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Abstract—Graph convolution incorporates topological infor-
mation of a graph into learning. Message passing corresponds
to traversal of a local neighborhood in classical graph algo-
rithms. We show that incorporating additional global structures,
such as shortest paths, through distance preserving embedding
can improve performance. Our approach, Gavotte, significantly
improves the performance of a range of popular graph neu-
ral networks such as GCN, GAT,GraphSAGE, and GCNII for
transductive learning. Gavotte also improves the performance
of graph neural networks for full-supervised tasks, albeit to a
smaller degree. As high-quality embeddings are generated by
Gavotte as a by-product, we leverage clustering algorithms on
these embeddings to augment the training set and introduce
Gavotte+. Our results of Gavotte+ on datasets with very few labels
demonstrate the advantage of augmenting graph convolution with
distance preserving embedding.

1. INTRODUCTION

Graph convolution provides a mechanism to apply deep
learning to problems that are naturally represented as graphs
(e.g., see Hamilton et al. [2017]; Kipf and Welling [2017];
Veličković et al. [2017]). Graph convolutional network (GCN)
has been employed for a wide range of machine learning
tasks such as text classification Yao et al. [2019], traffic
pattern prediction Chen et al. [2020a], material design Xie
and Grossman [2018] and drug discovery Sun et al. [2019],
where superior performance is achieved in comparison to
prior approaches. GCNs have become more sophisticated with
extensions including for example edge convolution Wang et
al. [2019], neighborhood sampling Hamilton et al. [2017],
and attention mechanism Veličković et al. [2017]; Yang et al.
[2019].

GCNs achieve impressive results for semi-supervised learn-
ing (or transductive learning), where limited amount of data is
labeled. Transductive learning reflects the practical difficulty
of obtaining labels for data, and the amount of training samples
in the dataset is far less than that in supervised learning.
For example, in several popular citation network datasets,
the number of training samples is below 6%. The success of
GCNs in the transductive setting is due to their capability to
simultaneously leverage input features and graph structures for
learning.

Through message passing, the local neighborhood of a node
contributes features to learning. The neighborhood expands
as the network gets deeper. However, deeper GCNs have

limitations in their expressiveness due to over-smoothing Li
et al. [2019]. As a result, many high performing GCNs are
shallow in practice. This suggests that in many GCNs global
structures in a graph are not captured in learning. Some studies
attempt to introduce constructs other than local neighborhoods
to learning Yang et al. [2019]; You et al. [2019]. Unfortunately,
either the network or training procedure becomes much more
complicated. In addition, it is unclear if these extensions
are applicable to recent deeper neural networks Chen et al.
[2020b]; Rong et al. [2020a]; Xu et al. [2018] that address
the over-smoothing issue.

Structures such as spanning trees, shortest paths, articulation
points, min-cuts, and expanders lend unique properties to a
graph. They can be helpful to learning, especially transductive
learning. We explore incorporating one such global structure,
that is, shortest paths, through distance preserving embedding
to learning. Our approach, Gavotte (GrAph conVOlution wiTh
disTance Embedding), learns an embedding that preserves
the distance between a pair of nodes in the graph in the
embedding space, and at the same time learns a function for
node classification. Learning an embedding is unsupervised
while classification is supervised. Gavotte unifies the two by
employing one GCN for two tasks. It can be considered as
a meta learning approach as it works with most existing
GCN flavors such as vanilla GCN, GAT , GraphSAGE, and
GCNII. The capability to capture local neighborhood informa-
tion through graph convolution and global structure through
embedding yields improved performance for vanilla GCN,
GAT , GraphSAGE, and GCNII on our benchmark datasets.

The embedding generated by Gavotte enables further opti-
mizations for transductive learning on datasets with very few
labels. In Gavotte+, we augment the labeled set with nodes
from unlabeled sets that are closest to the training samples
in the embedding space. We then run Gavotte again with the
expanded training set. Significant improvement is observed for
datasets with very few labeled nodes.

