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Abstract

An optimization algorithm for a group of nonsmooth nonconvex problems inspired
by two-stage stochastic programming problems is proposed. The main challenges for
these problems include (1) the problems lack the popular lower-type properties such
as prox-regularity assumed in many nonsmooth nonconvex optimization algorithms,
(2) the objective can not be analytically expressed and (3) the evaluation of function
values and subgradients are computationally expensive. To address these challenges,
this report first examines the properties that exist in many two-stage problems, specif-
ically upper-C? objectives. Then, we show that quadratic penalty method for security-
constrained alternating current optimal power flow (SCACOPF) contingency problems
can make the contingency solution functions upper-C?. Based on these observations, a
simplified bundle algorithm that bears similarity to sequential quadratic programming
(SQP) method is proposed. It is more efficient in implementation and computation
compared to conventional bundle methods. Global convergence analysis of the algo-
rithm is presented under novel and reasonable assumptions. The proposed algorithm
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therefore fills the gap of theoretical convergence for smoothed SCACOPF problems.
The inconsistency that might arise in our treatment of the constraints are addressed
through a penalty algorithm whose convergence analysis is also provided. Finally,
theoretical capabilities and numerical performance of the algorithm are demonstrated
through numerical examples.

Keywords: Optimization; Nonsmooth; Nonconvex; Upper regularity;
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1 Introduction

In this report, we consider the class of nonsmooth nonconvex constrained optimization

problems in the form of

minimize f(z) + R(x)

subject to c¢(z) = cg

d' < d(z) < d*

U

xlgx T,

IN

where the functions f(-) : R” — R, ¢(-) : R — R™, d(-) : R® — R™d are continuously
differentiable. The entries of the bound vectors d' and d* are in R. The bounds on the
optimization variables z are such that z!,z% € R", iL‘é <z, for all j € {1,...,n}. The
function R(-) is nonsmooth and nonconvex, as in a large number of important applica-
tions. In addition, the analytical form of R(-) might not be available, forcing a potential
algorithm to rely on known points in the optimization space. Prominent problems in the
form of (1) include two-stage stochastic programming problems with recourse [4, 21, 49].
While general to apply to various paradigms of two-stage optimization under uncertainty

(or other nonsmooth problems), the methodology presented in this report is driven by the

problem of optimal operation of large-scale electrical transmission power grids.

1.1 Power grid optimization

Electricity generation and distribution in nationwide power grid systems rely upon opti-
mization models and tools to find the power generation injection levels and transmission
power flows at each of the grid nodes so that the demand at given substations is met at
the lowest generation cost and minimum transmission losses [1]. Among them, alternating
current optimal power flow (ACOPF) models have been proposed, researched, and adopted
in some cases in operations because they model the power grid more accurately (e.g., cap-
ture reactive power and include transmission losses) than the economic dispatch models.
ACOPF models are becoming increasingly challenged with the penetration of (highly inter-
mittent) renewable sources of energy (e.g., wind and solar) and ongoing shifts in demand,
which are caused by the emergence of commodity solar systems, battery storage, and
electric vehicles [8, 31]. To better accommodate these emerging technologies, power grid

operators need to operate increasingly complex power grid systems under highly stochastic




demand and generation profiles and frequent equipment failures.

SCACOPF is one of the salient emerging optimization paradigms for increasing the
reliability of the power grid and ensuring its operation [38] under various types of failures.
SCACOPF extends the capabilities of ACOPF by requiring that the state of the grid is
secure with respect to a comprehensive list of equipment contingencies (e.g., failures of
generators, transmission lines, and transformers) and sometimes under stochastic demand
and/or generation [18, 38]. As a result, the SCACOPF mathematical optimization problem
reaches extreme scale as it needs to simulate multiple ACOPF models (routinely O(10°))
in order to find a secure state of the grid. An equally important challenge is given by the
highly nonlinear and nonconvex nature of SCACOPF (as well as of ACOPF) problems,
which makes it difficult to find global (or at least good quality) optima of the problem. On
the other hand, SCACOPF models need to be solved under strict time limitations, i.e.,
in real-time, to allow ample adjustment time for the equipment (generation ramp up or
down, load shedding, transmission switching, etc.). These challenges have sparked research
over the last decades to study new scalable optimization algorithms and develop parallel

computer implementations for SCACOPF problems.

Parallel computing has recently shown promising results for reaching real-time solutions
for SCACOPF. In [9, 40, 41, 43], the SCACOPF problem is solved in parallel by decompos-
ing the linear algebra of interior-point methods [35] using a Schur complement technique.
Alternative parallel computing approaches, such as the optimization-based decompositions
from [28] and [39], break down the SCACOPF problem at the level of the formulation into
base case ACOPF and contingency response ACOPF subproblems and enforce the reconcili-
ation between subproblems’ coupling variables using first-order gradient-based methods [28]
or carefully chosen approximations for the coupling terms [39]. Decomposed problem for-
mulation however often generates a nonsmooth nonconvex R(-), posing challenge to the

design of an algorithm that converges theoretically and is computationally efficient.

While effective in practice, decomposed SCACOPF algorithms such as the smoothed
two-stage solver in [39] has not been fully analyzed in theory. The existing nonsmooth
nonconvex optimization literature does not apply directly to the problem. In this report,
we aim to contribute to the theoretical analysis of the decomposition algorithms for SCA-
COPF problems, and more broadly two-stage optimization problems. In addition, we
provide algorithm design and implementation details that could be valuable for large-scale

nonsmooth nonconvex optimization problems.
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1.2 Nonsmooth optimization

Nonsmooth optimization has been researched extensively for decades. Most prominent
methods include subgradient methods and bundle methods. Subgradient method takes
steps in the direction of a subgradient at a given point, relying heavily on a robust step
size control algorithm to achieve good rates of convergence [50]. Bundle methods are
widely regarded as one of the most efficient optimization methods to address discontinuous
first-order derivatives [22, 33]. The bundle method develops an approximation model for
the objective with the information from previous iterations, referred to as a bundle, and
solves optimization subproblems with the model [23, 30]. The solution to the subproblem
is regarded as a trial step, which through a rejection criterion is either taken as a serious
step or rejected but included in the bundle to improve the trial step for the next iteration.
In the case with convex objectives, the linearization error between the objective function
and the tangent planes that comprise the approximation model is positive, a property that
is not valid for nonconvex functions. Therefore, adjustment to the approximation model is
needed. A commonly used one, called the down-shift mechanism, is introduced in [30] and
used in [24, 26, 48, 56]. Convergence analysis using this mechanism can be found in [2, 36].
Given additional local convexity properties, e.g., lower-C?, the slope of the tangent planes
can be titled as well to generate positive linearization errors [45]. These redistributed
bundle methods are shown to work in practice under less ideal conditions [19]. Constrained
nonsmooth nonconvex optimization adds another layer of complexity on top for bundle
methods. Convex constraints can typically be maintained as they are in the subproblems
and convergence analysis would stand valid [19]. In particular, affine constraints, commonly

appearing in applications do not pose extra challenge [17] in convergence analysis.

In dealing with nonsmooth nonconvex objectives with general constraints, ideas from
penalty and filter methods are often applied to incorporate the constraints into the objec-
tive in bundle methods. The global convergence studies in this case typically shows the
algorithm can either converge to a KKT point of the original problem or to a station-
ary /critical point of the constraint violation. The latter case could lead to an infeasible
solution. An exact penalty merit function that measures the progress of both the objec-
tive and inequality constraint violation is used in the redistributed bundle method in [55].
Lower-C? and a special strong Slater condition are assumed to ensure global convergence.
In [16], a progress function that is the maximum of a penalized objective reduction and

constraint violation is chosen. The bundle method is applied to the subproblem whose




objective is replaced by the progress function, eliminating the general constraint. Given
lower-C' or upper-C! property, convergence is proved. Similar algorithm with direct as-
sumptions on the penalty and quadratic parameters are presented in [34]. Others have
chosen a different set of penalized objective functions [29].

Outside bundle methods, [14] proposed a sequential quadratic programming (SQP)
method using gradient sampling for nonconvex nonsmooth inequality constrained opti-
mization. As conventional in SQP, the constraint is relaxed through linearization while
the iterations are taken at differentiable points of the Lipschitz objectives and constraints.
The global convergence result of the algorithm shows that accumulation points are the sta-
tionary points of the exact penalty function, which can be equal to the constraint violation
function depending on the penalty parameter. A more efficient BFGS-SQP is proposed
in [13] which shows promising numerical behaviors without theoretical guarantee of con-
vergence. In [54], a smoothing function of the objective that satisfies gradient consistency
property is used together with augmented Lagrangian constraint relaxation. Extensive
discussion of constraint qualifications are presented in order to achieve convergence. Line
search of the Lagrangian function is possible due to the smoothing function which con-
verges in the limit to the nonsmooth objective. Alternating direction method of multipliers
(ADMM) has also been applied to nonsmooth nonconvex problems and in particular in-
terest to us, distributed and asynchronous parallel algorithm [20]. In [53] the convergence
analysis requires the objective to be locally prox-regular with affine constraints, similar
to those in bundle method literature. One of the difficulties in applying ADMM to our
application is the non-existence of the analytical form of part of the objective. Recently,
difference-of-convex functions have been systematically studied in [12]. In particular in-
terest to this paper, the recourse function of linearly bi-parameterized two-stage problems
with quadratic recourse is shown to have convexity-concavity property [27]. The authors
then proposed an iterative algorithm with a quadratic convex subproblem that converges
subsequently to generalized critical points. The presence of a nonsmooth concave function
from recourse function in the objective is novel and closely related to upper-C? property.

The report is organized as follows. In Section 2, we describe general two-stage stochastic
programming problems with an emphasis on the SCACOPF problem. In particular, we
discuss the upper-type properties of R(-) that arise from such problems, which serve as
the guild lines in designing the algorithm. We also propose quadratic penalty smoothing
to enable a large group of problems to possess some upper-type property that they do

not have otherwise. In Section 3, our simplified bundle algorithm is proposed and its
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global convergence analysis is provided given novel assumptions drawn from Section 2.
The algorithm can be seen as an extension of SQP to nonsmooth nonconvex problems. We
also discuss the adjustable update rules for the approximations of second-stage optimal
value functions and its application to two-stage stochastic programming problems. An
algorithm to address possible inconsistency due to our treatment of the constraints in the
subproblems is presented in Section 3.4, whose global convergence analysis is provided as
well. Numerical experiments are shown in Section 4 that illustrate both the theoretical and
numerical capabilities of the proposed algorithm. We note that the proposed algorithms
can be parallelized efficiently for two-stage stochastic programming problems as shown
in [52], which greatly improves computational efficiency since evaluation of R(-) and its
general subgradients can be the computationally expensive. This prepares the algorithm

well for large-scale SCACOPF applications.

2 Problem description, preliminaries and regularization

Two-stage stochastic optimization problems with recourse fits within the formulation of (1).
Using expectation as an example, the nonsmooth nonconvex function R(-), also referred
to as the expected recourse function [49], can be expressed as R(z) = Eq[r(z,w)], where
E is the expectation operator. The function r(x,w) is the optimal value function of the
second-stage problem parameterized by =z and the random variable w over a probability

space Q. More specifically, r(z,w) has the following mathematical form:
r(z,w) =minimize  p(y, z,w)
Y

subject to c¢(y,x,w) = cp(w)
d'(w) < d(y,7,w) < d"(w)
Y (W) <y <y'(w).
In (2), the functions p(-,-,w) : RP x R" x @ = R, ¢(-,-,w) : RP x R" x Q@ — R™<_ d(-,-,w) :
RP x R™ x Q — R™4 are assumed to be smooth. The entries of the bound vector d'(w) and
d"(w) are in R and the bounds on the optimization variables y is such that y'(w) € RP,
y"(w) € RP and yé-(w) <yj(w), forall j € {1,...,p} and w € Q.
SCACOPF models can be established in the form of (1)—(2), where a secure state of the
power grid is found that minimizes operation cost f(-) plus the average monetary penalties
p(+,-,-) associated with not satisfying power demand and violating grid’s power flows over

all contingencies. Assuming uniform distribution, the sample space of w consists of the




set of all possible K contingencies, each taken with equal probability % The first-stage
optimization variables z in (1) correspond to power generation and power flow levels that
are to be implemented instantly in practice; while the second stage variables y are recourse
actions to be implemented should a contingency w occur. Thus, problem (1) simplified

with discrete uniform probability distribution can be written as

K
e 1
minimize flz)+ I7a z; ri(z)
subject to ¢(z) = cg (3)
d' < d(z) < d*

where recourse functions r;(-) : R” — R, for all ¢ € 1,..., K, are the optimal solution

functions to the deterministic second-stage optimization subproblems, namely,
ri(x) :min%/mize pi(x,y;)

subject to c¢(x,y;) = cg

When K is relatively small, the problem can be solved as a single-stage problem through off-
the-shelf optimization packages. However, it is usually difficult to satisfy the requirement
of real-time solution time. If the number of contingencies K is exceedingly large, which
is common in real-world power grid operations, then solution through serial optimization
solvers is intractable. One approach to tackle such large-scale problems is to use memory-
distributed algorithms with the help of parallel computing [7]. The evaluation of r;(-) at a
given z is of considerable computational cost and can reach O(10%) seconds for real-world
power grids. This characteristic requires the design of the optimization algorithm to avoid

evaluating r;(-) as much as possible.

