. Bayesian learning offers two main advantages.
First, process knowledge can be incorporated in the prior and
the likelihood functions. Second, the prior (or initial beliefs)
can be updated using limited data, as opposed to the larger
datasets required by neural networks or support vector
machines, for example.

2.1 Constructing the prior

As noted, the prior represents the user’s initial beliefs and
can incorporate all available information. In the first portion of
this study, it is assumed that the tool point FRF and the cutting
force coefficients combination are not known. The prior
probabilities are defined using only the knowledge that it is
more likely to get an unstable cut as the axial depth is increased
at any spindle speed. To illustrate, let the axial depth of cut, b,
range be 0.01 mm to 20 mm and the spindle speed, N, range be
10000 rpm to 20000 rpm. The axial depth of cut and spindle
speed range is divided into grid points where each grid point
has a probability of being stable, s, denoted by p(s), and a
probability of being unstable, u, denoted by p(u). As each grid
point can either be stable or unstable, the sum of p(s) and p(u)
is equal to 1. Figure 1 shows the prior probability of stability in
the axial depth-spindle speed domain, where the colorbar
denotes the probability of stability. It decreases linearly from 1
at an axial depth of cut equal to 0.01 mm to 0.05 at an axial
depth of cut equal to 20 mm.
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Figure 1. Prior probability of stability.

2.2 Bayesian updating at the test point using test result

Let a stable result test be denoted by ‘+’ and an unstable test
by ‘-’. Consider a stable result at the test grid point, denoted by
T. The axial depth of cut and the spindle speed at the test point
T are br and Nr, respectively. Equation 2 shows the application
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of Bayes’ rule to update the probability of stability at the test
point for a stable test result at that point. In Eq. 2, p(sr) is the
prior probability of stability at T, p(+r| sr) is the likelihood
probability of observing a stable result at T given that T is
stable, and p(+r) is the probability of observing a stable result
at T. The posterior probability of stability at T given a stable
result at T is p(sr | +7). The likelihood probability of observing
a stable result at T given T is stable is 1. The probability of
observing a stable result at T is calculated as shown in Eq. 3
using the law of total probability. In Eq. 3, p(ur) is the prior
probability of T being unstable and p(+r| ur) is the likelihood
probability of a stable result at T given that T is unstable.

_ prIsT)p(sT)
plspl+) = RTLDRCD) @

p(+7) = p(+r | sp)p(sr) + p(+7 | ur)p(ur) 3)

In Eq. 3, as stated, the likelihood probability of a stable
result at T given that T is stable, p(+1 | 1), is equal to 1. The
likelihood probability of a stable result at T given that T is
unstable, p(+r | ur), is equal to 0. Substituting the probability
values in Eqg. 2, the posterior probability of stability at T given
stable result at T is 1, as shown in Eq. 4. Similarly, it can be
shown that the posterior probability of stability at T given an
unstable result at T, p(sr| —), is 0.

1 Xp(sT) =1 (4)

p(srl+7) = 1Xp(sT)+0Xp(ur)

2.3 Bayesian learning of stability in the axial depth-spindle
speed domain

Bayes’ rule can be used to update the probability of stability
in the entire axial depth-spindle speed domain. The goal is to
calculate the posterior probability of stability at each grid point
given test result, stable or unstable, at T. Let G denote any
arbitrary grid point in the axial depth-spindle speed domain.
The axial depth of cut and the spindle speed at the grid point G
are bj and N;, respectively, where i and j increments in the axial
depth of cut range and the spindle speed range, respectively.
Using Bayes’ rule shown in Eq. 2, the objective is to determine
probability of stability at G given test result at T (st is replaced
by sc). At the test point T, bj = brand N;= Nr. To calculate the
posterior probability of stability at each grid point, the
likelihood probabilities, p(+r | sg) and p(+r | us), need to be
determined. If the likelihood probabilities, p(+1 | sg) and p(+r |
Ug), are equal, the posterior probability is equal to the prior
probability; see Eq. 2 and Eq. 3. The distance from the test
point beyond which the likelihood probabilities are equal
determines the influence of the test result in updating the
probabilities of stability.

