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Abstract Beam-hardening (BH) artifacts are ubiquitous in X-ray CT
scans of additively manufactured (AM) metal components. While
linearization approaches are useful for correcting beam-hardened data
from single material objects, they either require a calibration scan or
detailed system and material composition information. In this paper,
we introduce a neural network-based, material-agnostic method to
correct beam-hardening artifacts. We train a neural network to map
the acquired beam-hardened projection values and the corresponding
estimated thickness of the object based on an initial segmentation to
beam-hardening related parameters, which can be used to compute
the coefficients of a linearizing correction polynomial. A key strength
of our approach is that, once the network is trained, it can be used
for correcting beam hardening from a variety of materials without
any calibration scans or detailed system and material composition
information. Furthermore, our method is robust to errors in the esti-
mated thickness due to the typical challenge of obtaining an accurate
initial segmentation from reconstructions impacted by BH artifacts.
We demonstrate the utility of our method to obtain high-quality CT
reconstructions from a collection of AM components — suppressing
cupping and streaking artifacts.

1 Introduction

X-ray CT reconstruction of AM components provides insight
on defects [1, 2] introduced by the manufacturing process,
allowing manufacturers to understand the impact of process
parameters on part performance and, in turn, design consis-
tent and reliable components. However, the complex atten-
uation of poly-chromatic X-rays as they propagate through
dense metals results in beam-hardening (BH) artifacts, such
as cupping and streaks, which make it challenging to detect
microstructurally relevant features (e.g., cracks, porosity)
in typical reconstructions. Methods to address BH can be
broadly classified into hardware and algorithmic approaches
[3, 4]. Hardware approaches involve filtering the X-ray beam
to suppress higher energies, but this method reduces the flux,
leading to poor reconstruction quality when the measurement
times are kept the same. This method also requires an expert
user to select the appropriate filter depending on the sample
to be scanned. In contrast, software approaches include the
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use of a heuristic polynomial to linearize the normalized data
[5] prior to the reconstruction, and more computationally
expensive methods that attempt to model the non-linearities
of the image formation process [6].

For industrial X-ray CT systems, linearization approaches are
preferred due to their low computational complexity. These
methods involve applying a polynomial correction to the nor-
malized measurement data so that the projection vs thickness
curve (p vs d) for the material is a straight line instead of
the typical curve seen particularly at higher thickness values.
In order to obtain this p vs d curve, one has to manufacture
and measure a calibration wedge sample [3] corresponding
to the same material as the component to be measured. For
single material components, the linearization polynomial can
be computed in theory even without a calibration sample, but
this requires knowledge of source spectrum, filtering hard-
ware specifications, and detailed knowledge of the detector
spectral response to obtain the p vs d curve which is often
impractical.

In this paper, we propose a new linearization approach based
on the use of a neural network (NN). We first train a NN to
map between the projected value and corresponding thick-
ness to the parameters of a Van de Casteel attenuation model
[7] by synthetically generating several test (p, d) data points.
During inference time, the thickness values corresponding to
each measurement are obtained by projecting an initial binary
segmentation of the reconstruction obtained using the FDK
algorithm [8]. Thus, we effectively obtain the parameters of
a Van de Casteel model from the neural network, which can
then be used to compute the linearization polynomial. The
main advantage of our method is that it once it is trained for
a collection of (p, d) data points, it can be used to correct for
BH due to a range of materials. We demonstrate the value of
our method by suppressing BH artifacts for numerous AM
components made of different materials without any manual
tuning of the algorithm - enabling a fully automated work-
flow for X-ray CT of metal AM components that produces
high quality reconstructions. Furthermore, our method is
robust against imperfect p vs d values due to an imprecise
segmentation - a common occurrence for dense parts with
complex geometries.

2 Method

Our method to correct for BH from single material scans
consists of three steps: 1) use a NN to map each projection
and estimated thickness value to the parameters of a BH
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model, 2) average the model parameters estimated by the
NN for all the (p,d) values and 3) use the averaged model
parameters to compute an 8" order linearization polynomial.
We train the proposed network solely on synthetically gener-
ated data using the bimodal energy model for BH from [7]. It
was demonstrated in [7] that BH can be simplified using two
dominant X-ray energies, £ and E,, where 1| and U, are the
corresponding linear attenuation coefficients (LAC) of the
material. The material’s non-linear projection vs thickness
can be obtained using

1+a
1+ e~ (1—i2)d

Poh = Hod +1n (1)
where the left hand side is the BH-affected projection, o
represents the ratio of the source-detector efficiency at said
x-ray energies, and d is the distance the x-ray beam has to
traverse within the material. The ideal (BH-free) projection,
which varies linearly with distance, is given by
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2.1 Training