2.1 Preliminaries and notations

As mentioned earlier, throughout this work, we assume functions f(-),c(:),d(-) in (1) are
smooth, while functions r;(-) are proper (Al, [47]) and locally Lipschitz. To simplify
notation, we use 7(-) to replace r;(-) and let K = 1. A closed ball in R™ centered at

z € R™ with radius p > 0 is denoted as B,(Z). In nonsmooth nonconvex optimization
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literature, both Clarke subgradient [11] and lower regular subgradient (8.3, [47]) have
been widely adopted in analysis. While they both enjoy the outer/upper-semicontinuity
property necessary in establishing convergence (6.6, [47] ), Clarke subdifferential, denoted
by Or(z), of function r(-) at Z is used in this work. In addition, the less common upper
regular/general subgradient offers a critical view in discussing the properties of interest.

The lower regular subdifferential of 7(-) at point Z, denoted as dr(z), is defined by

or(z) = d g € R|limint "B =T =tz =) (L (5)
v T I — 2|
THT
where the 2-norm ||-|| is used and (-) is the inner product in R™. The notion of f-attentive

convergence, which is crucial for the concept of general subgradient, is defined as
=z < ¥—>z with r(@) — r(2), (6)
T

where {z”} is a sequence of points. Given the assumption of Lipschitz r(-), this becomes
trivial. If there exists a sequence {z"} such that z" -7 and g € Or(z¥) with ¢” — g,
g is called a lower general subgradient of r(-) at z, written as g € Or(z). If a Lipschitz
function r is lower regular (or subdifferentially regular as in 7.25, [47]), then its lower
general subdifferential is the same as its lower regular subdifferential (Corollary 8.11, [47]).
Due to the popularity of lower-type properties in optimization, lower general subgradient
is often simply called general subgradient (8.3, [47]).

Next, as introduced in [47] and detailed in [32], upper regular subdifferential is defined

through
otr(z) == — d(—r)(z) = { g € R"|limsup r(@) = r(@) —_(g, T T) <0y. (7)
27 [l — x|
THT
The general upper subdifferential at T is given as 17 (z) = —9(—r)(Z). A function r(-)

is called upper regular if —r(:) is lower regular [47]. Some examples of upper regular
functions include all continuous concave functions and all functions strictly differentiable.
The upper/lower general subdifferential is locally bounded for Lipschitz continuous function
(9.13, [47]). An important relationship between an upper regular subgradient and Clarke

subdifferential is established next.

Lemma 2.1. (lower subdifferential and Clarke subdifferential) Let —r(-) be a Lipschitz and
lower regular function at T, then its Clarke subdifferential and lower general subdifferential

at T are equivalent, i.e. O(—r)(x) = O(—r)(7).




Proof. This Lemma is readily available from the results in [47]. By 8.49 and 9.13 in [47],
for a Lipschitz continuous function —r(-), we have its Clarke subdifferential d(—7)(z) =
= J(—r)(z) (8.11, [47)).

)
Given the convexity of lower regular subdifferential d(—r)(z) (8.6, [47]), d(—r)(z) =
cond(—r)(z) = d(—r)(z) = (—r)(Z). O

cond(—r)(z). For a lower regular function —r(-), d(—r)(z

Lemma 2.2. (upper subdifferential and Clarke subdifferential) Let r(-) be Lipschitz and
upper reqular at T, then its upper general subdifferential and Clarke subdifferential at T are

equivalent. In particular, if g € 0% r(z), then g € Or(z).

Proof. We rely on the properties of lower regular functions in Lemma 2.1. Since r(-) is upper
regular, by definition —r(-) is lower regular and —d(—r)(z) = 0Tr(z) = d*r(z). By the
symmetry property of the Clarke subgradient for locally Lipschitz functions (2.3.1, [11]), we
have 9r(Z) = —8(—r)(Z). By Lemma 2.1, —3(—r)(z) = —(—r)(Z). Therefore, dtr(z) =
—0(=r)(z) = Or(z). As a result, g € dtr(z) is also a Clarke subgradient, i.e. ¢ €
or(z). O

Due to their equivalence, for upper regular functions, Clarke subgradient and upper
general subgradient can be used interchangeably. Moving on to more restrictive assump-
tions than regularity, lower-C! functions, introduced in [51] and [47], are commonly as-
sumed in nonsmooth optimization and have a few equivalent definitions [15]. A function
r(-) : O — R, where O C R™ is open is said to be lower-C* on O, if on some neighborhood
V of each € O there is a representation

r(z) = max ry(z), (8)

where the functions 7;(-) are of class C¥ on V and the index set T is a compact space
such that r4(-) and all of its partial derivatives through order k are jointly continuous on
(t,z) € T x V. Similarly, a function is upper-C* on O if on a neighborhood V of z € O
we can write

r(z) = min ri(z), (9)

where r,(-) are of class C¥ on V. The set T is compact and r¢(-) and all of the partial
derivatives through order k are jointly continuous on (t,z) € T'x V.
A widely used T is a closed and bounded subset of RP. Thus, if

r(@) = min p(t,) (10)

10



J. Wang and C. G. Petra

for all x € O, and p(-,-) and its first- and second-order partial derivatives in x depend
continuously on (¢,z), r(-) is upper-C?. Rockafellar [46] and Clarke [10] further simplified
the objective in (10) for Lipschitz functions. If r(-) : U — R, where U C R" is an open,
convex and bounded set, is Lipschitz, then it is upper-C? if there exists ¢ > 0, a compact

set S and continuous functions b(-) : S — R™, ¢(-) : S — R such that
r(z) = min{o l]* = (b(s), ) — e(s)} (11)

for Vx € U.

While the original definition has clear indication for two-stage optimization problems,
an alternative definition based on the function and subgradient value is more useful in
analysis. A function is called lower-C! at Z if

Ve >0, 3 p>0,s.t. Va,2’' € By(z), g € dr(z), 12)
r(@!) (@) — (g.2' —2) > —e||’ — 2.
A function is lower-C' on an open set O if it is lower-C* for all # € O. By definition, a
function r(-) is upper-C! if —r(-) is lower-C'! at z.

An intuitive, equivalent definition of a finite-valued, lower-C? function 7(-) on an open
set O is that for any point Z € O, there exists a threshold value pg > 0 such that 7(-)+£ -2
is convex on an open neighborhood of Z for all p > pg. It is worth noting that another
popular property: prox-regularity is closely related to lower-C?. Lower-C? functions are
prox-regular and for Lipschitz continuous functions, prox-regularity also guarantees lower-
C? on an open set O C R™ (13.33, [47]).

Since a function r(-) is called upper-C? if and only if —r(-) is lower-C? at z € R, for
a finite, Lipschitz and upper-C? function r(-) on an open set O with Z € O , there exists
p > 0, such that

—r(@) +7(7) = (~g,0 —7) = L o — 7|, (13)

where —g € 9(—r)(z) and x,Z € O. Since —r(-) is lower-C? and thus lower regular,
—g € O(—r)(Z). By definition, g € *(r)(z) and by Lemma 2.2, g € 9r(Z). Inequality (13)
is equivalent to

r(@) —r@ - (g.x—7) < 5o -3, (14)

where g € 01r(z) and x, 7 € O. Notice that there exists a uniform p such that (14) stands
forallz € D C O and g € % r(z), where D is compact (10.54, [47], [45]). We refer to (14)

as the upper-C? inequality. It is worth pointing out that upper-C? does not guarantee

11



differentiability, lower-C! or lower regularity. It does ensure upper regularity where the
upper subdifferential is equivalent to Clarke subdifferential. A simple example is

x, —1 <z <0,

fl@) =141 (15)
-, 0<z<1,
2
which is concave and not differentiable or lower regular at z = 0.
A large number of nonsmooth nonconvex functions satisfy some of the properties de-
scribed in this section. They allow the use of Clarke subgradient in the analysis of global
convergence. To obtain desired properties for the objective function, regularization tech-

niques might be necessary.

2.2 Smoothing of the second-stage problem

In many two-stage stochastic optimization problems, the second-stage solution function r(-)
while lacking differentiability, satisfy the conditions for upper-C? property. For example,
if the coupling of variables are in the smooth objective only, then by (10), () is upper-C?2.
In our target application, the first-stage variable x is coupled linearly in the constraints
of the second-stage problems [39]. If the coupling exists in inequality however, upper-C?
conditions might not be satisfied. Regularization of the problem could help smooth out the
non-differentiability. To see this, we first make the following assumption for this section

based on observation from SCACOPF problems.

Assumption 2.3. The problem (4) can be reformulated with uncoupled objective and cou-

pled constraints that are linear in the first-stage variable x.

Using non-negative slack variables sﬁ > 0,s > 0, the coupled inequality constraints

in (4) can be converted to equality constraints with
(16)

For simplicity reasons, the subscript ¢ for the ith second-stage problem is dropped. More-
over, the slack variables sé,s? can be regarded as part of the optimization variables y.
Clearly the relevant equality constraints are linear in s by definition. Separating the cou-
pled and uncoupled constraints, by Assumption 2.3, we denote the coupled constraints
as

12



J. Wang and C. G. Petra

where the slack variables are considered part of y and W is the corresponding linear opera-
tor. Using one of the standard matrix norms, W is assumed to be bounded with |W|| = w.

The second-stage problem from (4) now becomes

r(z) :miniymize p(y)

subject to Wz — h(y) =0,
(18)

Y <y <y,

where cp 2 is used to emphasize the uncoupled constraint. Given smooth h(-), r(-) still
might not be differentiable or upper-C2. However, it is possible now to apply the quadratic
penalty method [35] to achieve upper-C?2. To illustrate both points, two simple examples
are presented where differentiability can be improved. Example 1 is a one-dimensional

optimization problem with equality constraint given in (19)

r(z) :myin y
s.t. y2 =z (19)
y =0,
where y € R and « > 0. It is obvious that the solution function is r(x) = y/z,x > 0, which

is continuous yet not Lipschitz continuous at x = 0. Using the quadratic penalty function

with coefficient u, the optimization problem is smoothed to (20)

r,(x) =min y+p y2—$2
) =nin y s ] "
st. y>0.

The smoothed solution function r,(-) becomes Lipschitz continuous at = 0, as illustrated
on the left plot in Figure 1. The value of u is a trade-off between accurate approximation
of 7(-) and the range of the transition period close to x = 0. Example 2 considers an

optimization problem on y € R with an inequality constraint

r(zx) :myin ay® + by
st. y>«x (21)

y > 0.

13



The solution function r(-) is differentiable but not continuously differentiable at x = 0.
With quadratic penalty and a slack variable s for the inequality constraint, the problem

transforms to
ru(z) =min  ay® + by + pllz + s — y|?
! (22)
st. y,s>0.
The function 7,(-) is then smoothed into a continuously differentiable one as seen on the

right in Figure 1. The smoothed function r,(-) in both examples are now upper-C?.

—— smoothed function —— smoothed function

0304 ~~~ original function --- original function

o
N
o

objective
°
G
objective

0.10

0.05

0.00

0.00 0.02 0.04 0.06 0.08 0.10 -0.4 -0.2 0.0 0.2 0.4

Figure 1: Quadratic penalty smoothing example: example 1 on the left, example 2 on the right

Similarly, for the more general case, it is possible to obtain desirable properties such as
upper-C? for second-stage solution functions by incorporating the coupled constraints into
the objective through a quadratic penalty such as

o 2
) =minimize | W — h(y)|> + p(y)

subject to ¢(y) = cgeo

(23)

Yl <y <y

where p is the penalty coefficient. As p — oo, the feasible accumulation points of the
solutions to (23) become the solution to that of (4) [35]. It is worth pointing out that the
coupling part of z is converted into a squared distance function, which has been studied

extensively [42, 47]. While we focus on the linearly coupled constraint from SCACOPF,

14
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as the goal is to pursue upper-C? of r(-), it is clear from its definition (10) that linearity
is not necessary. In fact a smooth coupling in both = and y with quadratic penalty would
suffice.