Our main contributions are as follows.
• We incorporate global structures, for example, short-

est paths, through distance preserving embedding in
conjunction with GCNs for learning. Gavotte improves
the performance of both semi-supervised and supervised
learning, and motivates future GCNs to employ other
elaborate constructs from classical graph algorithms.



• Gavotte as a meta learning approach works with a range
of GCNs such as vanilla GCN, GAT , GraphSAGE, and
GCNII. Minimal changes are made to these neural net-
works with significant performance improvement.

• Gavotte+ further improves learning, and is especially
effective for datasets with very few labeled samples.
For example, Gavotte+ achieves 82.0% test accuracy for
Pubmed with 0.3% labeled data.

2. PRELIMINARIES AND RELATED WORK

Consider a graph G = (V,E), where V is the set of vertices
(or nodes) and E is the set of edges. |V | = n, and |E| = m.
There is an optional feature vector associated with each v ∈ V ,
denoted as v. A = [au,v], u, v ∈ V , is the adjacency matrix,
∆ = A−D is the Laplacian matrix, where D is the diagonal
matrix with Dv,v =

∑
u∈V au,v . For our discussion, we use M

to denote the similarity matrix and its entry mu,v measures the
similarity between two vertices u, v ∈ V or their associated
vectors u and v. ‖u‖2 denotes the L2 norm of u, and · is dot
product.

We next introduce some prior studies relevant to our work
on graph embedding, semi-supervised learning, and graph
convolution.

Graph Embedding
An embedding function f : V → Rt maps a node v ∈ V

or its associated vector v to a t-dimensional vector f(v) or
f(v) ∈ Rt. Note we use t instead of d for the number
of dimensions as d is reserved for distances in graph and
embedding space. With the similarity matrix M = [mu,v], a
natural objective function for graph embedding is given in Yan
et al. [2007]

min
f

∑
u6=v

(‖f(u)− f(v)‖2mu,v) (2.1)

As in practice it is difficult to compute M , approximations are
used (see, e.g., Cai et al. [2018]; Goyal and Ferrara [2018];
Xu [2020]).

DeepWalk Grover and Leskovec [2016] and Node2Vec Per-
ozzi et al. [2014] are two of the earliest graph embed-
ding approaches that employ deep learning. In DeepWalk
and Node2Vec, graph embedding is done by random walk
together with SkipGram modeling Mikolov et al. [2013]. Take
Node2Vec for example. For every source node v ∈ V , its
neighborhood NS(v) ⊂ V is generated through a neighbor-
hood sampling strategy S with random walks. The objective
is formulated as

max
f

∑
v∈V

logPr(NS(v)|f(v))

where Pr is the conditional probability.
GraphSAGE generates embeddings for nodes in a graph by

encouraging nearby nodes (e.g., those touched by a random
walk) to have similar embeddings or representations and dis-
parate nodes to have highly distinct representations Hamilton
et al. [2017]. The objective function for GraphSAGE is

− log(σ(zu · zv))−QEvn≈Pn(v) log(σ(−zu · zvn))

Here σ is the sigmoid function; Pn is a negative sampling
distribution; zu and zv are the projections for u and v,
respectively; and Q defines the number of negative samples.

Semi-supervised Learning

In semi-supervised learning with graphs, the nodes are
partitioned into labeled and unlabeled sets L and U , respec-
tively. L ∪ U = V . Generally, the objective function of semi-
supervised learning has the following form∑

v∈L
L(yv, f(v)) + λ

∑
u,v∈V

mu,v‖f(u)− f(v)‖2 (2.2)

The first term in Formula 2.2 is the supervised loss with
yv as the label for v. The second term imposes similarity
regularization, and yields a large penalty when similar nodes u
and v with a large mu,v are predicted to have different labels
f(u) and f(v). λ is a constant weighting factor.