We used a NN, consisting of 16 fully connected layers with
512 neurons with biases and a ReLLU activation, which we call
beam-hardening correction network (BHCN). The input layer
consists of 2 nodes for the projection value and associated
thickness and the output layer consists of 3 nodes for the
parameters of the model in (1). To get training data, we
randomly generate vectors of d'", o", ui", and uf’, each
uniformly drawn from its realistic range.

d" ~U(0 mm, 20 mm)
al” ~U(4, 8)
u; ~U03mm™", 0.6 mm™")
1y ~U(0.03mm™", 0.15 mm™")
, 1+of"
1+ 0" exp{— (11, — u3;)d;"}
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Our claim is that the network will not need to know the
material and should be able to estimate BHC parameters only
from projection and distance data. Therefore we feed BHCN
the pair (p', d'") as input and train it by minimizing the
weighted mean absolute error,

1 N
~ Lo — o+ 20ty — i |+ 5[ — s
i=1

The weight were empirically chosen so the losses from indi-
vidual parameters are somewhat comparable, and one does
not overwhelm the other.

2.2 Inference

In order to obtain parameters of the Van de Casteel model
from the BHCN, we first reconstruct the measured data using
the FDK algorithm. Next, we obtain a binary segmentation
of this reconstruction using Otsu’s algorithm [9] and forward

project it to obtain the distance traversed corresponding to
each measured projection. Then, BH-affected projection and
distance vectors are fed into the BHCN to get estimates of
vectors @, [ and Up. For each input data point the BHCN
outputs a set of parameters. Since the input is “noisy” be-
cause of the erroneous segmentation, the output (BHC param-
eters) is expected to be “noisy” too. Taking respective means
of the output vector estimates yields a “noise-free”/reliable
version of the BHC parameters. Then, BH correction in
projection using those parameters is followed by FDK recon-
struction. The overall inference is outlined in Algorithm 1.

Algorithm 1: BHCN inference

dax < largest expected object thickness;
g, <+ distance step size for polynomial fit, n < 8;
p < BH-affected projection, Impgy <— FDK(p);
Impy[metal] < 1, Impy [background] «+ 0;
d < Forward project(Impy );
for each i do

| o, ui, 15 < BHCN([pi,dil);
end
o g I o, ey T R, g ey X psY
dyec < [0, €4, 284, .. dmax];
Projph <= Hodyec +1n we,ﬂ%
PO jbhe < alilbr-‘;l.lz dyecs
fpalyfit — POly ﬁt(prajbhaprojbhcanadvec);
Pcorrect < fpolyfit (P)7 ImBHC — FDK(pcorrect);

3 Results

In Sec. 3.1, we compare our method with a baseline curve-fit
method and demonstrate that the baseline method can fail in
practical conditions. In Sec. 3.2, we compare our method to
a more robust, CAD- and physics—based, method.

3.1 Comparison with a curve-fit (trivial BHC) method
One method to estimate BH model parameters from BH-
affected projections is by minimizing the difference between
the model, i.e. Eq. (1), and the actual projection i.e. simple
curve fitting (CF) using

CF ,,CF

(OCCF,,LLI » Mo ): argmin {‘p_pmodel |2} 3)

CF CF ,CF
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where poqe 18 computed from Eq. (1) using the distance and
current iteration (ot“F, uCF uSt).

3.1.1 Simulation data

We start with simulation data to compare the BHCN and the
curve-fit methods by creating a synthetic metal component
with BH parameters (%", u©7, u$T)). Forward-projecting
the metal mask provides dST which, together with the BH
parameters, is used to obtain pp;, using Eq. (1) and py.
using Eq. (2). We feed the vector pair (ppj,,d) to BHCN and
curve-fit methods. The estimated (oBHCN yBHCN | BHCN)

and (a¢F, u€F u$t) will be used to get the BHC projections
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peacy and pcr, respectively. In the first case, which is ideal,
d is exactly known, i.e. d = d®T. This corresponds to the
top left subfigure in Fig. 1. The rest of the subfigures, in
clockwise direction, correspond to increasingly erroneous d
supplied to the two competing algorithms. d is the result of
incorrect segmentation (either metal declared as background,
or background declared as metal) of the uncorrected FDK
reconstruction using different threshold values for each of
the 5 remaining scenarios. Such challenges are common
when segmenting XCT scans of dense metal components
with complex shapes.