The properties of 7,(-) from (23) is examined next. The feasible set of y is denoted as
®(x). An important fact that is repeatedly used is that ®(x) = @, independent of = due
to the regularization. For 7,(-) to be continuous at x, the problem needs to have certain
bounded properties. For example, it is common to assume coercivity [17] or level-bounded
objective functions [16]. On the other hand, in our target applications, the variables x and
y are bounded above and below by real, finite values. The slack variable s, defined through
functions on z,y, are effectively bounded as well. Hence, we choose to assume bounded
domain for x and compact domain for y, denoted as X € R"™ and Y € RP, respectively for
simplicity. Notice again Y is now independent of x. The optimal solution set is denoted
as S(z) C Y and the continuity result is given in Lemma 2.4 based on Chapter 4 from [5],
the proof of which requires additional definitions and is left for the Appendix.

Lemma 2.4. The optimal value function of the smoothed second-stage problem r,(-) is

continuous, and the multifunction x — S(x) is upper semicontinuous at x
In addition, the compact domain and linear coupling of r,(-) leads to the following Lemma.
Lemma 2.5. The optimal solution function r,(-) is Lipschitz continuous on its domain.

Proof. Given that x is bounded, the domain of y is compact, and the continuous differen-
tiability of the objective in (23), r,(x) is bounded. Let M € R > 0 be the upper bound of

the absolute value of the coupled constraint, such that

Wz —h(y)| <M, VzeX,yev. (24)

Denote by 1, z2 two points in the domain and y; € S(x1),y2 € S(y2) their corresponding
optimal solutions. To simplify the notations, write hy = h(y1), he = h(y2),p1 = p(y1),p2 =
p(y2). Since y1 € S(x1) and Y is independent of =, we have

Wy — ha|)® +p1 < pl|[Way — hal* + po
= 1 ||W(z1 — 22) + Wz — ha|* + pa (25)
< p||W(ay — 22)||” + 2u[W (21 — 22)]T (Was — ho)

+ 1% HW{L‘Q — h2H2 + po.
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Given w = ||W||,
pl Wy = hal® + pr—p |[Waz — hol* — ps
Sp[|W (w1 — 22)|* + 2u[W (21 — @2)]" Wy — hol
<p Wy = @2)|| (W21 — 22)|| + 2 [[Waz — hel|)
<pw ||lzy — @] (w [|l21 — @2l + 2M) .
Similarly,
plWaa — ha| + pa—p [War — la|* — py
<p[|W (w1 — x2)||* + 2p[W (22 — 1)) Wy — h]
<plIW (w1 — @2)|[ [ (W (z1 — z2)[| + 2 [[Wa1 — ha])
Spw ||lzy — @] (w ||z — @2l +2M) .
Let ||z* — 2!|| = D, L = pw(wD + 2M), we have
ru(@1) = ru(w2)| = | [|Waa = ho® +po — p[[War — ha || = 1
Spw [|lzy — @] (w ||z — @2l 4+ 2M)
<pw ||y — w9l (wD 4 2M)

SL HiL‘l — l‘QH .

Next we show that an upper general subgradient of r,(-) at Z can be expressed as

9u(@) = 24 WT (W2 — h(5)) € 97, (2).

(28)

(29)

Proposition 2.6. The vector g,(Z) in (29) is an upper general subgradient of r,(-) in (23).

In addition, the upper-C? inequality in (14) is satisfied with ¢,(Z), i.e., for x,Z in the
i

domain, there exists C > 0 such that r,(x) — r,(T) — gg(:f)(a: — 1) < C |z —z|*

Proof. Let p = p(y),p = p(@),h = h(y),h = h(y), where y € S(z) and § € S(z). The

left-hand side of the inequality in (14) can be written as

() =7u(ZT) — 95@)(37 — )

=p(TWIWa — 208" Wa + hTh) +p — w@Wiwz — 20" Wz + hTh) — p

—2u(ZTWITWazx — 2T WIWz — KW + hTWz)
=u(|W(x —2)||* — 20T Wz + hTh — hTh + 2" Wz) +p—p
=u(|W (z — D)|* + [|h — Wa|* = [Wal - || = Wa||* + [Wa|*) + p -
=p|W (@ —2)|” + pllh — Wal® +p— p||h - Wa||* - 5.

(30)
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Further, since y € S(z), we have

_ _ _ _ T 2 _
ru(@) = 1u(@) — gL (@) (@ — 7) <p? o — &> + b — Wl + p — || — Wal* — p

<p? ||z — 2.

(31)
Taking the limit so that x — z,
— T — —
ru(x) —r,(Z) — g, (Z)(z—Z
N e Al ) IO -
e o — ]
THT

By definition (7), g,(Z) is a upper regular subgradient, hence a upper general subgradient.

Let C' = pw?, the upper-C? inequality is satisfied. O

The quadratic penalty smoothing of the second-stage problems allows the following impor-

tant property to be achieved.

Proposition 2.7. The second-stage optimal solution function r,(-) is upper-C? and thus

satisfies the upper-C? inequality in (14) on its domain.

Proof. There are multiple ways to show this. The most straightforward one is to apply
directly the definition (10). From Lemma 2.5, 7,(-) is Lipschitz continuous. From the
definition of 7,(-) in (23), the feasible set of the optimization variables y is compact in R™
and independent of x. The coupling is now only in the objective, with the non-coupled
part p(-) smooth in y. Further, the coupling in objective is quadratic in z, rendering it
twice continuously differentiable in a neighborhood of both x and y. By definition leading
to (10), 7,(-) is upper-C=.

Intuitively, as pointed out in 10.57 of [47], squared distance function on a nonempty
closed set is upper-C2. The objective, while having an additional smooth function p(-), is
only coupled in the squared distance function. From the viewpoint of (11), given a x € R",
an open, convex and bounded neighborhood of  can be found where the objective that
defines 7,(-) in (23) fits the form in (11). It is pointed out that such a neighborhood could
contain infeasible points for the first-stage problem, while not affecting the property of the

function 7,(-) itself. Therefore, r,(-) is upper-C2. The proposition then follows. O

Proposition 2.8. If the solution set S(x) is a singleton at T such that S(z) = {y}, then
r.(-) is differentiable at & and g, (z) = 2uWT(WZ — h(y)) is the gradient Vr,(Z).
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Proof. Let us take z,z € X and use shorthands p = p(y),p = p(y),h = h(y), h = h(y). We
can write
ru(z) = (@) = g (x — T)
:(u Wz — h)? +p> - (u Wz — | —|—13) —2u(Wz — h)TW(z — 7)
—u(|W(z —2)||* = 28" Wa + BTh — hTh + 20T W) +p — p
=u(|W (z — 2)||* + 20T Wz — 20" Wz — 20T W + 20T Wz)
+ulh =Wzl +p—pulh-wz|* -5 (33)
—u(|W(z — 2)||* = 20T W (& — z) + 20T W (z — )
+ b= Wa|* +p— p||h—Wz|* - p
>u(|W(z —2)|]> = 20T W (z — 2) + 20T W (7 — x))
=u(|W (z —2)|* = 2[h — h]" W (z — 2))
Since h = h(j) is unique at z, h — h as * — = and

ru(@) = 1u(%) — gy (@ — 1) p(—2w ||h = A ||z — 2]))

lim inf — > lim -
v lz — ] i lz — ]
THT THT (34)
= lim —2uw ||h — h|| = 0.
TAT

In addition, from the proof of Proposition 2.6, we know

ru(@) = 1u(®) — gy (@ — 1)

lim su <0
v [ERET] 8 (35)
THT
Therefore,
— T —
ru(x) —r,(x) — r—x
o T8 @) g3 )
2T |z — Z||
THT
and the proposition follows. O

On the other hand, if the optimal solution % is not unique, there could exist multiple
upper regular subgradients and r,,(-) might not be differentiable. Indeed, uniqueness of the
solution y € S(z) is not guaranteed. It is possible to put more restrictions on h(-) so that

ru(-) becomes continuously differentiable.

Proposition 2.9. The optimal solution function r,(-) is lower-C? on a neighborhood O of
Z,if h(y),y € S(x), is Lipschitz continuous on O, i.e., Va1, x9 € O, there exists Ly > 0 such
that |h(y1) — h(y2)|| < Ly ||x1 — x2|| on O. Moreover, r,(-) is continuously differentiable

at x.
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To summarize, while in many nonsmooth nonconvex optimization methods, lower-C?
or prox-regularity are assumed, for some important applications such as the decomposed
formulation of SCACOPF, lower regularity of the objective is not available. The upper-type
properties however appears natural for two-stage problems, and has motivated us to make
assumptions differently than the conventional ones and design algorithms accordingly.

There are multiple convergence definitions in nonsmooth nonconvex analysis, e.g., sta-
tionary point, Karush-Kuhn—Tucker (KKT) point, (Fritz-John) critical point, etc. In this
paper, the focus is on first-order optimality condition with Clarke subgradient. Without

losing generality, problem (3) can be recast for simplicity as
min&mize r(x)
subject to ¢(z) =0 (37)
0 <z < zy,

where ¢(z) : R” — R™. As mentioned earlier in this section, transforming (3) requires the
new variables x in (37) to contain slack variables, which are implicitly bounded from bound
constraints on z. We opt to keep the upper bound x, in the bound constraints explicit, as
in (3) to emphasize that the feasible set of = is bounded . We point out that the bound
constraints form a convex set, with the nonconvexity left to the equality constraints.

Problem (37) is assumed to be calm (6.4, [11]) at its local minimum. Calmness can
be viewed as a weak constraint qualification (6.4, [11]). In particular, the widely adopted
linear independence constraint qualification (LICQ) (17.2, [35]) in smooth optimization
ensures calmness. Calmness guarantees the Lagrange multiplier for the objective function
in Fritz-John critical point equation [11] is nonzero(6.4.4, [11]). Therefore, we can use
a KKT point instead of a Fritz-John critical point in the optimality condition [11]. For
problem (37), a first-order optimality condition at a local minimum Z is that there exists
AeR™and (>0, eR™, G >0, , €R"such that

0 € or(z)+ Ve(@)A - G + Cu,

cj()=0,j=1,....,m, (38)
5\]0](‘%) = 07.7 =4 , 1,
El?iuaxu_:faf >0

The matrix Ve(z) is of dimension n x m. The matrices Z,, Z; are diagonal matrices whose

diagonal values are (, and (j, respectively. A point that satisfies (38) is called a KKT point
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of problem (37). For upper regular functions, it is possible to establish a stronger form of

optimality condition, especially the first condition in (38) as explained in [32].

3 Simplified bundle algorithm

Given the nonsmooth nonconvex nature of problem (37), we consider the bundle methods
which have proven to be one of the most successful methods in solving such problems [25].
Bundle methods utilize information generated through previous iterative steps to form an
approximation of the objective. Typically such an approximation model is a supportive one
that produces smaller function value than the real function. Meanwhile, many such algo-
rithms rely on the quadratic coefficient in the approximation to avoid line search [37, 45].
Another feature is the existence of a robust rejection mechanism to ensure the approx-
imation is reasonable, similar to trust-region methods [35]. A solution to an iterative
subproblem generates a trial step that is either accepted or rejected. A trial point is called
a serious point if it is accepted. Convergence analysis for bundle methods typically require
the objective to have properties such as lower-C? and lower-C'. For large-scale problems
such as SCACOPF problems, a clear drawback is that the complex update rule for the
bundle and the large number of bundle points needed in the approximation could increase
computing time considerably.

The proposed algorithm simplifies the bundle method while retain many of its features.
Motivated by the properties exhibited from two-stage stochastic optimization problems dis-
cussed in Section 2, we make the assumption that the objective r(-) is upper-C?2, formalized

below.

Assumption 3.1. The Lipschitz continuous objective function r(-) in problem (37) is

upper-C?.