In approximating M , most prior methods assume that nodes
close to each other in the graph tend to have the same labels
(e.g., see Weston et al. [2008]; Yang et al. [2016]; Zhu et al.
[2003]). This is known as clustering assumption. Replacing M
with Laplacian ∆ for example gives the following objective∑

v∈L
L(yv, f(v)) + λfT ∆f

Label propagation (LP) by Zhu et al. [2003] minimizes the
similarity regularization term with

mu,v = exp

(
−

t∑
i=1

(ui − vi)
2

ρ2i

)
where ρ1, · · · , ρt are length scale hyperparameters for each
dimension.

Using a similar M , Zhou et al. [2004] regularize supervised
learning by minimizing∑

u,v∈V
mu,v

∥∥∥∥∥ u√
Du,u

− v√
Dv,v

∥∥∥∥∥
2

Yang et al. [2016] employ context based embedding such
as DeepWalk in their semi-supervised learning approach, and
minimize an unsupervised loss of predicting the graph context.

GCNs

The vanilla GCN is a localized first-order approximation of
spectral graph convolution Kipf and Welling [2017].

hl+1
v = σ

bl +
∑

u∈N(v)

Cu,vh
l
uW

l


Here hlv is the hidden feature at node v at convolution level

l. For each node v, its hidden feature at next level hl+1
v is

computed by aggregating hidden states of its neighbors u ∈
N(v) and possibly of the incident edges as well. Cu,v is a
constant, b is the bias, and W is the weight to be learned.

Graph attention network (GAT) augments regular graph con-
volution with a multi-head attention mechanism that improves



performance Veličković et al. [2017]. In GAT , the multi-head
attention mechanism allows it to attend to all its neighbors
when the hidden feature of v is being computed. Formally, hv
is computed as

hl+1
v =

∑
u∈N(v)

αl
u,vW

lhlu

where αl
u,v = softmaxu(elu,v), W is the weight to be learned,

and eu,v is the edge between nodes u and v. GAT computes
hlv and eventually the prediction with the input of attention on
the edges elu,v , u ∈ N(v).

Initial residual connection and identity mapping are intro-
duced in in GCNII Chen et al. [2020b] to overcome over-
smoothing and leverage deep neural networks. They extend
GCN to express a high order polynomial filter with arbitrary
coefficients.

3. Gavotte– GRAPH CONVOLUTION WITH DISTANCE
EMBEDDING

Gavotte aims to leverage structures in a graph beyond the
local neighborhood of a node for learning. Plain message
passing alone is unlikely to capture global structures. First,
due to over-smoothing, most GCNs are shallow, and the
neighborhood that contributes to the learning of a node’s
feature is oftentimes small. Even in the absence of over-
smoothing, for a node v ∈ V , the contribution from a node u
that is outside of v’s immediate neighborhood gets diluted
during message passing. Some GCNs attempt to explicitly
utilize constructs beyond local neighborhood. In these studies,
the network architecture or the training procedure becomes
much more complicated Yang et al. [2019]; You et al. [2019],
reflecting the challenge of marrying classical graph algorithms
with graphical neural networks.

Gavotte exploits shortest paths in the graph in addition to
local neighborhoods through distance preserving embedding,
and for a node it produces an embedding as well as a prediction
of its property (e.g., in the case of classification, a predicted
label). Of the many structures in graphs such as cycles, paths,
minors, covers, expanders and so on, we choose shortest paths
as they form a natural metric space satisfying the properties
such as symmetry, d(u, v) = d(v, u), and triangle inequality,
d(u, v) + d(v, x) ≥ d(u, x). The embedding minimizes the
unsupervised loss

Lembedding =
∑

u,v∈V
(d(u, v)− ‖f(u)− f(v)‖2)2 (3.1)

for all pairs of u, v ∈ V , where d(u, v) is the (shortest path)
distance between u and v.

