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Transverse particle motion in particle accelerators is governed almost totally by
non-solenoidal magnets for which the body maguetic field can be expressed as a
series expansion of the normal (b,) and skew (a,) multipoles,

By +iB: = i(b,, +iaqa)(z + )", )]
[¢]

where z, y, and z denote horizontal, vertical, and longitudinal (along the magnet)
coordinates. Since the magnet length L is necessarily finite, deflections are actually
proportional to “field integrals” such as BL = [ B(z,y; z) dz where the integration
range starts well before the magnet and ends well after it. For @,, ba, B:, and
B, defined this way, the same expansion Eq. 1 is valid and the “standard” approx-
imation is to neglect any deflections not described by this expansion, in spite of
the fact that Maxwell’s equations demand the presence of longitudinal field compo-
nents at the magnet ends. The purpose of this note is to provide a semi-quantitative
estimate of the importance of |Apg], the transverse deflection produced by the lon-
gitudinal component of the fringe field at one magnet end relative to [Apo|, the
total deflection produced by passage through the whole magnet. To emphasize the
generality and simplicity of the result it is given in the form of a theorem. The
essence of the proof is an evaluation of the contribution of the longitudinal field
B, from the vicinity of one magnet end since, along a path parallel to the magnet
axis such as path BC in Figure 2, there is no contribution to the longitudinal field
integral either from well inside or well outside the magnet.

Theorem: For any non-solenoidal magnet,
lapgl\ _ e [1407587 e @
Apl/ =~ L 8 ~ L
1
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where €, is the rms beam transverse emiltance, ' = dB/ds, ( ) denotes the av-
erage over betatron phase, and the final approzimation must be withdrawn if g is
anomalously large.

Proof: According to the principle of linear superposition, the fringe field at the
end of the magnet can, in accordance with Eq. 1, be written as

Bp = i(BFn + AFn)) (3)
0

where Bpy, (or Apy) is the fringe field that corresponds to b, (or ay).

As shown in Figures 1a and b, for any multipole b, or ay,, there exists a closed
curve C; extending from inside the body of the magnet to infinity without enclosing
any electric current. The cross angle § between the plane containing curve C; and
the horizontal plane is chosen to be

2k+1 p
mﬁ', or Qan

9= 4)

E+1

n+1

where 0 < k < n is an integer, so that

LB Bdl=0. (5)

Because the magnet field at infinity is equal to zero, one obtains from Ampere’s
law,

, for by,

A A A
/ Bpp (2 =y=0;2z)dz= / Apn(z=y=0;2)dz =j B.dl=0. (6)
D D D
Hence,
A
/ B,(z=y=0;2)dz=0. )
D

Suppose that the particle moves across the end of the magnet at a transverse
displacement z , as shown by the trajectory BC in Figure 2. Using Eq. 7 and the
closed curve of integration C3, we obtain

C B
/ Bi(ey)dz = — / B, (0, )-dx,. @)
B A

Hence, the transverse deflection Apy produced by the longitudinal component of
the fringe field is

xelvizyiBy(xy)|.

©)

c B
lAp"I:e /B vixB:(zp)dz|=e U.LA B () )-dx,
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FIGURE 1: (a) Front and (b) side view of the closed curve C; of integration extending from inside
the body of the magnet to infinity without enclosing any electric current.
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FIGURE 2: Side view of the closed curve C3 for integration extending from inside the body of
the magnet to infinity without enclosing any electric current.

The total deflection Apg produced by the main magnet body is
L
/ V2 xB _]_dz
0

The factor vy z; can be averaged as follows. By the standard “pseudo-harmonic”
description of betatron motion, letting S = sin ¥, C = cos ¢,

z=+\efC, == \/%(s— c%). (11)

Using the results (C25?) = 1/8, (C*) = 3/8, and {C3S) = 0, one obtains

Ve = e[, (12

and the formula stated in the theorem follows.

[Apo] = e . (10)

Lemma 1. If the transverse closed-orbit displacement Ay of the beam from
the magnet center is much larger than the rms beam size /Brer, the deflection
produced by the longitudinal componént of the fringe field al one magnet end is

Apl\ . AL [er ___1+0‘25ﬂ12 ~ AL [ (13)
|Apl/ = L VB 2 ~ LVBC

Lemma 2. If the iransverse displacement of the particle trajectory from the
magnet cenier is the same at the two ends of the magnet, the sum of the deflection
produced by the longitudinal component of the fringe field at the two ends is equal
to zero.

Since a typical transverse emittanceis ) =~ 10~7 m and a typical magnet length is
L = 1m, it can be seen that {|Apy|/|Apol) is typically an extremely small number.
This validates the “standard” approximation in essentially all situations in high
energy accelerators.
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. The. theorem by no means implies that fringe fields are unimportant. Espe-
c::xally in the intersection regions where the g-functions are large and rapid.ly vary-
u.lg,.the deflections due to the transverse components of the fringe field can lfe
significant. What the theorem shows is that the expansion of the fringe field in
t}-ansverse multipoles—also “standard”—continues to be an excellent approxima-
tion even though that is not a priori obvious.

Anotper implication of the theorem is that (|Ap;l/|Apo|) is independent of the
B-function at. tl'le magnet end, even though that may seem counter-intuitive. The
rﬂe;zc:::ég; ‘thlS is that z, and vy, the main factors in €, , depend inversely on the

Perhaps the “worst case” situation for the theorem occurs at the ends of a
quadru?ole adjacent to a low-8* intersection point (IP). If §* is the value of the
B-function at the IP, and s is the distance from the IP to the quadrupole edge, one
has ' ~ 25/3* and the estimate provided by the theorem is ’

Apit) jex [3 2
Anl )~ TV 5 (14
Some typical application: for RHIC,s # 30m, L~ 3m,$* = 1m,eL = 10~"m and

the ratio yielded is about 6 x 10~7: for CESR, s = 0.6m, L~ 0
’ y O~ Y. y L & .6m, * = 0.
€1 ~ 2 x 10~7m and the ratio yielded is about 10~°. F =0.02m,
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