In particular, the inequality (14) is satisfied and since x is bounded, there exists a p for
the entire domain. In general, upper regularity, which is closely related to concavity, is
less explored for optimization problems. We point out that [16, 36] have studied bundle
methods and to our knowledge were the first to prove convergence for upper-C' objective
and constraints. However, in that case the parameters of the approximation model are not
guaranteed to be finite, besides the aforementioned challenges in applying bundle method.
To take full advantage of the smooth constraints ¢(-), we assume uniform boundedness on

their Hessian, a common assumption in literature [14].
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Assumption 3.2. The constraints c(-) are twice differentiable. There exists a constant HS
such that the Hessian of constraints c(-) satisfy $27V?cj(z)x < H |z||* for any x € R"

and 1 < j<m.

3.1 Algorithm description

The simplified bundle algorithm is an iterative method with approximated objective at each
iteration. It bears similarity to SQP methods in the treatment of constraints and can be
viewed as its extension. Compared to conventional bundle methods, the convex quadratic
approximation ¢ () to the objective r(-) in (37) is dependent only on the current serious
point instead of a bundle of points. More specifically, at iteration k£ and its serious step
xk, the local approximation model ¢ () is

ou(w) = r(ax) + g (o — ai) + s o — (39)

where g € Or(zy), and o > 0 is a scalar quadratic coefficient. Equivalently, denoting

d =z — xi, ¢r(x) can be reformulated as ®j(d) such that
1
Pr(d) =i + ghd + ou [ (40)

where 1, = r(zg). The function value and subgradient at xj are exact, i.e., ®x(0) =
Tk, V®(0) = gi. Furthermore, the smooth constraints in (37) are linearized. The sub-

problem to be solved at iteration k is
minidmize D (d)

subject to c(zy) + Ve(z)Td =0, (41)

di <d<dF,

where df = —xp,d" = v, — ;. As in SQP algorithms, it is possible that the linearized
constraints cause the problem (41) to be infeasible. There are multiple ways to address this
issue, one of which will be presented in Section 3.4. In this section, we operate under the
assumption that (41) can be solved and its solution is denoted as di. To measure progress

in both the objective and the constraints, the {; merit function is adopted:

P16, (1) = r(2) + O [[c(2)] 1, (42)

where ||-||; is the 1-norm and 6 > 0 is a penalty parameter. A line search step on the

constraints is needed in order to ensure progress in the merit function (42). The predicted
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change on the objective is defined as
T 1 2
O =@ (0) — Pr(dy) = —gi di — S [ldkl|”- (43)

To measure whether the approximation model ®(-) of the objective formed at xj is still

valid at the trial step zp + di, we define ratio p as

r(zg) — r(zk +di) =1 0k, 0% >0,
P = : (44)
r(xg) —r(zg +di) —n 0, 0 <O,

where 0 < nl+ <1 andn > 1 are two parameters of the algorithm. If p; > 0, the model
is valid and the algorithm proceeds to line search. Otherwise, the trial step xp + dj is
rejected and the parameter «; is updated to find a different trial step. This process draws

inspiration from trust-region methods.

The change in the model objective 0 is not necessarily positive. Therefore, the cor-
responding threshold 77lJr and 7, differ based on the sign of J;. In both cases, the actual
change in the objective r(xy) —r(x +dy) is allowed to be slightly worse than the predicted
change. This means that if §; is non-negative, the actual decrease can be smaller than the
predicted decrease Jy, though a fraction 77?' of Jy is required. If J; is negative, the actual
increase in objective value can be slightly larger than the predicted increase value —dj, the

degree to which is governed by 7, > 1.

Let the line search parameter be S € (0,1]. Then, the serious step taken is given as

Tk41 = Tk + Brdi. Let (S]f = @, (0) — Pr(Brdy), we have

1
55 =04 (0) — @y (Brdr) = —Brgt di, — 55/30% di)? - (45)

Similar to pg, the ratio between predicted and actual change in objective at x1 is denoted

as pf, whose definition is

) - v —ntal. 8 =0, "

8
’ - 050y, 8y <0
r(wg) = r(@es1) =0y 0, 6 <O.

p

The parameter 77;r and 75 can have different values than nf and 7;” to increase flexibility
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of the algorithm. The first-order optimality conditions of the subproblem (41) are

gk + agdy, — Ve(zp) AN — lkH 4R,
254 (d = d5) = 0,25 (d = df) = 0,
ARFL [C(ﬂ?k) 4 Vc(xk)Tdk] —0. (47
AL dy — df, dE — dy, >0,

c(xp) + Ve(zp)Tdy, = 0,

where \*+1 € R™ is the Lagrange multiplier for ¢(-), and C{f“‘l, ZkH € R" are the Lagrange
multipliers for the bound constraints. The matrices AF*1, ZF+1 7 lk'H are diagonal matrices
whose diagonal values are A\**1 ¢5+1 and Clk'H, respectively. An equivalent form of the

kdk

complementarity conditions of bound constraints based on x,, instead of d, dy

are

Z5+1 (a:k +dj, — xu) =0, Zlk+1(xk + dk) =0, (48)

k+1 ~k+1
AR z+ T + dg, Ty — T — dp, > 0.

The line search conditions are given as follows

1
Ok llc(@p)lly + BeW )T e(@) > Ok lle(zn) |y — 1550k |
1
O llc(i)lly + ni BN e(ar) = Ok le(@re)lly — M55 kB ]|, (49)
_ 1
O llc(@i)lly + 15 BN e(ar) > Ok lle(@rr) |l — 1550k Ok (e

The differences between the conditions are the parameters n;“ and 7, in the second and
third inequalities, which stem from the unknown sign of J, and 55 . For simplicity in
implementation and analysis, we use the following alternative condition for line search

that encompasses all three

_ 1
O (@)l — 5y B [N e(an)| = 6 le(@rr)lly — 185 ¥k [ (50)

We will show that condition (50) implies conditions in (49) in Lemma 3.6. The simplified
bundle method is presented in Algorithm 1, where [|-|| is the infinity norms. The items

involving consistency restoration such as m;_1 are explained in Section 3.4.

3.2 Convergence analysis

If the algorithm terminates in a finite number of steps, stopping test in step 4, which can

be modified if needed, is satisfied with the error tolerance € and the solution is considered
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Algorithm 1: Simplified bundle method

1 Initialize zq, g, stopping error tolerance €, and k = 1. Choose scalars 0 < 77l+ <1,

0<ng < nj‘ <1,nm =17y >21,1n,>1and y> 0. Evaluate the function value
r(xo) and subgradient g(x¢).

2 for £ =0,1,2,... do

3

10

11

12

13

14

15

Form the quadratic function ®; in (40) and solve subproblem (41) to obtain dj,
and Lagrange multiplier A*+1. (If inconsistent constraints are encountered,
enter consistency restoration and go back to step 2 with &k =k 4 1.)

if ||di|| < € then

Stop the iteration and exit the algorithm.

Evaluate function value r(xj + di). Compute df in (43) and py in (44).

Set the merit function parameter 0y so that 6y = max {0x_1,7; HA’“HHOO + 7}
If feasibility restoration is called for iteration k& — 1, let
0, = max{ﬁ,n; H)\kHHOO + 9}

if p, > 0 then

Find the line search parameter 8 > 0 using backtracking, starting at
Br. = 1 and halving if too large, such that the conditions in (50) are
satisfied. Evaluate r(zg41) and compute pg in (46).
if ,05 < 0 then
Break and go to line 14.
Take the step zi11 = xr + Brdk.
else

Reject the trial step.

Call the chosen oy update rules to obtain ag41 = 1.
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found. Let e = 0, based on step 4, ||dg|| = 0. As dj solves (41), optimality conditions

in (47) are satisfied, of which the first equation reduces to
gk = Ve(@) N = G+ it =0, (51)

Given g € Or(x1), we have 0 € Or(zy) — Ve(zp) AN+ —Clkﬂ +¢E*1 In addition, by c(zy) +
Ve(xy)?dy, = 0 from (47), we have c(zp) = 0. So zy is feasible in terms of the equality
constraints. Together with the bound constraints that are enforced in the subproblem (41),
the rest of the equations in (38) are also satisfied. Therefore, zj, satisfies (38) and is a KKT
point for (37) as the algorithm exits. In what follows, the convergence analysis is carried
out for the case with an infinite number of steps, i.e., ||di|| > 0. We start by showing that

the parameter oy in Algorithm 1 eventually stabilizes, i.e., becomes constant.

Lemma 3.3. Given the assumption (3.1), Algorithm 1 produces a finite number of rejected
steps. As a consequence, the quadratic coefficient oy, is bounded above and remains constant

for k large enough.

Proof. From the upper-C? property (14), we have
r(zg+d) —rg — gfd < C | d||? (52)

for a fixed constant C' > 0. In the first part of the proof we show that if at some iteration

k, «y, satisfies

oy, > 2C, (53)

then no rejected steps can occur in Algorithm 1 after iteration k. This means steps 8 and 10
of the algorithm p; > 0 and ptﬁ > 0 will hold for all iterations ¢ > k. The inequalities (52)
and (53) imply
re =z +di) > — gidi — C || die||®
1
> — gl dy - SOk Idx|I? (54)
=04 (0) — g (dy).

As in the definition (44) of pg, we distinguish between two cases based on the sign of J.
If 6, = @5 (0) — Px(dx) > 0, then since 0 < ;" < 1, (54) gives

Tk — 7(zk + di) >Pp(0) — Pp(dy)
>0 [@4(0) — Bp(di)] -
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If 0, = ®4(0) — ®p(dy) <0, given 1, > 1, we can also write based on (54) that

T — r(2k + di) >Pr(0) — Pr(dy),
> [Px(0) — Pr(dy)] -

(56)

As a consequence, by definition (44), we conclude p; > 0. Similar inequalities hold for

ZTg+1 = T + Prdy since one can write based on (52) that

1
r(ak) = r(wk41) > = Brgi di — OB ldel* > —Brgi di — S0k 1|

=0 (0) — Or(Brdy).

Same steps that lead to (55) and (56) for 7,77 imply p’g > 0. Therefore, for t > k, p; > 0
and pf > 0 and thus oy = ay. Equivalently, no rejected steps occur once (53) holds. Since
oy, is increased monotonically with a ratio 7, > 1 whenever a rejected step is encountered,
only a finite number of rejected steps are needed to reach ap > 2C', which are followed by
serious steps.

For the second part of the proof, suppose now «ap < 2C for all k. Then, only no
or a small number of rejected steps can be taken by the algorithm. The monotonically
increasing «y ensures that there exists k such that ap = ap < 2C for all ¢ > k. This

completes the proof. ]

Remark 3.4. For simplicity, we choose to increase ay, monotonically in the algorithm. In
practice, we encourage that oy be reduced if pr > 0 and 771+ > i where n s an upper
threshold for the parameter nfr. In other words, if the actual decrease in objective is bigger
than a certain ratio of the predicted decrease, then ®p(-) is a good approrimation and we
reduce the quadratic coefficient to encourage larger step size. From the convergence analysis
point of view, the upper-C? constant C is not uniform in the entire domain. A decrease
in oy allows the algorithm to adjust better to the local upper-C? constant that could be

relatively small compared to C, which could result in improved convergence in practice.

Lemma 3.5. Given Assumption 3.2, the line search process of Algorithm 1 is well-defined,
in that a By, € (0,1] that satisfies the line search conditions in (50) ezists and can be found
in a finite number of steps through backtracking step 9 as long as the Lagrange multipliers

ML from (41) remain finite.

Proof. If \¥*1 remains finite throughout the algorithm, then a finite ), is guaranteed as

well based on how it is chosen in Algorithm 1 step 7 as it stops increasing for k large
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enough. Since ¢(-) is smooth, we apply Taylor expansion to the jth equality constraint,

j=1,...,m, at xy for xxr1 = xp + Brdy to obtain
T Lo 1
¢j(@r+1) =¢j(zx) + BrVej(wn)” di + 5 Bpdy, Higdr, (58)

where H,zﬁ is the Hessian V?c;(+) at a point on the line segment determined by x; and
Tpy1. Given dj as the solution to (41), we have that cj(zy) + Vej(zk)Tdr, = 0 and as a

consequence, we can write based on (58) that
¢j(@e1) = (1= Br)ej(an) + %5%deigdk~
By Assumption 3.2, |cj(@g41)| < |(1 — Br)cj(@r)| + BEHS l|dg||?, which in turn implies that
lle(zrn)lly < (1= Be) le(@p) |y + mBRH; |ldy| . (59)
Applying simple norm inequalities, we have
B [N el | < B [ W] fetanl, (60)

Since step 7 of the algorithm chooses ), > 7 H)\kHHOO + 7, where 7, and - are positive

constants, we can write based on (59) and (60) that
O le(@n)ll, = B | (V)T ean)| = O lle(ansa)ll,
> (00 = 60 |V ) el = 01 = B1) i), — BumBEHE e
= (OB — 15 Be | V| ) llet@o)ly — BemHEBE i
> B (Y lle@i)ll, - bemH B i)

Therefore, if 5 is reduced by the line search step through backtracking in Algorithm 1 to

(61)

satisfy
(62)

then

_ 1
Or lc(ai)lly — 05 B (M) e(ar)| = Ok le(zre) ;> — 518k || -

Using ceiling function [-], which returns the least integer greater than the input, we can

write .
5ok
1Mlogy W1. (63)

We remark that both the denominator and numerator in (62) are positive and independent
of the line search. Further, by Lemma 3.3 and finite \**1 all terms in (62) remain finite.