The resulting embedding does not depend on the similarity
matrix M or its approximation derived with clustering as-
sumption. The distance preserving embedding generated with
Equation 3.1 in theory can retain all topology information of
the original graph. To see this, let us assume the embedding
is isometric, and show the original graph can be reconstructed
from its embedding. Let f(V ) be the embedding function
for V . Obviously |f(V )| = |V |. For each u′ ∈ f(V ),

we create a node u. We create all edges incident to u to
reconstruct the graph. For that, we find Nu, that is, all
neighbors of u. As the embedding is isometric, we simply
let Nu = {v|d(v′, u′) = 1}, v′, u′ ∈ f(V ), and v is node
created for v′. Here we slightly abuse the notation d to denote
the distance between two vectors in the embedding space.
Thus the structure of the original graph is fully present in the
embedding. In practice there of course may be distortions in
the embedding. However, our experiments show that enough
structural information is preserved for our learning purpose.

Gavotte employs a GCN to optimize Lembedding and an-
other GCN to optimize a regular training loss Ltraining (e.g.,
cross-entropy loss) on the labeled set L ⊂ V . Equation 3.2
computes the features for v ∈ V with Gavotte when the GCN
is the vanilla GCN.

hlv =



v l = 0

σ

(
bl−1 +

∑
u∈N(v)

Cu,vh
l−1
u W l−1

)
1 ≤ l ≤ H

bHo +
∑

u∈N(v)

Cu,vh
H
u W

H
o v ∈ L, l = H + 1

bHe +
∑

u∈N(v)

Cu,vh
H
u W

H
e v ∈ V, l = H + 1

(3.2)
In the neural network represented by Equation 3.2, there

are H hidden layers. The biases b, bo, and be are for hidden
layers, the output layer, and embedding output (for computing
distance-preserving loss), respectively. The weight matrices
are similarly subscripted. After the Hth layer, it computes
an output feature for each v ∈ L and an embedding feature
for each v ∈ V . Note v ∈ L gets both the output feature
and the embedding feature. The architecture is demonstrated
in Figure 1.

inputu

hiddenu

outputu embeddingu

inputx inputz

hiddenx hiddenz

embeddingx embeddingz

distance preserving losspredictionu

Fig. 1: An example graph of three nodes. Node u has two
neighbors x and z. The hidden feature for u is computed with
the input features of u, x, and z, and the output and embedding
for u are computed with the hidden features of u, x, and z

In Figure 1, the supervised and unsupervised learning are
unified through graph convolution. The figure shows the learn-
ing architecture of Gavotte for a graph with V = {u, x, z},
E = {(u, x), (u, z)}, L = {u}. Data and operations asso-
ciated with the labeled node are shaded. Gavotte computes
a hidden feature h using graph convolution for each node.
From the same h, Gavotte computes a predicted output
for evaluating Ltraining and an embedding for evaluating



Lembedding . Combining them, the objective is to minimize
Ltraining + λLembedding .

Yang et al. in their semi-supervised learning framework,
Planetoid, use context prediction for embedding Yang et
al. [2016]. As Planetoid employs SkipGram for embedding
without using feature vectors, it has two separate paths of
information flow for learning. Planetoid needs an additional
algorithm to coordinate the learning from the two paths.

Many GCNs have been proposed in the literature, for
example, vanilla GCN, GraphSAGE, GAT , and GCNII, and
to the best of our knowledge, Gavotte works with all of
them. Gavotte may be viewed as a meta method to boost
the performance of GCNs. In Gavotte, unsupervised learning
(i.e., distance preserving embedding) shares much of the
same neural network structure with the supervised learning.
The quality of the embedding directly impacts the prediction
performance of Gavotte. We evaluate the produced embedding
by Gavotte in Section 4.

To compute Lembedding in Equation 3.1, we need to com-
pute all pair shortest paths (APSP). APSP is notoriously time
consuming. As is common in prior studies, we devise a simple
sampling scheme to reduce the computational complexity. In
each training step, we randomly sample s � n nodes as
representatives, and compute the distance from all nodes in
V to these s representative nodes.

Lembedding =
∑
u∈V

vi≈P (V ),i=1,··· ,s

(d(u, vi)− ‖f(u)− f(vi)‖2)2

(3.3)
Here P (V ) is a uniform distribution on V . The number of
terms in Lembedding is reduced from Θ(n2) to Θ(sn).