The first step is to calculate p(+r | sg) and p(+r | ug) as a
function of the axial depth at the test spindle speed, Nt. At b; <
br, a stable result at T implies all axial depths of cut smaller
than the test axial depth of cut are also stable; for simplicity, a
stable result was added at smaller axial depths of cut.
Therefore, at b; <br, p(+7| sc) was replaced by p(+c | Sg) which
is equal to 1 and p(+7 | ug) was replaced by p(+c | us) which is
equal to 0. At b; > br, p(+1 | sg) is also 1, since if a grid point is

known to be stable, a test at a smaller axial depth of cut will
give a stable result with certainty. At b; > br, p(++ | ug) increases
from 0. The influence of the stable test result at b; > br is
defined using a standard deviation along the axial depth,
denoted by on. p(+7| ug) is calculated using non-normalized
Gaussian probability densities with (bt + 3ap) as the mean and
op as the standard deviation giving p(+r| ug) = 1 at br + 3ov.
p(+r| ug) is kept equal to 1 at b; > br + 3oy, this ensures the
posterior probability of stability equals the prior probability of
stability at bi = br + 30, and, therefore, the influence of the
stable result is restricted to br+ 3ob. p(+7]| Ss) and p(+7| ug) as
a function of axial depth at Nt is given by Eq. 5 and Eq. 6,
respectively:

p(+r | SeInpp; =1 ®)
p(+r | Ueny b, =
) S i b; < by
—os(PECEE) b < by < b+ 30, (6)
1' ’ bi > bT + 30—1)

The influence of the test result along the spindle speed was
defined by a Gaussian standard deviation, denoted by on. The
influence of a stable result increases at smaller axial depths of
cut due to the nature of the stability lobe diagram where the
width of the stability lobe increases at smaller axial depths.
Therefore, oy is varied as a function of axial depth of cut. The
influence of the test result along spindle speed at br, denoted
by onr, is first defined. At larger axial depth of cut values, on
value reduces linearly from on,r at brto zero at br + 30y, At
axial depths of cut smaller than br, oy increases at the same rate.
Eq. 7 describes the relationship of onas a function of the axial
depth of cut for a stable test result.

_ Nbp b, + GNbTZbTHGb) b; < by + 30, %
0 b bi > bT + 30'b

At b; <br, p(+7] s¢) is calculated using Gaussian probability
densities with Nt as the mean and o as the standard deviation,
scaled between 0.5 to 1. A probability of 0.5 implies that it is
equally likely to get a stable result or an unstable result at T
given grid point is stable or unstable, implying maximum
uncertainty. Since p(+r| ug) increases from 0 along the spindle
speed, it is calculated by subtracting p(+r| s¢) from 1. As a
result, p(+7]| s¢) and p(+r| ug) converge to 0.5 at Nt + 3oy; this
restricts the influence of the test result to + 3on. p(+7] S¢) and
p(+r | ug) as a function of spindle speed at b;i < by is given by
Eq. 8 and Eq. 9, respectively.

_O.S(Wg; ”9)2
e b;

p(+r | SG)Nj,bist =05+ — )]

p(+T |u'G)Nj,biSbT =1- p(+T | SG)Nj,biSbT (9)

As noted, at bi> by, p(+7 | s¢) = 1 and p(+1 | ug) increases
from O at brto 1 at br+ 30, (Egs. 5and 6). p(+1| se) is calculated



4 Karandikar / Procedia CIRP 00 (2019) 000-000

as shown in Eq. 8. p(+r | ug) is calculated by scaling the
Gaussian probability densities between 0.5 to the likelihood
value given by Eq. 6 for p(+7| ug) as shown in Eg. 10.

2
(Nj—N¢)
—05{ ——
e b;

1
PGT I UGNT, bj> by ~ 0-5)

(10)

p(+r | uG)Nj,bL->bT =05+ (

The posterior probability of stability at each grid point is
calculated from Eqg. 2 and Eqg. 3 using the prior probability of
stability and the likelihood probabilities calculated using Egs.
5-10. Figure 2 shows the posterior probability of stability in the
defined axial depth-spindle speed domain given a stable result
at T = {10 mm, 15000 rpm}; the filled ‘0’ denotes a stable
result and the colorbar gives the probability of stability.
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Figure 2. Posterior probability of stability given stable result at {10 mm, 15000
rpm}, denoted by the filled ‘o’.

For an unstable cut, the likelihood probability values are the
opposite of a stable result. An unstable cut implies that all axial
depths of cut higher than the test axial depth of cut are also
unstable. Therefore, at the test spindle speed, an unstable result
can be added at each axial depth of cut higher than the test axial
depth. At the test axial depth of cut, p(—| sg) increases from 0
to 0.5 and p(—| ug) reduces from 1 to 0.5 along the spindle
speed. At axial depths less than the test axial depth, p(—| uc)
isequal to 1 and p(—| Sg) increases from 0 at br to 1 at br - 3o.
on increases linearly at b; > bt with the same slope. Egs. 5-10
would be modified for an unstable result and are not shown
here for brevity. Figure 3 shows the updated probability of
stability given an unstable result at {10 mm, 15000 rpm}; the
‘x” denotes the unstable result.