Therefore, the backtracking stops in finite steps. This completes the proof. O
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Lemma 3.6. The §j € (0,1] that meets the line search condition in (50) also satisfies the

conditions from (49), or equivalently
1
BN e(ay) = =0k [le(@r)ly + Ok lle(@re) |y — M85 0k Ok ldx]1?,
1
nd BN () > =0y [le(zi) |y + Ok le(zrs) |y — 77,850%51@ |, (64)
- k+1\T 1 2
1y Br(NT) elaw) 2 Ok lle(@r)lly + Ok lle(@ra)lly — s 5 onB l1dil™
Proof. From simple absolute value inequality, we have

BT eg) 2 — By [ V) ()|

B O Te(ar) = = nf B | V) e(a)| (65)
1y BT ean) > =y B [ () Te(an)|
Given that 0 < n,;r <1<ny,
—15 B ()\Hl)TC(ﬂCk)’ < =B ‘()\Hl)TC(ﬂCk)’ < =13 Br ‘()\Hl)TC(xk)‘ : (66)
Therefore, from (65) and (66)
BT ela) = = ny B | (V) Te(a)|
i BN ean) = =y By | (V) T el (67)
1 BT elg) > — 7 B | V) Te(an)|.
From the line search condition (50), we have
—n5 Be (MY e(ar)| > =0k lle(@i) |, + Ok lle(zes)ll; — nﬁ%akﬂk ldil®. (68)
Combined with (67) the proof is completed. O

Lemma 3.7. The step xp+1 = xk + Brdy is a decreasing step for the merit function (42)
if By satisfies the line search condition. Further, if the Lagrange multipliers \¥ is finite for

all k, the speed of decrease satisfies ¢1p, (k) — P16, (Tht1) > Co |dy||? for some constant Co-

Proof. For a serious step z41 to be taken, step 8 and 10 are satisfied so that py > 0, pf > 0.
We distinguish three cases based on the value of oy and sign of (55 . The first case is oy, > 2C.
By upper-C? property in (52), as shown in (57), we have
1
r(zy) = r(zren) > — Brgi di — iakﬁi k||

=34(0) — Dy (Brdy) = 5.
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In the second case, oy < 2C and 55 > 0. From the definition of p}f in (46),
1
rlar) = rloen) > 07 | ~fuolde — Jenst Idc]P]. (69
The third case is when oy, < 2C and (55 < 0, and we have

r(zg) = r(TE1) > ny [_/Bkggdk - %Oékﬁ;% ”dk’2] : (70)
Rearranging the first equation in optimality condition (47), we have
gk + axdy, = Ve(zp) N4 ¢ - i (71)
Then, taking the inner product with —dj and using the last equation from (47) we have

—gtd — ay [|dy||* = —(NTIVe(a) T dy — dF G+ df i

— (@) G+ ()T G (72)

)" e(

)" elar)
)\k+1)Tc(l,k)+x£Clk+l+(xu_$k)T quJrl

)" e(zk)-

The third equality of (72) comes from the complementarity conditions Zlkﬂ(dk —dF)=0
and ZFt1(dy, — df) = 0 in (47). The inequality can be obtained from bound constraints
in (48) where z; > 0, x, — x > 0, Clk'H > 0 and ({j“ > 0 for the current and previous
iteration. Next, multiplying both sides of (72) by ) and then subtracting 3o 37 |||

leads to

1 1
—Brgt dx — 50%513 1 dkl® > B [ldil|” — 50%513 I dkl® + B\ T e(ay) 73)
73

1
> e lldi]* + BN (),

where the second inequality makes use of 8 € (0,1]. Notice that the left-hand side of (73)
is 55 and is not guaranteed to be positive. Multiplying both sides of (73) by anL and 7,

respectively, we obtain

1 1
—0 Brgi dr — o awBi I dell” > 503 anBi | dil® + 0t BeWF ) e(ay),

>
2 i (74)
=115 Bgi di — 5y oxBE [ del* > 55w i |* + 5 Be(X )T e(an).
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Finally, we can examine the merit function ¢y, (-). If oy > 2C, combine the inequality

in (57), (73) and the first inequality from Lemma 3.6, we have

D10, (w) — P10, (Trr1) =r(@k) — r(@re1) + Ok [lc(zr)ll; — Ok le(@r) |y
> = Brgf dh — S0 5R 1de]* + O )y — O el
Z%akﬁk il + BN )T (@) + Ok lle(@n)lly — Ok le(@re)ll;
Z%akﬂkz i | — nﬁﬁk%ak el
=1~ ) o i
(75)

Otherwise, with oy, < 2C and 55 > 0, we apply in order (69), (74) and the second inequality

from Lemma 3.6 to obtain

b10, (k) — d10, (Trt1) =7 (k) — r(Tpt1) + O lc(zn)ll; — Ok lle(zrt)lly
1
> — nf Brgi di, — 777+§04k513 dil1” + Ok e(zi)lly = Ok le(zria)

1
Zg??jakﬁk dil® + 0 BN e(r) + Ok le(zi)ly — Ok le(zra)

1 1
Z?ﬁakﬁk Idx|* — 18615 0k [
1
=(nf — 77,8)50%516 ]|
(76)
with 7 —ng > 0. Similarly, when 55 < 0, applying in order (70), (74) and the third

inequality from Lemma 3.6, we have

d10, (1) — Pro, (@rr1) =r(zx) — r(zy, 1) + Ok llel@)lly — O le(zrs) |y
- 1
> — 3 Brgi di — 15 50%@3 g l|* + O lle(@r) I, — Ok lle(zrs)ll;

1 -
2570y B ldill® + 05 BT e(an) + bk lle(z)ly — Ok le(@r)

1 1
257y kP i ||* — 18615 0k g1

=(n; — nﬁ)%akﬂk 1%
(77)
where 1, —ng > 0.
Therefore, in all cases, a serious step xp+1 = x + Brdy is a decreasing direction for the
merit function ¢qp, (+). If AF is finite for all k, ), will stay constant for k large enough from

step 7 of Algorithm 1. Let 6 be the constant value for k large enough so that ), < 0 for
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all k. Then, by (63),

g0
171081 37770 ]

ﬁk = = 57 (78>
2
due to the monotonicity of oy, and ). In other words, 3 is bounded below by 3 for all

k. From (75), (76), (77), ¢10, (vx) — P10, (zht1) > (15 — n8) 30 ||dg]|*. Or simply, there
exists ¢4 such that ¢1g, (z1) — d10, (Trr1) > Co HdkH2 d

In order to obtain a stabilized A\¥, a constraint qualification is necessary for the con-
straints c¢(x) = 0 in (37). In Section 2, we discussed calmness as the weak constraint
qualification that would ensure a KKT point instead of a Fritz-John critical point in our
nonsmooth upper-C? setup. Here, we resort to the stronger LICQ [35] to prove stabiliza-
tion of Lagrange multipliers for our proposed algorithm. A topic of further research will be

to derive the results of this section under a weak constraint qualification such as calmness.

Lemma 3.8. If LICQ of the constraints in (37) are satisfied at every accumulation points T
of serious steps {xy} generated by the algorithm, then the sequence of Lagrange multipliers
for the solutions to problem (41) {¢F+1}, {Clk'H} and {\**1Y are bounded. Thus, there exists
k, such that H)\tHOO <AV, ¢t < ¢V oand < CZU for allt > k, where \YV > 0,¢V >0, ClU >0
are the upper bounds. Further, this means there exists 0 such that 6, = 0 for all t > k.

Proof. We rewrite the first equation in optimality condition in (47) as

gk + Oékdk — Z )\;‘?Hch(xk) — Z k+1 61 + Z k+1 (79)
j=1 i=1
where e; € R” is a vector such that (e;); = 1 and (e;) = 0,k # 4. Since (¢F);(¢5+1); = 0,

the bound constraints Lagrange multipliers are combined into ¢F+! = ¢t — ¢h+1. A

K+l o <k+1

component of ¢; is unbounded if and only if the corresponding component in

¢*+1 is unbounded. Let I be the index set of the active bound constraints, hence

g+ awdy, =Y NIV (@) + D (e (80)
j=1 il

Since {zx}, {gx} are bounded (r(-) being Lipschitz continuous on a bounded domain) and
{ay} is finite by Lemma 3.3, the left-hand side of the equation stays bounded throughout
the iterations. From LICQ at Z, we know that Ve¢;(z) € R™ and e;,7 € I are linearly
independent and bounded vectors. Without losing generality, suppose )\fﬂ, Jj € [1l,m] is
not bounded as k — oco. Then, we have H)\kHOO — 00. Passing on to a subsequence if

necessary, we can assume ry — & as k — oo, where T is an accumulation point. Regardless
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of the behavior of {¢**'}, the right-hand side of (80) will be unbounded due to linear
independence among the vectors. This is a contradiction. Same process can be repeated
for (f“,j € [1,m].

Therefore, there exist AV, ¢ > 0,¢Y > 0 such that H)\tHOO <AV ¢ <¢Uand ¢f <P
for all k. Since 6y, is determined by A¥ (step 7 in Algorithm 1), there exists k and # such
that 6, = 0 for all t > k. ]

Theorem 3.9. Given the Assumptions 3.1 and 3.2, if the constraints in (37) satisfy the
conditions in Lemma 3.8, then every accumulation point of the solution steps {xy} gen-
erated from Algorithm 1 is a KKT point of the problem (37). That is, there exists a
subsequence of {x} that converges to T, and A\ € R™, (, € R", {; € R"™ such that the

first-order optimality conditions are satisfied at &
0 € or(x) — Ve(@)A — ¢ + Cu,

)= (81)
)

Proof. By Lemma 3.3, there exists kg > 0 such that for all t > ko, oy = ag, = & and all
following steps are serious steps. By Lemma 3.8, there exists k; > 0 such that for ¢ > ki,
the Lagrange multipliers are bounded above and 6; = 6, = 6. We say k is large enough if
k > max (ko, k1), in which case the parameters of the algorithm stabilizes at oy = & and
0, =0 for t > k.

Since the domain of z is bounded and r(-) is Lipschitz, the serious steps sequence {x}
as well as the subgradient sequence {gi} are bounded. Therefore, there exists at least
one accumulation point for {z;}. Let  be an accumulation point of {z}} and {zx,} be a
subsequence of {zj} such that zy, — .

From Lemma 3.5, line search terminates successfully and by Lemma 3.7, for k large
enough, {¢19, (vx)} is a decreasing and bounded sequence with a fixed parameter §. Thus,
b10,, (z1) converges. Let limy_,oo 1, (k) — b1g, €., g soo r(@x) + 0 lc(zi)|l; = b1a-
From the proof of Lemma 3.7, (75), (76) and (77), we know that ¢1g, (xx) — d16, (Th+1)
is bounded below in the order of ||dg|*. Therefore, limj_,o ||dx|| — 0. In particular,
lims_,0 ||dg, || = 0. By the last equation in (47), ¢(x,) — 0. Thus, Z satisfies the equality
constraints ¢(-). Given that the bound constraints are satisfied by all 2, 0 <z < x,,.

Passing on to a subsequence if necessary, we let gr, — g, Ak, — A, ¢k = G, G — G.
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From the first equation in the optimality conditions (47), we have
0=g—Ve@A—G+ G (s2)

By the outer semicontinuity of Clarke subdifferential, with g, € Or(wz,), we have g €
or(z). As aresult, 0 € Or(Z) — Ve(Z)A — (G + Cu. The complementarity conditions of bound
constraints from (47) leads to Z,(Z — ), Z;7 = 0. Together with the equality constraints
c(z) = 0, the first-order optimality conditions (81) of problem (37) at  are satisfied.