Computing d(u, v) is straightforward with breadth-first
search (BFS) if G is connected. For disconnected graph,
d(u, v) is usually defined to be ∞ and is problematic for
learning. To facilitate a well-behaved embedding, in Gavotte,
we set d(u, v) to be one larger than the largest diameter of
the connected component in G. Instead of complex algo-
rithms Chechik et al. [2014] and heuristics Crescenzi et al.
[2013], we approximate the diameter with a simple and fast
2-approximation algorithm, where we randomly select a node
in the graph (e.g., the hub), and compute a BFS tree from that
node. The diameter of the graph is no larger than twice the
depth of the BFS tree.

4. Gavotte PERFORMANCE

We first consider transductive learning with three cita-
tion network datasets Sen et al. [2008]: Cora, Citeseer, and
Pubmed. In these datasets, nodes correspond to documents,
edges correspond to citation links, and each node has a sparse
bag-of-words feature vector as well as a class label. The
characteristics of these datasets are summarized in Table I.
In this setting, only a small fraction of nodes, that is, 20
per class, are included in the training/labeled set. Pubmed is
the largest network with the smallest percentage of labeled
samples. Pubmed is connected, while Cora and Citeseer have

78 and 438 connected components, respectively. In both Cora
and Citeseer, there is one big component and many tiny
components (e.g., singletons or structures with two or three
nodes). Pubmed is representative of emerging large datasets
with few labels. Pubmed is the most challenging instance
for GCN extensions to improve upon vanilla GCN. It is
shown in Chen et al. [2020b] that minor improvement or even
degradation is observed for Pubmed with some of the state-of-
art GCNs such as GAT , APPNP Rozemberczki et al. [2021],
JKNet Xu et al. [2018], and Incep Rong et al. [2020a].

Cora Citeseer Pubmed
# nodes 2,708 3,327 19,717
# edges 5,278 4,552 44,324

# features 1,433 3,703 500
# classes 7 6 3

# nodes in training 140 120 60
# nodes in test 1,000 1,000 1,000

TABLE I: Characteristics of the three citation networks

We implement Gavotte in Pytorch version 1.8, and ex-
periment with various graph convolutions including vanilla
GCN, GAT , GraphSAGE, and GCNII. For GCN, GAT and
GraphSAGE, we use implementations from Deep Graph Li-
brary (DGL) version 0.6.1 Rong et al. [2020b]. For GCNII,
we use the author’s own implementation and hyperparameter
settings Chen et al. [2020b]. The experiments are run on a
NVIDIA DGX-2 with V100 GPUs.

Embedding Quality
As embedding impacts prediction performance, we examine

the quality of the embedding Gavotte produces. For that, we
run Gavotte with only unsupervised learning to produce an
embedding. Specifically, we minimize Lembedding in equa-
tion 3.3, and then feed the embedding vectors to a downstream
node classification task.

For illustration purposes, we embed Zachary’s Karate
Club Zachary [1977] graph, and we set t = 2 for easy visual-
ization. The embedding result is shown in Figure 2. The nodes
are painted in two colors representing the two communities
that are formed (each node belongs to one community). That
is, the nodes are classified into two categories, and the training
set contains two nodes, node 0 and node 32 with colors purple
and green, respectively. The embedding clearly separates the
two communities except for node 8, as shown by the dotted
line in the figure.

Recall that this graph embodies the relationship (interac-
tions outside the club) among 34 members of a karate club.
After a conflict between the administrator (node 0) and the
instructor (node 32), the club is split into two. Half of the
members formed a new club around the instructor, and the rest
formed a new club with a new instructor or gave up karate.
Zachary Zachary [1977] applies a max-flow, min-cut algorithm
with node 0 as source and node 32 as sink on the graph, and
correctly assigns all but one member of the club to the new
groups. That group member is node 81. The correlation with

1In Zachary’s study, the nodes are numbered from 1 to 34. Here our
numbering starts from 0



Fig. 2: Embedding of Zachary’s Karate Club dataset produced
by Gavotte

Zachary’s result suggests a connection between learning on
graphs and classical graph algorithms.