It can be seen that in the ideal case, they both perform quite
well, and the BHC projection vs distance from both algo-
rithms coincide with the ground truth projection. As the
segmentation starts to deteriorate, the curve-fit algorithm
performance degrades more than BHCN, as seen in the depar-
ture of its curve from that of GT. After analysing the p vs d
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Figure 1: p vs d curve for increasingly worsening segmentation
starting with top left in clockwise direction. Curve-fit degrades
more than BHCN as segmentation becomes more inaccurate.

curves, we perform FDK reconstruction for each method and
for each segmentation case. Fig. 2 corresponds to the recon-
structions from the bottom left scenario from Fig. 1. This is
the worst segmentation case among the six. The three slices
shown demonstrate the robustness of BHCN over CF in case
of incorrect segmentation, a common issue with complex
component geometry, scattering, noise, etc.

3.1.2 Experimental data

Fig. 3 demonstrates the performance of BHCN and curve-fit
algorithms on an experimental data set - a scan of a steel
turbine blade. Due to severe beam hardening, the binary
segmentation has large errors. We observe that the proposed
BHCN helps suppress cupping artifacts compared to the un-
corrected image, while CF has made beam hardening worse
and introduced artifacts.

3.2 Comparison with CAD- and physics—based BHC
method

The CAD- and physics—based model proposed in [10, 11]
was used to estimate the BHC parameters for alloys in our
case studies and to generate a baseline reference to compare
BHCN against. We refer to this method for BH artifact
reduction as reference. When new alloys are developed,
the elemental composition also changes, so the reference
model would require re-estimation of the beam-hardening
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Figure 2: Example of incorrect segmentation of uncorrected FDK
from simulated data from Fig. 1 bottom left p vs d curve. The top
row of the 3 subfigures indicate different slices of the reconstruc-
tion image. (left to right): Uncorrected FDK, incorrect metal mask,
ground truth, BHCN, CF. Bottom row of the subfigures: Profile
plots. Curve-fit has introduced artifacts and incorrect intensities,
and its profile plot, compared to BHCN’s, deviates more from that
of GT.

parameters. However, our universal BHC method is robust
for different alloys without any need for re-calibration.

3.21

To compare BHCN images with reference images, AM com-
ponents with complex geometries, including cylinders, poles,
fins, and inclines, were constructed from aluminium-cerium
(AlCe), stainless steel (316L), and nickel-cobalt (NiCo). In
Fig. 4, the reconstruction without any BHC, displays a high
degree of beam hardening. Both BHCN and the reference
method have similar reduction in BH, as highlighted by the
profile plots. The inset shows an expanded view of the ROI
marked in each image, highlighting the better contrast of the
BH corrected images near flaws in both BH corrected images.

Robustness across materials

Curve-fit

Est. metal
mask

Est. metal Curve-fit
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Figure 3: 2 slices from the reconstruction of a real turbine blade
scan (left to right) Uncorrected, estimated metal mask, BHCN
corrected, curve-fit corrected. BHCN makes the metal component
of the image more uniform, but curve-fit seems to introduce strange
intensities and distort the shape.
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Figure 4: (left to right) No correction, reference, BHCN; Profile
plot. BHCN reduces beam hardening artifact as much as the ref-
erence method as evident from the reduction in cupping artifact.
Both reference and BHCN have better defect contrast in the Rol.

3.2.2 Robustness across various geometries

AM allows for printing of complex geometries, which in
turn complicate beam hardening correction for XCT scans
of those components. Despite that, our results suggest that
the BHCN extends very well to complicated geometries. In
Fig. 5 BHCN reduces BH in the top and bottom subfigures
(pentagon and flower vase), and has more uniform-looking
image than the reference subfigure (blade).

4 Conclusion

We developed a BHC network (BHCN) that is more robust
than a baseline curve-fit method and compares well against
the recently proposed CAD- and physics—based reference
method that needs to be calibrated for each alloy. Our ex-
periments show that the BHCN reduces BH for most alloys
currently used in AM, and for different geometries. It also
furnishes better defect contrast that should lead to more accu-
rate defect characterization. Further, BHCN performs BHC
by reducing cupping artifacts and producing uniform-looking
images for all the alloys we tested for. We have also demon-
strated that BHCN works well with simulation and real data
despite the absence of accurate segmentation for the distance
data needed for BHCN input. This supports the claim that
in practical scenarios where perfect segmentation is not pos-
sible, BHCN can still perform beam-hardening reduction
robustly without any retraining, calibration, or knowledge of
the component material.

Uncorr.

Uncorr.

Figure 5: Different geometries and AM processes: (Top to bot-
tom) Pentagon, blade and flower vase; (left to right) No correction,
reference, BHCN. Both correction methods have similar reduction
in BH for pentagon and vase, but BHCN blade metal part looks
more uniform than that of the reference.
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