O

While the line search is only conducted on the less computationally expensive and
analytically known smooth constraints ¢(-), it is possible to avoid it altogether. In bundle
methods, it has been shown that a convex feasible set for x can make the algorithm converge
without line search [19]. Similarly, if the constraints form a convex feasible set, they do not

need to be linearized and the simplified bundle algorithm converges without line search.

Proposition 3.10. If the equality constraint c(-) and bound constraints in (37) form a

convex and bounded set in R™, then instead of (41) we solve subproblem

minimize ¢ (x)
x
subject to  c(z) =0, (83)

0<ax <z,

And the line search step can be skipped with xy11 = xy, + d, di being the solution to (83).

The convergence properties are maintained.

3.3 Application to two-stage stochastic optimization problem

The algorithm and convergence analysis can be readily extended to two-stage stochastic
programming problems, where the quadratic approximation function ¢(-) is needed only
for the nonsmooth nonconvex second-stage solution functions. Problem (3) is approximated
locally as

minimize f(z) + op(x)

subject to c¢(z) = cp (84)

d' < d(z) < d*

U

xlgx x.

IN
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The first-stage objective f(-), which is continuously differentiable, is kept as it is. As a
result, we can take advantage of the sparsity structure arising from f(-) since the Hessian
of ¢ (+) is diagonal.

The update rule of oy is critical and problem dependent. It is a trade-off between
robust convergence behavior (large ;) and fast but potentially unstable convergence (small
ai). The a in Algorithm 1 does not bear much meaningful structure from the objective
function since the Hessian itself might not exist. Nevertheless, for problems with better
differentiability, it is possible to explore ways to extract more second-order information.

One option is to use the Barzilai-Borwein (BB) gradient method [3], which can be

interpreted as an approximation to the secant equation. The update rule for oy is

T
_ Sp1Yk—1

= ; (85)
yngyk—l

093

where sp_1 = T — Tp_1,Yk—1 = gk — gr—1. This choice of ;. can in practice increase the
convergence rate if the objective r(-) have more favorable properties [44]. Alternatively, oy
can be viewed as a measure of the inverse of a trust-region radius. The larger oy is, the
smaller the step size will be. Hence, oy can be updated based on how accurate the previous
approximation is, as in trust-region methods [35]. This view is adopted in the proposed
algorithm. A simple multiplication rule where agi1 = Moo, ne > 1 could be effective
when «y is increased. In all cases, problem specific (e, and o, can be assigned to
make the algorithm more efficient and robust. This is the area of the algorithm that is rich
for experimentation.

It is also possible to gauge «j based on function value, in addition to the trust-region
ratio pg. If the function value range of r(-) is known, such rules might provide better
estimate of aj. For example, we can find ay by requiring the minimum value of ¢(-) over
a chosen subset of domain X’ C X to be larger than certain ratio of the function value at
Tk, €.,

minimize ¢ (x) > Ngr (86)
zeX’

where 7y, is the chosen ratio.

The same py, is computed and if px > 0 is not satisfied as in step 8 and 14 of Algorithm 1,
Nk is increased by the fixed increase ratio 7, with ng+1 = nank. Using nx as an intermediate
parameter, «y is then obtained as the minimum value that would hold (86) true. The choice
of oy, thus depends on local function value r; and subgradient g as well as n; and will no

longer stay monotonic throughout the iterations as in Algorithm 1.
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More importantly in practice, aj can be reduced when p; behaves well, e.g., is close to
1. In our experience, reducing oy helps to achieve convergence faster while the algorithm
remains robust due to the mechanism of rejecting a step. To further speed up convergence,
scalar aj can also be replaced by a diagonal matrix with varying values. One way of
specifying the diagonal values is to take into account the distance between a component of
and its upper and lower bounds. It is possible that multiple components of the optimization
variable x reach their upper/lower bounds. Since they are more likely to stay at the bounds,
it is reasonable to assign them larger corresponding diagonal values of the matrix aj to
encourage movement of other components of x. For a first-order algorithm, this could make

a difference in convergence and proves to be so in the SCACOPF application.

3.4 Consistency restoration in linearized constraint

As mentioned previously, the linearized constraints of the model subproblem (41) can
become infeasible even when the original problem (37) is feasible, a phenomenon referred
to as incomnsistency, which is also present in SQP methods. In this section we propose
a supplemental consistency restoration algorithm to tackle this difficulty. This algorithm
solves, instead of (41), a penalized subproblem where the constraints are incorporated
into the objective in hope of generating a new serious point with consistent linearized
constraints. As is common with penalty methods, the accumulation points might not be
feasible KKT points. For the update rule of the penalty parameter, we borrow an idea from
a sequential linear-quadratic programming (SLQP) method in [6] that relies on a feasibility

problem solution.

Whenever problem (41) has inconsistent linearized constraints, the following penalty

problem is formulated:

minimize 7Py (d) + ||c(zy) + Vc(:):k)TdHl
4 (87)
subject to df <d< dﬁ,

where 1, > 0 is the penalty parameter. While (87) is straightforward, to avoid the difficul-

ties with nonsmooth objective, as conventional in SQP methods, the following equivalent
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quadratic programming problem is solved instead

d,v,w

m
minimize 7w Pg(d) + Z vj + wj)
Jj=1

subject to ¢j(xy) + ch(a:k)Td =vj —wj, j=1,..m, (88)
di <d<d,

0<v,w,

where v,w € R™ are slack variables. Denoting dj,v*, w* as the solutions to (88), the

first-order optimality conditions of problem (88) involving d are

m
Tk [gk + Oékdk] + Z /\?—HVC]'({L';C) k+1 + Ck+1 ,
i=1

Abtt [Cj(wk) + Vej(ay) dy — of + wﬂ I =1m,

89
(a:k)+ch(a:k)Tdk—v +wk—07j:1,...,m, (89)
Zy N (dy — dy) = 0, 7 (dy, — df) = 0,

k+1 ,k+1
<u+7 l 7dk+xk7xu_xk’_dk20-

Here, ¥ € R™ (1 ¢F*! € R™ are the Lagrange multipliers for the constraints on d.
The matrices ZF+! A k+1 are diagonal matrices whose diagonal values are (¥*! and Clk'H,

respectively. The remaining optimality conditions on slack variables v and w are

1— At pf“ =0,j=1,..m

90

Pk“vk =0 Qk“w =0 )
Uk,wk,pk+1,qk+1 > O,

+1 ¢+l € R™ are the Lagrange multipliers for v*, w*. The matrices P**1 QF+1

k+1

where p*
are diagonal matrices whose diagonal values are pF*1 and ¢*t1, respectively.

Based on whether the slack variable bound constraints are active, the relations between
Lagrange multipliers can be simplified. To see that, define the sign function 0’ :R" —

R,5=1,...,m of d such that

-1, cj(xg)+ VCj(%k)Td <0
oj(d) = 0, c¢j(zx)+ Vej(zp)Td=0- (91)
1, Cj(.Tk) + ch(xk)Td >0
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In addition, we divide the constraints into two sets based on the value of ¢;(xx)+Ve; (k)T dg.
For simplicity, the two sets are referred to as the set of active and inactive equality con-
straints as we do without slack variables. More specifically, the active equality constraint

set is defined at dj as

A = {1 < j < mlcj(zx) + Vej(ap) dy, = 0}, (92)
and the inactive equality constraint set is

Vi = {1 < j < mlej(ax) + Ve (ax) T dy # 0. (93)
We can now integrate the optimality conditions (90) into (89) in the following Lemma.

Lemma 3.11. For inactive equality constraints c;(-),j € Vi, )\fﬂ = O';?(Clk). For active

equality constraints, i.e., j € Ag, —1 < )\?H <1

Proof. Note first that for any 1 < 5 < m, the slack variable solutions satisfy v;?wf = 0.
This is due to the bound constraints on v,w and their presence in the objective. Next,
we consider the three cases given the value of ¢;(xg) + Ve;(zx)T dg, which corresponds to
the three values of a;“(dk) for j = 1,...,m. The first two cases both have j € Vj. If
af(dk) = 1, then by the third equation in (89), U;? >0, wf = 0. From the complementarity
equations in (90), the corresponding Lagrange multiplier to vé-“ is 0, i.e., p?“‘l = 0. By the
first equation in (90), )\é‘?H =1.If af(dk) = —1, then similarly using the third equation
in (89), U;-“ =0, w}“ > 0 and the corresponding Lagrange multiplier qf“ = 0. By the second

equation in (90), /\;‘f'H = —1. The first part of the Lemma is proven.

k —

In the last case, j € Ayg, i.e., Uf(dk) = 0. By the third equation in (89), we have vj

O,w}C = 0. Combine the first two equations in (90) through summation and subtraction,

we obtain .
AR — 7(q1§+1 _pl?-i-l)’
J 9 \1j J (94)
_ o k+1 k+1
2= P, tq

Applying the bound constraints on p*t1, gF+1

p?“ <2,0< qf“ < 2 and therefore from the first equation in (94) —1 < )\;‘?H <1. O

to the second equation in (94), we have 0 <

Similar to (43), we define d;* to be the change in objective of the penalty subprob-
lem (88) with penalty 7, which based on (87) is

- 1
5kk =Tk <—ggdk — §Oék ||dkH2> + HC(ZC]C)Hl — Hc(azk) + vc(l'k)Tdkul . (95)
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The ratios p and p’,f are again used to address the nonsmoothness of r(-), whose definitions
are given in (44) and (46). The algorithm also requires line search given dj to obtain a
serious step xp11 = x + Brdi, Br € (0,1]. To simplify the analysis, we adopt in this
section 7, = nf = 1 and 7, = n = 1, making the definition of pk,p’g in (44) and (46)
identical across branches. Thus for a serious step, regardless of the value of ayg, the same
expression between predicted and actual change in r(-) is satisfied. That is, for a serious
step, 7(xg) — 7(T11) > Px(0) — Pr(Brdr) and r(zy) — r(wg + di) > Pp(0) — Pp(dy).

The renewed merit function and line search conditions are

¢M4w=rw»+;wdmm, (96)

and

1 B 1 1
p— le(zr)|l; + =W IVe(zp) dp > — [le(zps)ll; — 77650%51@ dk]® (97)
% Tk Tk

respectively.

To update the penalty parameter, the following feasibility problem is also solved:

minimize  ||e(zy) + Vc(mk)Tdﬂl
‘ (98)
subject to df‘ <d< dﬁ.
Denote by d{; the solution to (98) and 5,{ its predicted decrease, whose form is
o = lle(wn)lly = ||etwn) + Vel af| - (99)

Notice that (5£ > 0. This value is compared against d,".

The consistency restoration algorithm is given in Algorithm 2. It is called upon by
Algorithm 1 when inconsistency occurs at step 3 and exits after one serious step iteration
in step 14 of Algorithm 2. However, it is possible that the linearized constraints remain
inconsistent and Algorithm 2 is called repeatedly. In this case, the update rule of the
penalty parameter ensures that the algorithm converges toward critical points for linearized
constraint violations. A point Z is called a critical point of the linearized constraint violation
of ¢(+) if 5,{ = 0 at Z. Notice such a critical point can be either feasible or infeasible to the
original problem (37).

While Algorithm 2 solves a penalized subproblem instead, it includes all the elements
in Algorithm 1 to deal with the nonsmoothness of r(+), including the update rule for ay.
Thus, we can reuse many of the same conclusions from Section 3.2 and only provide rigorous

proofs if necessary. Since the acceptance and rejection of a trial step is based on p; and
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Algorithm 2: Simplified bundle method: consistency restoration

1

10

11

12

13

14

15

16

17

Given zy, ag, r(xg), g(zk), 0, and other parameters such as e from Algorithm 1,
choose the update coefficient 0 < 7,1y < 1 for m; and error tolerance el >0.
If 7;,_1 does not exist, let m, = é. Otherwise let 7, = min (7;_1, é) Solve (88)
with 7, and obtain dj.
Solve the feasibility problem (98) to obtain solution d£ and compute 5,{ from (99).
if 5,{ < ¢/ then
Stop the iteration and exit the algorithm.
while 6;* < 78] do
Reduce 7, through 7, = 17 and re-solve (88) with the updated 7.
Obtain the solution dj, and Lagrange multipliers \**! given 7. Evaluate

r(xp + di) and compute J; in (43) and py in (44).

if pr > 0 then

Find the line search parameter 8, > 0 using backtracking, starting at G = 1

and halving if too large, such that (97) is satisfied. Compute pf in (46).
if pf < 0 then
Break and go to 17.