We run Gavotte for 400 epochs to generate an embedding.
To emphasize the quality of the embedding and the contribu-
tion to learning from graph topology, we exclude node features
from this experiment so no hints from the bag-of-words vectors
are taken during embedding. Each node is encoded as a one
hot vector. We set t = 128 and s = 13. We use the Adam
optimizer with a weight decay of 5e−4. After the embedding is
completed, for the downstream task, the input data is n = |V |
128-dimensional vectors, with |L| of them in the training set.
Test is done on the embeddings produced for the test set.
Each test set contains 1000 vectors. Note the downstream task
no longer has access to the original graph. Learning for the
downstream task uses a simple fully connected neural network
with one hidden layer of 256 units. ReLU is used as the
activation function. Training for the downstream task takes 100
epochs with the Adam optimizer with weight decay 5e − 4.
The classification results are shown in Table II.

Cora Citeseer Pubmed
Planetoid 0.691 0.493 0.664

GCN 0.592 ± .009 0.372 ± .01 0.550 ± .008
MLP 0.701 ± .005 0.482 ± .006 0.690 ± .005

TABLE II: Performance comparison of various learning meth-
ods on plain graphs without node features.

In Table II, the numbers for Planetoid are reproduced
from Yang et al. [2016]; GCN is with the vanilla GCN; and
MLP is the downstream task with the fully connected network
operating on the embeddings generated by Gavotte. GCN and
MLP numbers are collected with 10 runs. It is striking that
MLP outperforms GCN by a significant margin even though
it does not has access to the input graph. This suggests that the
graph topology is well preserved in the embedding generated
by Gavotte, and vanilla graph convolution does not fully utilize
the structural information in the graph.

Transductive Learning Results

We now present the transductive learning results with
Gavotte using node features. We experiment with GCN, GAT ,
GraphSAGE and and GCNII. Unless noted otherwise, the
hyperparameters, that is, number of layers, hidden layer size,
learning rate, and weight decay, are set as those proposed
by the authors in their original studies. GraphSAGE uses the
“gcn” aggregator function. In all experiments t = 128, s = 13.
The most important hyperparameter to tune for Gavotte is
λ. Recall that λ balances the weighting of the supervised
and unsupervised losses during training. If λ = 0, Gavotte
becomes standalone training with GCNs. Lembedding can be
viewed as a regularization for the supervised learning on
labeled data. Enforcing distance based embedding regularizes
by enforcing the solution to “heed” the global graph structures
(here the shortest paths). We find the best λ by a simple search
in the range [0.001, 1]. Note that we explicitly exclude 0 in
the search.

The results with the three citation network datasets are
shown in Table III. The numbers are collected with 10 runs for
each implementation. In Table III, the performance numbers
are in general agreement with the numbers reported by the
each method’s authors except for GAT . In our runs, GAT
improves the performance over GCN for Cora, but not as much
on Citeseer and Pubmed. There can be many subtle causes to
this behavior. Since the performance of GAT is surpassed by
GCNII, we do not further investigate this discrepancy.

Cora Citeseer Pubmed
GCN 0.815 ± .004 0.711 ± .006 0.790 ± .003

w. Gavotte 0.830 ± .004 0.720 ± .005 0.793 ± .003
GAT 0.826 ± .007 0.709 ± .006 0.785 ± .004

w. Gavotte 0.834 ± .006 0.718 ± .006 0.792 ± .005
GraphSAGE 0.816 ± .005 0.710 ± .007 0.780 ± .006
w. Gavotte 0.834 ± .004 0.718 ± .005 0.792 ± .006

GCNII 0.855 ± .003 0.721 ± .005 0.802 ± .007
w. Gavotte 0.862 ± .004 0.734 ± .006 0.811 ± .007

TABLE III: Test accuracy on citation networks

Gavotte improves the test accuracy across the board for
GCN, GAT , GraphSAGE, and GCNII. For example, it im-
proves over GCN for Cora, Citeseer, and Pubmed by 1.5,
0.8, and 0.3 percentage points, respectively. Moreover, the
performance of Gavotte with GCN is better than standalone
GAT and GraphSAGE. This makes Gavotte with vanilla GCN
a strong candidate for transductive learning in comparison
with some of the most popular implementations. In this case
Gavotte has the advantage of a very simple neural network
architecture, and it generates high quality embedding as a side
product.