3. Experimental validation

The Bayes’ learning procedure for stability boundary
identification was validated using experiments. As shown in
Sections 2, each test result updates the probability of stability
in the axial depth-spindle speed domain. The updated
probability of stability is used to predict the stability boundary
corresponding to a probability of stability equal to 0.5. A
method to minimize the number of experiments required to
identify the stability limit is as follows.
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Figure 3. Posterior probability of stability given unstable result at {10 mm,
15000 rpm}, denoted by the ‘x’.

To identify the stability limit, the objective is to reduce the
uncertainty in the probability of stability at all grid points in the
domain. If every grid point has a probability of stability equal
to either 1 or O, there is no uncertainty. In this case, the stability
boundary will bisect the axial depths of cut where the
probability of stability reduces from 1 to 0 at each spindle
speed. If every grid point has a probability of stability equal to
0.5 (each grid point is equally likely to be stable or unstable),
the uncertainty is maximum. In this case, a prediction of the
stability boundary cannot be made. The uncertainty at a grid
point is calculated as the minimum value from: [1 — p(Sc),
p(sc) — O]. If the probability of stability at the grid point is
either 1 or O, the uncertainty at that grid point is 0. If the
probability of stability at the grid point is 0.5, the uncertainty
at that grid is maximum and equal to 0.5. The average total grid
uncertainty, denoted by Uy, is defined as the average of the
uncertainty at all individual grid points in the domain. The
value of Uq ranges from 0 (where each grid point has a
probability of stability equal to either 1 or 0) to 0.5 (where
every grid point has a probability of stability equal to 0.5). Each
experimental result (stable or unstable) updates the probability
of stability at each grid point and therefore, reduces Ug. The
optimal experimental parameters maximize the expected
reduction in Uy after testing [12, 13]. The expected reduction
in Uy after test at a grid point G is calculated as:

E[RU)] = Uy . = (p(s)Us, + P, ) (11)

In Eq. 11, Ugyyior is the average grid uncertainty for the prior
probability of stability, Ug and Uy, is the average grid
uncertainty calculated from the posterior probabilities of
stability assuming G is stable and unstable, respectively. E is
the expectation and R denotes reduction.

The experimental strategy was validated using experimental
results. Milling tests were performed using a 12.7 mm
diameter, four flute helical solid carbide endmill to machine a
6061-T6 aluminum workpiece. The axial depth of cut range
and spindle speed range were selected as 0.01 mm to 4 mm and
6600 rpm to 10600 rpm, respectively. The experimental
parameters were selected using the maximum expected
reduction in Ug criterion described in Section 3. Before any
experiments were performed, Uy was 0.256 for the prior shown
in Fig. 1. For each experiment, the audio signal was recorded.



Karandikar / Procedia CIRP 00 (2019) 000-000 5

Stability was determined by converting the audio signal into

the frequency domain using the Fast Fourier Transform (FFT)

and by calculating the ratio of the chatter frequency amplitude

to the largest amplitude among the fundamental tooth passing

frequency and its harmonics, referred to as the stability ratio. If

the stability ratio was greater than 0.5, the cut was considered

unstable. Although other methods for determining machining

stability have been developed, the stability ratio was applied in

this study [14]. The test procedure was:

1. calculate the expected reduction in Ug at all grid points in

the domain using Eq. 11;

select the spindle speed and axial depth combination where

the expected reduction in Ugis maximum;

perform test cut at the selected parameters;

record audio signal and determine if the test cut is stable

and unstable

6. calculate posterior probability of stability based on the test
result using the Bayesian learning procedure; posterior
probabilities become prior for the subsequent update

7. repeat steps 1-5 for 20 tests.

For the updating procedure, on,rand o, Were selected as 120
rpm (3% of the spindle speed range) and 0.4 mm (10% of the
axial depth of cut range), respectively. Figure 4 shows the
updated probability of stability after 20 tests, where Ugq reduces
from 0.256 before any testing to 0.063 after 20 tests. Figure 5
shows the FFT of the audio signal for the experiment at {1.2
mm, 8600 rpm} and {2.1 mm, 9300 rpm}. At {1.2 mm, 8600
rpm}, chatter frequency is observed at 2065 Hz and the test was
considered unstable. The results were validated by measuring
the tool point FRF by tap testing and calculating the stability
lobe diagram using the average tooth angle approach [1]. The
cutting force coefficient was selected as 600 N/mm?2.
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Figure 4. Posterior probability of stability after 20 tests.