Take the serious step xx1+1 = v + Srdk.

Exit consistency restoration. Go back to Algorithm 1 and start a new iteration.
else

Reject the trial step and update oy with agi1 = neay.

Go back to step 2.
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p’,f , which in turn solely relies on properties of r(-), Lemma 3.3 holds true, as claimed in

the following Lemma.

Lemma 3.12. Under the Assumption (3.1) of upper-C? property for the objective r(-),
the consistency restoration Algorithm 2 produces a finite number of rejected steps. Conse-
quently, the parameter ay of Algorithm 2 stabilizes, i.e., there exists k such that oy = oy

forallt > k.

Proof. Since Algorithm 2 has identical mechanism for rejecting steps and increasing oy
to Algorithm 1, which only relies on the property of r(-), the proof of Lemma 3.3 can be
directly applied here. That is, only a finite number of rejected steps are needed to achieve
ar > 2C, which guarantees pg > 0, pf > 0, and produces a serious step. If oy < 2C for all
k, then only finite number of rejected steps are generated, which also ensures pg > 0, pg >0
for k large enough. As a result, there exists a k such that oy = ay, for ¢ > k (see proof of

Lemma 3.3), with a finite number of rejected steps produced. O

The following lemma shows that the update rule for 7 in Algorithm 2 is well-defined.

Lemma 3.13. The steps 6-7 in Algorithm 2 terminates successfully, i.e., there exists a

m, > 0 such that 6F > nfég and such a Ty, can be found within finite steps.

Proof. Since dy, is the solution to (88) (and equivalently (87)), we have by (99) and (95)

7r 1 2
opt e (=l — gou |l ") + Newul - |eon) + Fetany e,

1 2 1 2
= (=] ~ o) + ot = me (~ o |f| - jou o) + 1.

where the last inequality uses Cauchy-Schwarz inequality. From Lemma 3.12 and Lipschitz
continuity, d£ , gk, and oy, are all bounded. Assigning D = ||d% — df|| = ||z4||, we derive

the condition on mj, such that §;% > nf6£ as

1— )8!
< "fl) E_ (101)
lgxll D + 500D
Thus, such 7, > 0 exists as long as 5£ > 0. And since 7 is reduced through n, < 1,
only a finite number of steps are needed to obtain a 7 that satisfied (101) through step
9. If (5,{ = 0 and consistency restoration Algorithm 2 is still called, the algorithm would

terminate at step 5 (and had converged to a critical point to the linearized constraint). [J
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Lemma 3.14. Given a nonzero penalty parameter wp > 0 and Assumption 3.2, the line
search step 10 of Algorithm 2 finds By € (0,1] satisfying the condition (97) in a finite

number of steps.

Proof. Since ¢(+) is smooth, by Taylor expansion of its jth component,
cj(xp +di) — cj(wg) = Vej(ag) dy + %d}fH,de, (102)
where 1 < 57 < m and the Hessian H ljg depends on both x; and dj. Similarly,
5 i) =) + BV ey (w) i+ 3 Bl H g, (103)
From Assumption 3.2,

1 .
lej(zri1)| = lej(ar) + BrVes(ar) di + 5&,3de,’€5de

(104)
< Jej(xx) + BVes(er) dil + BLHS |1di|* -
From the definition of af in (91), we can write
|Cj (k) + Ve;j (azk)Tdk| = U;?(dk) [cj(:ck) + Ve (:Ck)Tdk] . (105)

Using the fact that the absolute function | - | is convex, the function |c;(zx) + Vej(zg)Td|

is convex in d. Taking its value at d = 0,d = dy and Sdj, we have by convexity

lej(xk) + BeVej(zr)Tdi| < (1= Be)lej(an)| + Brlej(@n) + Ve (xx)  di- (106)
Applying (106) to (104),

lej(@re1)] < (1= Be)lej(@n)| + Brlej (xn) + Vej(z) di| + B HE ||di||®

(107)
= (1= B)lej(@i)| + Brof (dr) [¢j(ax) + Ve (wr)di] + BRHS |1di1?

Let us denote the cardinality of A and Vj by |Ag| and |Vi|, respectively. By summing
up (107) over j € Vj, and realizing that |c;j(xy)| > Uf(dk)cj (), we have

> lei(an)l <D lej (@)l + B D o (d) Vg (an) di + [VRIBH il (q08)

JEVE JEVL JEVL

Similarly, we sum up (107) over j € Ay and apply its definition in (92) to write

Y lei@ren)l (0= Br) Y lej(@n)] + | Akl B HS [ldyll? (109)

JEAL JEALK

41



Further, by (108) and (109), we have
> (ejlen)l = lej(aren))) = = B Y o5 (di) Ve ()" di — Vil BRHE [ldi®
JEVE JEVE

> (ej(an)l = lej(@rp))) =Bk Y lej(an)| — [Ax| BEHS ||dil| .

JEAL JEAL

(110)

Summing the two equations in (110) and applying |Ax| + |Vk| = m gives us

leCer)lly = lle@@ren)ly = =Bk Y o (di)Vejlar) T+ B Y lej(an)l — mBRH ||dil.

JEVR JEAL
(111)
From Lemma (3.11) and the definition of Ay in (92), we can write
ZA’“HVCJ (o) de = NFIVe () Tdi + D NV () dy
j=1 JEVE JEAL
= Z (di)Vej (z3) T dy — Z )\?ch(xk). (112)
JEVK JEAK
> Z (dg) VC] k) dk — Z |C] xg)|
JEVK JEAK

The inequality in (112) comes from the second part of Lemma 3.11. Through simple
algebraic calculations and applying (111) and (112)

1 1
— lle(zi)lly = — lle(zr)ll, + E AV () dy >
T T ki
1 ) Bk k ) T 1 2 r7e 2
— > Brlej(wi)l = =Y ok (di)Vej(an) dy — —mBrH [|dy| (113)
T T ! Tk
JEAL JEV)

+ & Z (dk)Vc](:vk)Tdk — —k Z ‘C] a;k > ——mﬁgHC HdkH

JEVL JEAL

Thus, if ), satisfies
NET

0<Br< 5 He'

(114)

where both the denominator and numerator are positive and independent of the line search,
we have (97) satisfied. Using ceiling function [-], we can write

LT
1 flogy "5k

5k>§

If m, > 0, the line search then successfully terminates after a finite number of steps based

(115)

on the backtracking rule. d

The decrease in merit function follows, similar to Lemma 3.7.
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Lemma 3.15. The serious step xrp+1 = Xk + Brdi s a descent step for the merit func-
tion (96) if Bk is obtained through line search in Algorithm 2. Further, if 7y stabilizes at
a finite value, i.e., there exists k such that my = mp := 7 > 0 for all t > k, then the speed

of descent satisfies Gim, (¥k) — 1y (Tt1) > € \|dy||? for some cg > 0.

Proof. Since py > 07p£ > 0 at any serious step, and n;r =mn = nfyr =mn;, =1, we can
compactly write based on definitions (44) and (46)
T — r(xg + di) >Pr(0) — Pi(dy),
(116)
i = 7(@p41) >Px(0) — Pp(Brdi).
Using the upper-C? property of r(-), as in (57) from Lemma 3.7, we have
r(wr) = r(@rsn) > = Brgi di — *akﬂk Il (117)
Let us rearrange the first equation in the KKT conditions (89) and obtain
™ [gx + i) = Z N ej(ag) + ¢ — ¢h (118)
Taking the dot product with —dj, on both sides of (118) leads to
m
— T [g;{dk + ap, ||dkH2} = NV () di — dE T + G (119)
j=1
Recall that df = —xp and d* =z, — x;,. Applying the complementarity conditions, which

are the fourth, fifth equation in (89), (119) is simplified to

NI ey () dy, — (dy, — df + df)" ¢+ diE Gt

Ms

— 7k | g1 die + o HdkHQ]

<.
Il
-

NI () g, + 2 ¢+ (di — df + dg) TG

p”qs

<.
Il
—

(120)
NV e ()T dy + 2 ¢+ (2 — 2) T

tnﬁs

.
Il
-

> )\]?Jercj(xk)Tdk.

'MS

I
—

J

The last inequality utilizes the bound constraints from the previous iteration 0 < xp < xy,

and k1, lkH > 0. Multiplying by B; and subtracting Wk%ozkﬁ% ||dk|]2 from both sides
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of (120) and using S € (0, 1] results in

m

1 1
T | —Brgi di — 50%313 Il dkll®| >meBrou l|dill® — 7%;%5;3 ldkll? + Be Y NFVe; () T dy,
j=1
1 m
=Tk 0B dil|® + B Y ATV (ak) T
j=1
1
=5 kO dkll* + BN Ve(ar) " dy.
(121)
From (117), the merit function satisfies
1 1
O1m (2k) = P1my (T41) =7 (@) = 7(@r1) + —lle(@r)lly = — le(zra)l;
1 ) 1 ) 1 (122)
> = gy di — 5005 ldill* + — lle(zo)ll, = — lle(@rs)ll; -
T T
Applying (121) and the line search condition (97), we have
1
P1m, (1) = P1m, (2r+1) 25 ldk|I* + Z(AkH)TVC(ﬂ?k)Tdk
1
+ — (le(@r)lly = lezrs)ly)
. Tk . (123)
>5[l di|* = ng B e
1
=(1 = ng) 56k [
Given 7 > 0, the conclusion follows. In addition, if 7 stabilizes, based on (115)
[log1 %T _
Bezgy L= (124)

Thus, from (123), ¢1r, (2k) — G1m, (Te41) > (1 — ) 008" |d]|*. Or equivalently, there
exists ¢ > 0 such that ¢ir, (z) — P1m, (Th41) > € |2 O

In general, the global convergence analysis from Section 3.2 stands when 7, is bounded
away from 0 and 6y, is bounded from above. This is reflected in the following two theorems

similar to Theorem 3.9.

Theorem 3.16. Under the Assumptions 3.1, 3.2 and LICQ) conditions of Lemma 3.8, if
Algorithm 2 is called finite many times, then every accumulation points of the serious step

sequence {xy} generated from Algorithm 1 and 2 is a KKT point of problem (37).

The proof is similar to that of Theorem 3.9 and straightforward. Since there are only

finite number of consistency restoration steps, the linearized constraints become consistent
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for k large enough. Thus, only Algorithm 1 is called for k large enough. We can directly
apply Theorem 3.9 to obtain 3.16.

Before stating the next theorem, we note that 7, and 6 are designed to impact each
other through step 7 of Algorithm 1 and step 1 in Algorithm 2. Therefore, if % does
not stay bounded, 05 will not either. On the other hand, if m; is bounded below from a
nonzero value, together with the conditions in Lemma 3.8, both i and 6y, are finite for all
k. In addition, for k large enough, both stop increasing. A stabilized 7 at nonzero values

essentially requires step 7 in Algorithm 2 to be encountered only finitely many times.

Theorem 3.17. Under the Assumptions 3.1, 3.2 and LICQ conditions of Lemma 3.8, if
Algorithm 2 is called infinitely many times with nonzero stabilized penalty parameter, i.e.,
m = T, > 0 for all t > k, then any accumulation points of the sequence {xy} generated
by Algorithm 1 and 2 is either a KKT point of (37) or a critical point of the linearized

constraint violation of c(+).

The proof is again similar to that of Theorem 3.9 and a brief framework is presented
here. First, by Lemma 3.12, let k be large enough such that a; = aj for all t > k
and all steps produced by both algorithms are serious steps. We note that by design
both penalty parameters 6 and i in merit function (42) and (96) increase monotonically
across iterations and algorithms. By Lemma 3.8, A\¥ is bounded for k large enough. Given a
nonzero and stabilized 7, for k large enough, 0, is also bounded and remains constant based
on step 7 in Algorithm 1. Together with step 7 in Algorithm 2, the merit functions ¢1, (-)
and @15, (-) for both algorithms (42) and (96) have the same parameter 65, = % = 0, where
6 denotes the stabilized value. Hence, by Lemma 3.7 and 3.15, {¢1x, (zx)} and {¢1g, (zx)}
at serious steps x, decreases monotonically in the order of ||di||* and is bounded below.
Therefore, dj, generated by both algorithms, regardless of the order they are called, satisfies
dr — 0.

Compared to the case in Theorem 3.16, it is possible that a finite number of calls of
Algorithm 1 are followed by all consistency restoration calls of Algorithm 2, in which case
an accumulation point of {z}} might be infeasible. This can be seen from the constraints
of the penalty problem in (88) where v, w could be nonzero at an accumulation point z of
{zr} even as dj, — 0.