GCNII is different from vanilla GCN, GAT , and Graph-
SAGE as it explicitly addresses over-smoothing and is able
to leverage deep networks (e.g., up to 64 layers). Supposedly
GCNII is able to capture features from a large neighborhood of
a node. Indeed GCNII outperforms GCN and GAT . The fact
that Gavotte with GCNII improves upon standalone GCNII



Chameleon Cornell Texas Wisconsin
# nodes 2,277 183 183 251
# edges 36,101 295 309 499

# features 2,325 1,703 1,703 1,703
# classes 4 5 5 5

TABLE IV: Characteristics of four additional networks

shows that it is still beneficial to explicitly incorporate global
structures into learning even when the network is deep.

Of the three datasets, Cora benefits the most from increas-
ingly sophisticated architectures. Classification accuracy with
Cora increases by about 5 percentage points from GCN to GC-
NII. Much more modest improvement, about 1.2 percentage
points is observed for Pubmed. Gavotte with GCNII brings
the accuracy to over 81%.

Full-supervised Learning Results
Gavotte works for full-supervised learning. In addition to

citation networks, for full-supervised learning we include four
more datasets, Chameleon, Cornell, Texas, and Wisconsin, as
is done in some prior studies (e.g., see Chen et al. [2020b]).
These datasets are web networks with nodes and edges rep-
resenting web pages and hyperlinks, respectively. Similar to
the citation network datasets, the feature associated with each
node is the bag-of-words representation of the corresponding
web page. Table IV summarizes the characteristics of these
datasets.

Table V shows the results of full-supervised learning with
seven datasets: Cora, Citeseer, Pubmed, Chameleon, Cornell,
Texas, and Wisconsin. For each dataset, we randomly split
nodes of each class into 60%, 20%, and 20% for training,
validation and test, respectively, and measure the performance
on the test sets over 10 random splits. Gavotte shows the
biggest improvement over GCNII for Wisconsin. The overall
improvement is more modest in comparison to the transductive
learning setup. This is expected as more training data becomes
available, the influence of graph structure wanes over increased
amount of node features.

5. Gavotte+ FOR DATASET WITH VERY SMALL L

GAT , GraphSAGE, and GCNII extend vanilla GCN with
improved learning performance. Yet the improvement is not
uniform across all datasets, as shown in Table III. For all
three GCNs, without the Gavotte augmentation, the biggest
improvement is observed with Cora. Smaller improvement is
observed with Citeseer and Pubmed. The improvement appears
to correlate with the amount (percentage) of labeled samples
in the dataset. Take the best performing GCN of the three,
GCNII, for example. About 4%, 1%, and 0.8% improvement
over vanilla GCN is achieved for Cora, Citeseer, and Pubmed,
respectively. The corresponding percentages of training sam-
ples are 5%, 3%, and 0.3%, respectively. The Pubmed dataset
represents the quintessential challenge of training with very
few labeled samples.

We propose Gavotte+, that leverages the embedding gener-
ated by Gavotte for datasets with a small L. The main mech-
anism of Gavotte+ is to “expand” the very limited training

set by adding samples from the original unlabeled set. Such a
mechanism is made possible by the high-quality embeddings
that Gavotte generates as a by-product for prediction tasks.
We cluster the embeddings generated for the nodes and add
nodes closest to the center of each category to the training set.
We give a brief sketch of Gavotte+ as follows.

For a graph G = (V,E) where V = L ∪ U , we first
run Gavotte with a certain GCN flavor, say GCNII, using
the labeled set L until stopping (e.g., patience is reached).
Gavotte generates an embedding vector for all v ∈ V . For
each label category i ∈ {1, 2, · · · , c}, we compute a center
Ci for all embedding vectors of labeled samples in category
i. The center can be computed by any number of clustering
algorithms. Let Qi be the set of q nodes in U with embeddings
closest to Ci, and let Q = ∪ci=1Qi. Obviously, |Q| = cq.