Figure 6 compares the predicted stability boundary after 20
tests using the Bayes learning method and the analytical
stability boundary. As seen from Fig. 6, the maximum expected
reduction in Uy method identified several stable operating
parameters in the stability lobes at 7400 rpm and 9800 rpm. The
Bayes’ learning method captures the nature of the underlying
stability boundary as well as uncertainty in the stability
prediction using the deterministic model. As seen from Fig. 6,
the analytical lobe underpredicts the width of the stability limit
at 9800 rpm. One limitation of the proposed experimental

strategy is that the method is slow to converge to the stability
boundary peak as seen at {9800 rpm, 3.9 mm} in Figure 6.
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Figure 5. FFT for {1.2 mm, 8600 rpm} unstable test (left) and {2.1 mm, 9300
rpm} stable test (right); the chatter frequency for the unstable test is 2065 Hz.
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Figure 6. Posterior probability of stability after compared with analytical
stability limit shown in solid line.

4. Influence of the prior

As noted, the prior represents the initial belief and is
constructed by incorporating all available information. In the
absence of knowledge of the FRF and the cutting force
coefficients, the prior was based on the domain knowledge that
it is more likely to get an unstable result as the axial depth
increases at any spindle speed; see Fig. 1. If the FRF can be
modeled (or measured), the prior can be generated by
propagating the uncertainty in the model inputs through the
stability model using a Monte Carlo simulation. The procedure
is as follows. First, the tool point FRF was predicted using
receptance coupling substructure analysis (RCSA). The details
are provided in [1, 8, 15]. Given the predicted tool point FRF
and assumed force model for the workpiece-tool pair, the
corresponding stability limit was calculated using the
frequency-domain analytical solution [1]. However, it was
understood that both inputs included uncertainty. Therefore,
mean values and standard deviations were selected to identify
Gaussian distributions for the top uncertainty contributors: tool
fluted diameter (standard deviation was 5% of the mean), tool
stickout length (1%), carbide tool elastic modulus (5%), tool
density (5%), connection stiffness and damping between the
tool and holder (20%), and cutting force coefficients (20%).
For each iteration in the Monte Carlo simulation, values for
these uncertain variables were randomly selected, the tool point
FRF was predicted, and a stability boundary was computed. At
each grid point, the probability of stability was determined by
calculating the fraction of the number of stability boundaries
where the axial depth is greater than the grid point axial depth
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at the same spindle speed. Figure 7 displays the prior
probability of stability calculated using the Monte Carlo
simulation, where Ugis equal to 0.114 for the informative prior.
Figure 8 shows the posterior probabilities of stability after 20
tests, where Ug reduces from 0.114 before any testing to 0.042
after 20 tests. Comparing Figs. 6 and 8, beginning with the
informative prior yields 17 stable tests and 3 unstable tests,
while starting with the non-informative prior gives 9 stable and
11 unstable tests. As expected, an informative prior leads to a
quicker convergence to the true stability boundary.
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Figure 7. Prior probability of stability from the Monte-Carlo simulation
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Figure 8. Posterior probability of stability after 20 tests using the maximum
expected reduction in Ug criterion.

5. Conclusion

A novel Bayesian learning approach for stability limit
prediction and optimal machining parameter identification was
presented. The motivation for the approach was to enable
learning of the stability boundary when the tool point frequency
response function and cutting force coefficients are not known.
The prior was selected based on the knowledge that at larger
axial depths of cut, it is more likely to get an unstable result.
Results showed that the Bayes’ learning method was able to
identify the stability boundary using test data. The Bayes’
learning method does not require a large number of data points;
a single test result updates the probability of stability. This

enables continuous learning of the stability boundary in an
industrial setting where large number of data points for every
tool-material combination may not be available. As shown in
Figure 4, 20 tests give a good prediction of the stability
boundary for an uninformed prior.

An experimental strategy to optimize the selection of
experimental parameters to identify the stability boundary
using the maximum expected reduction in grid uncertainty was
presented. Results showed that the method performs better than
traditional grid-based design of experiment methods which are
not adaptive and do not consider the experiment objective.
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