If an accumulation point z is feasible, i.e., ¢(Z) = 0, then {z}} converges subsequently

to a KKT point of problem (37), the proof of which is the same as in Theorem 3.9 at
this point. Otherwise, if Z is infeasible, i.e., ¢(Z) # 0, it is not a KKT point. Meanwhile,
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from (95), given still dj, — 0, we have ¢;* — 0. From step 7 in Algorithm 2, the update
rule of 7} enforces nfé,{ < 05", Therefore, with a constant parameter 77, we obtain 5,’: — 0.
Hence, for an infeasible accumulation point Z, the update rule for the penalty parameter 7
results in Z being a critical point of linearized constraint violation of ¢(-). This convergence

result is similar to the exact penalty method for smooth objectives [35].

Finally, the following theorem covers the case when the penalty parameter 7 — 0.

Theorem 3.18. Under the Assumptions 3.1, 8.2 and LICQ conditions of Lemma 3.8, if
Algorithm 2 is called infinite many times and 7, — 0, then any accumulation points of the
serious steps {xy} generated from Algorithm 1 and 2 is a critical point of the linearized

constraint violation c(+).

Proof. From Lemma 3.8 ; we know that the Lagrange multipliers from Algorithm 1 are
bounded. Therefore, a m; — 0 is caused by step 7 in Algorithm 2 being called infinitely
many times which in turn increases 6, as well. Because we are considering an infinite
number of iterations where 5}; > 0 (otherwise the algorithm would have terminated at step
4), by Lemma 3.13, the number of loops between step 6 and 7 is finite for each k. Thus, to
have infinite many step 7, we must have an infinite number of iterations that would enter
step 7 at least once. Let k be one of the iterations where 7y, is reduced through step 7. To
simplify the analysis, we denote by 7rk = min (m_1, o L) the penalty parameter at iteration
k after step 2. Then the change in objective of the penalized problem (88) with wk, before
the update to 7 at step 7, is

5 = < rdp — *Oék: |3l ) + lle(z)lly — |lelar) + Velan) d]| (125)

where dY is the solution of (88) with 7. Since 7 enters step 7 in Algorithm 2, 69 < 77f5,{.
Given dY as the solution to (88) with 7 and using the definition of 5,{ in (99),

1
nf5g>ag:ﬂg( Ty Lot >+\ (o)l — |leen) + Ve(a)Tdl),

1
df O deH ) + [le(zr) |y — H c(zk) + Ve(xy) Tde

=t (-
—n? < lakHdﬁu >+5,{
(-

ol | - g ) + o

(126)

71'
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Since xg, gr and ay are all bounded, assigning D = ||d,, — d;|| = ||zv]|, we have

1 2
(1 np)d] <n (Hgkn ]| + 5o [t )
X (127)
:7’['2 <Hng D+ 2akD2> .

Therefore, as m; and 712 approach 0, so does 5,]: . This proves that as xp — =z, 6,{ — 0.

Thus, Z is a critical point of the linearized constraint violation of ¢(+). O

Theorem 3.18 is a relatively weak result in the sense that it does not distinguish between
an accumulation point Z that is feasible, i.e., ¢(Z) = 0 and infeasible. Stronger results
are possible for smooth optimization even under a less restrictive constraint qualification,
Mangasarian—-Fromovitz constraint qualification. For example, Byrd et. al. [6] show that
if m, — 0 and ¢(Z) = 0, then their SLQP algorithm converges to a KKT point. Such result
for (nonsmooth) upper-C? objective function is not evident to us and will be the subject

of our future research.

4 Numerical Applications

We present three numerical examples to demonstrate the theoretical and numerical capabil-
ities the proposed algorithm offers. The examples are chosen within the general formulation
of two-stage optimization problems. For nonsmooth nonconvex optimization problems, a
wildly popular assumption of the objective function is lower-C? or prox-regular and the
constraints are often assumed to be convex. The first two problems are synthetic problems
designed to showcase the extra theoretical convergence analysis our algorithm brings to
problems that do not satisfy these lower-type of properties. They are simple and computa-
tionally inexpensive. We also present a comparison of results with the redistributed bundle

method in [45], which we drew inspiration from.

Example 1. (Differentiable but not continuously differentiable objective) Example 1 has

the following mathematical formulation:

‘ 1
min - f(a)+pl(zs - 5)° + 5] + () (128)

s.t. —5<x1 <5, 0 <29 <50, —1 <23 <10,

where p = 10° and f(z1) : R — R is a continuously differentiable function. The function
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Example 1 4 Example 2

non-differentiable on x3 =0
feasible region for y, and y3

y3

4 feasible region for y, and y3

24

X, close to optimal solution

-4 -2 0 2 4 4 5 0 2 2
Figure 2: Feasible set of y2,ys plane of example 1 (left) and example 2 (right)

r(-) is the solution to the second-stage problem
. 2
min |z —
min o~y

st y2 <yz, —5 <y <5, (129)

—5<y2 <5, 0<y3 <10.

It is obvious that r(-) is a squared-distance function and thus upper-C?2. In addition,
r(-) turns out to also be lower-C', but not lower-C? at & = [z, %, 0], where x; can be any
value within its bounds. This translates to r(-) being differentiable but not continuously
differentiable at Z, as shown in the feasible region plot on the left of Figure 2. In this
case, our proposed algorithm offers global convergence support compared to algorithms
that require a lower-C? objective. It needs to be pointed out that r(-) is continuously
differentiable at remaining points in the domain and thus other algorithms with carefully
chosen parameters can succeed in solving Example 1 regardless.

The true solution is obtained by treating the two-stage problem as one problem with
variables in R% and solved with Ipopt. The proposed Algorithm 1 starts with ag = 1.0, ¢ =
10~® and the redistributed bundle method in [45] is implemented with T' = 2, g = 1,19 =
1. The initial point is set to zo = [1,50,5]7. The simplified bundle method exits in 4
iterations. While both algorithms quickly moved close to the solution, due to the lack
of lower-C? property at & = [x1, %,0] (Vz1 € [-5,5]), the convexification parameter n,
registers a large value for the redistributed bundle method. Given the error tolerance at

1078, the redistributed bundle method will require more iterations and could potentially
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Figure 3: Convergence and quadratic coefficient plots for example 1

be destabilized due to numerical error from the large value of 7,. This problem disappears
if error tolerance is set to a larger number. Figure 3 shows the numerical result of error
measure against the number of iterations for both redistributed and simplified bundle
method. The quadratic coefficient, which decreases in the simplified bundle method as

explained in Remark 3.4, is also plotted for both algorithms.

Example 2. (Non-differentiable) Example 2 has the following form:
. 1., 9
min f(z1)+p[(z2 — 5)° + 3] +r(z)
z€R3 2
s.t. —5 <z <5, 0< 9 <50, (130)

-5 Sl‘g S 5.

Again, u = 105 and f(z1) is a continuously differentiable function. The function r(-) is the

solution to the second-stage problem

. 2
min |z —y]
ve (131)
st Y2 <u3, —5<y1,y2,y3 <5.

Example 2 is designed to only vary slightly from Example 1 to illustrate the large group

of problems the proposed algorithm can tackle. With a slight change in the constraint to

allow y3 < 0, the solution function r(-) is no longer differentiable on z3 = 0 as multiple

solutions y exist. This is illustrated on the right plot in Figure 2.
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Figure 4: Convergence and quadratic coefficient plots for example 2

However, r(-) remains upper-C? and the convergence analysis for the proposed algo-
rithm applies. Figure 4 shows the objective and quadratic coefficient for both redistributed
and simplified bundle method from the same starting point as in Example 1. Similar con-

clusions as in Example 1 can be drawn.

Example 3. (smoothed SCACOPF) Example 3 is a SCACOPF problem with affine active
power constraint for contingency (second-stage) problems. The network data used in this
example is from the ARPA-E Grid Optimization competition [39]. The complete mathe-
matical formulation is complex but the master (first-stage) problem fits in the form of (1),
where r is the recourse function of the contingency problems. Details of the problem setup

can be seen in [39]. The number of contingency problems that are solved to evaluate r is
100.

The coupling constraint between master and contingency variables can be viewed as
linear in the former (x) but it is nonsmooth. This means recourse function r might not be
upper-C?2. However, using a quadratic penalty of the coupling constraints in the contin-
gency problems, 7 in (1) becomes upper-C? and the problem is referred to as the smoothed
SCACOPF, in contrast to the original non-smoothed one. The proposed algorithm is ap-
plied to the smoothed SCACOPF, where the quadratic penalty parameter y is set to 10°.
While this means the convergence analysis applies, we only solve an approximated prob-
lem. To verify the accuracy of the solution, the true solution is obtained by solving the

extensive form of the SCACOPF with Ipopt. It is plotted with the optimization results
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Figure 5: Convergence plots for example 3

in Figure 5. We also plot the non-smoothed objective evaluated at the optimal solution
x gained from the smoothed problem at each iteration. The rejected steps are marked as
well. Within 200 iterations, the non-smoothed objective reach within 0.010% error of the
true solution, which is acceptable and useful in practice. To speed up convergence of this
first-order method, the quadratic coefficient «ay is reduced whenever possible. For large-
scale problems with 10% coupled optimization variables and 10° contingencies, the extensive
form of the SCACOPF would be impractical, while the simplified bundle algorithm has

been successfully deployed to supercomputers [52].

5 Conclusions

In this report, we have motivated, proposed and analyzed algorithms for a group of non-
smooth, nonconvex optimization problems. We show that many two-stage (stochastic)
optimization problems, including our target application SCACOPF problems exhibit in-
teresting properties which are not thoroughly investigated previously. This has lead to our
design and analysis of the simplified bundle algorithm whose global convergence can be

achieved under upper-C? objectives. The algorithm is scalable and has been implemented
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on parallel computing platforms. Numerical experiments show promising convergence and

scaling results.
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Appendix A: Continuity of the second-stage solution function

This appendix details the continuity of 7,(-) in (23). We consider continuity of r,(-) using
Proposition 4.4 from [5]. The related notations are denoted as follows. The set S(z) C Y
is the optimal solutions at z. We denote by ®(x) C R™ the feasible set of y in the recourse
subproblem. From the constraints in (23), an important observation is that ®(z) = @,
for all x, i.e., the feasible set for y is independent of x due to smoothing. To simplify the
notations, instead of applying compact set theories on the extended real vector space, it is

reasonable to assume the following.

Assumption A.1. The optimization variables x and y are bounded. The feasibility sets
for x and y, denoted as X € R™ and Y € R™, respectively, are bounded. Moreover, Y is

compact.

We establish in Lemma A.2 that under the given assumption, the optimization prob-
lem in (23) meets the conditions in Proposition 4.4 in [5], which directly establishes the

continuity of r,(+).

Lemma A.2. The optimization problem (23) satisfies the conditions in Proposition 4.4
in [5] at a given x, which are (1) the function f(x,y) is continuous on X XY, (2) the
multifunction ®(-) is closed, (3) there exists @ € R and a compact set C C'Y such that for

every x' in a neighborhood of x, the level set

levaf(2',-) i={y € ®(x) : f(a',y) <a} (132)

is nonempty and contained in C, (4) for any neighborhood V,, of the set S(z),x € X, there
exists a neighborhood Vy, of T such that Vy N ®(x) # O for all x € V.

Proof. The objectives and constraints in the recourse subproblem are twice continuously
differentiable, as mentioned when introducing (2), which guarantees (1) for the entire
feasible set ®(x). Assumption A.l, consistent with the constraints and bounds on y,
ensures a closed feasible set and thus (2) is met. Since f(2/,y) is continuously differentiable
on X x Y, it is also bounded. Denoting a neighborhood of x as V,, the obvious choice
of a to make the level set lev, f(2/,-),V2' € V, nonempty is to let it be the maximum
value of f(z/,-) on C. Therefore, an « exists such that f(z/,y) < a,Va' € V,,y € ®(z').
Given the compact set Y C R™, a compact subset C' C Y can be found such that the
level set levy f(2/,-) is contained in C. Thus, (3) is satisfied. To see (4), let § € S(T)
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and Vj be a neighborhood of . Since ®(z) is independent of = and compact, it is clear

VyN®(z) # 0. O
We can then prove Lemma 2.4.

Proof. Applying Proposition 4.4 in [5] and Lemma A.2 directly, 7,(-) is continuous for any

x € X and the multifunction x — S(z) is upper semicontinuous at x. O
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