So far we have identified cq nodes in the unlabeled dataset.
In order to add them to L, we need to provide labels to them.
We give a node p ∈ Q label i if the embedding of p is closest
to Ci, i ∈ {1, 2, · · · , c}, with ties broken arbitrarily. Training
resumes with new L = L ∪Q and U = U −Q.

We experiment with Gavotte+ with both GCN and GCNII
on the citation network datasets. In our experiments, we add
q = 10 new nodes per class to the training set except for
GCNII with Pubmed. For Pubmed, we add 40 nodes per class.
The results are shown in Table VI.

First note that the labels we predicted for these nodes may
not always be correct when we add them to the training
(labeled) set. In the table, mis shows the average number
of mislabeled nodes in Q for 10 runs. Apparently there are
more mislabeled nodes in Q for Citeseer. The labeling is quite
accurate for Cora and Pubmed. Even in the case of mislabeled
nodes that might pollute training, Gavotte+ still improves
the accuracy of both GCN and GCNII for all datasets. The
improvement is bigger than previously achieved with Gavotte.
The improvement is significant with GCN for Cora and with
GCNII for Pubmed. Gavotte+ with GCNII achieves 0.820 test
accuracy with Pubmed. This is extraordinary considering how
GAT , GraphSAGE, and GCNII barely improve over vanilla
GCN for Pubmed.

6. CONCLUSION AND FUTURE WORK

We present Gavotte, an approach that leverages global
structures, i.e., shortest paths, for learning by unifying graph
convolution with distance preserving embedding. Gavotte suc-
cessfully embeds topological information for learning as evi-
denced by the superior performance of the downstream node
classification task using only the embeddings in comparison to
vanilla GCN with full access to the graph. As a meta method,
Gavotte improves the accuracies of GAT , GraphSAGE, GCNII,
and vanilla GCN for a wide range of datasets for transductive
learning. Gavotte improves the performance of GCNs for full-
supervised learning as well. We expect Gavotte will work with
many GCNs in addition to the ones used in our study. In com-
parison to other GCNs that attempt to incorporate structures
other than local neighborhoods into learning, Gavotte does



Method Cora Citeseer Pubmed Chameleon Cornell Texas Wisconsin
GCNII 0.885 ± .003 0.771 ± .005 0.896 ± .004 0.606 ± .003 0.749 ± .007 0.695 ± .006 0.741 ± .005

w. Gavotte 0.885 ± .003 0.774 ± .004 0.898 ± .005 0.602 ± .003 0.754 ± .006 0.697 ± .004 0.753 ± .005

TABLE V: Test accuracy for full-supervised learning on all datasets

Cora Citeseer Pubmed
GCN acc 0.815 ± .004 0.711 ± .006 0.790 ± .003

w. Gavotte+
acc 0.835 ± .004 0.724 ± .005 0.794 ± .005
mis 1 8.6 1.1
cq 70 60 30

GCNII acc 0.855 ± .003 0.734 ± .005 0.802 ± .007

w. Gavotte+
acc 0.863 ± .005 0.741 ± .005 0.820 ± .007
mis 0 10 7
cq 70 60 120

TABLE VI: Gavotte+ performance. Of cq nodes added to the
training set, the average number of mislabeled ones is shown
by mis.

not introduce complicated structures or training routines into
learning.

The high quality embedding generated by Gavotte is further
leveraged in Gavotte+ for learning with few labeled samples.
Pubmed has been challenging for many GCNs including GAT
and GraphSAGE. Gavotte+ improves upon the current best
implementation, GCNII, on the citation network dataset. For
Pubmed, it achieves an accuracy of 82.0%.

As there are numerous structures from classical graph theory
that determine the properties of the graph, our work motivates
future research of incorporating them to learning. Related
is the question of what structural information current GCNs
capture, especially the recent ones that adopt deep convolution.
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