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Abstract

An optimization algorithm for a group of nonsmooth nonconvex problems inspired
by two-stage stochastic programming problems is proposed. The main challenges for
these problems include (1) the problems lack the popular lower-type properties such
as prox-regularity assumed in many nonsmooth nonconvex optimization algorithms,
(2) the objective can not be analytically expressed and (3) the evaluation of function
values and subgradients are computationally expensive. To address these challenges,
this report first examines the properties that exist in many two-stage problems, specif-
ically upper-C2 objectives. Then, we show that quadratic penalty method for security-
constrained alternating current optimal power flow (SCACOPF) contingency problems
can make the contingency solution functions upper-C2. Based on these observations, a
simplified bundle algorithm that bears similarity to sequential quadratic programming
(SQP) method is proposed. It is more efficient in implementation and computation
compared to conventional bundle methods. Global convergence analysis of the algo-
rithm is presented under novel and reasonable assumptions. The proposed algorithm
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therefore fills the gap of theoretical convergence for smoothed SCACOPF problems.
The inconsistency that might arise in our treatment of the constraints are addressed
through a penalty algorithm whose convergence analysis is also provided. Finally,
theoretical capabilities and numerical performance of the algorithm are demonstrated
through numerical examples.

Keywords: Optimization; Nonsmooth; Nonconvex; Upper regularity;
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1 Introduction

In this report, we consider the class of nonsmooth nonconvex constrained optimization

problems in the form of

minimize
x

f(x) +R(x)

subject to c(x) = cE

dl ≤ d(x) ≤ du

xl ≤ x ≤ xu,

(1)

where the functions f(·) : Rn → R, c(·) : Rn → Rmc , d(·) : Rn → Rmd are continuously

differentiable. The entries of the bound vectors dl and du are in R. The bounds on the

optimization variables x are such that xl, xu ∈ Rn, xlj < xuj , for all j ∈ {1, ..., n}. The

function R(·) is nonsmooth and nonconvex, as in a large number of important applica-

tions. In addition, the analytical form of R(·) might not be available, forcing a potential

algorithm to rely on known points in the optimization space. Prominent problems in the

form of (1) include two-stage stochastic programming problems with recourse [4, 21, 49].

While general to apply to various paradigms of two-stage optimization under uncertainty

(or other nonsmooth problems), the methodology presented in this report is driven by the

problem of optimal operation of large-scale electrical transmission power grids.

1.1 Power grid optimization

Electricity generation and distribution in nationwide power grid systems rely upon opti-

mization models and tools to find the power generation injection levels and transmission

power flows at each of the grid nodes so that the demand at given substations is met at

the lowest generation cost and minimum transmission losses [1]. Among them, alternating

current optimal power flow (ACOPF) models have been proposed, researched, and adopted

in some cases in operations because they model the power grid more accurately (e.g., cap-

ture reactive power and include transmission losses) than the economic dispatch models.

ACOPF models are becoming increasingly challenged with the penetration of (highly inter-

mittent) renewable sources of energy (e.g., wind and solar) and ongoing shifts in demand,

which are caused by the emergence of commodity solar systems, battery storage, and

electric vehicles [8, 31]. To better accommodate these emerging technologies, power grid

operators need to operate increasingly complex power grid systems under highly stochastic
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demand and generation profiles and frequent equipment failures.

SCACOPF is one of the salient emerging optimization paradigms for increasing the

reliability of the power grid and ensuring its operation [38] under various types of failures.

SCACOPF extends the capabilities of ACOPF by requiring that the state of the grid is

secure with respect to a comprehensive list of equipment contingencies (e.g., failures of

generators, transmission lines, and transformers) and sometimes under stochastic demand

and/or generation [18, 38]. As a result, the SCACOPF mathematical optimization problem

reaches extreme scale as it needs to simulate multiple ACOPF models (routinely O(105))

in order to find a secure state of the grid. An equally important challenge is given by the

highly nonlinear and nonconvex nature of SCACOPF (as well as of ACOPF) problems,

which makes it difficult to find global (or at least good quality) optima of the problem. On

the other hand, SCACOPF models need to be solved under strict time limitations, i.e.,

in real-time, to allow ample adjustment time for the equipment (generation ramp up or

down, load shedding, transmission switching, etc.). These challenges have sparked research

over the last decades to study new scalable optimization algorithms and develop parallel

computer implementations for SCACOPF problems.

Parallel computing has recently shown promising results for reaching real-time solutions

for SCACOPF. In [9, 40, 41, 43], the SCACOPF problem is solved in parallel by decompos-

ing the linear algebra of interior-point methods [35] using a Schur complement technique.

Alternative parallel computing approaches, such as the optimization-based decompositions

from [28] and [39], break down the SCACOPF problem at the level of the formulation into

base case ACOPF and contingency response ACOPF subproblems and enforce the reconcili-

ation between subproblems’ coupling variables using first-order gradient-based methods [28]

or carefully chosen approximations for the coupling terms [39]. Decomposed problem for-

mulation however often generates a nonsmooth nonconvex R(·), posing challenge to the

design of an algorithm that converges theoretically and is computationally efficient.

While effective in practice, decomposed SCACOPF algorithms such as the smoothed

two-stage solver in [39] has not been fully analyzed in theory. The existing nonsmooth

nonconvex optimization literature does not apply directly to the problem. In this report,

we aim to contribute to the theoretical analysis of the decomposition algorithms for SCA-

COPF problems, and more broadly two-stage optimization problems. In addition, we

provide algorithm design and implementation details that could be valuable for large-scale

nonsmooth nonconvex optimization problems.
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1.2 Nonsmooth optimization

Nonsmooth optimization has been researched extensively for decades. Most prominent

methods include subgradient methods and bundle methods. Subgradient method takes

steps in the direction of a subgradient at a given point, relying heavily on a robust step

size control algorithm to achieve good rates of convergence [50]. Bundle methods are

widely regarded as one of the most efficient optimization methods to address discontinuous

first-order derivatives [22, 33]. The bundle method develops an approximation model for

the objective with the information from previous iterations, referred to as a bundle, and

solves optimization subproblems with the model [23, 30]. The solution to the subproblem

is regarded as a trial step, which through a rejection criterion is either taken as a serious

step or rejected but included in the bundle to improve the trial step for the next iteration.

In the case with convex objectives, the linearization error between the objective function

and the tangent planes that comprise the approximation model is positive, a property that

is not valid for nonconvex functions. Therefore, adjustment to the approximation model is

needed. A commonly used one, called the down-shift mechanism, is introduced in [30] and

used in [24, 26, 48, 56]. Convergence analysis using this mechanism can be found in [2, 36].

Given additional local convexity properties, e.g., lower-C2, the slope of the tangent planes

can be titled as well to generate positive linearization errors [45]. These redistributed

bundle methods are shown to work in practice under less ideal conditions [19]. Constrained

nonsmooth nonconvex optimization adds another layer of complexity on top for bundle

methods. Convex constraints can typically be maintained as they are in the subproblems

and convergence analysis would stand valid [19]. In particular, affine constraints, commonly

appearing in applications do not pose extra challenge [17] in convergence analysis.

In dealing with nonsmooth nonconvex objectives with general constraints, ideas from

penalty and filter methods are often applied to incorporate the constraints into the objec-

tive in bundle methods. The global convergence studies in this case typically shows the

algorithm can either converge to a KKT point of the original problem or to a station-

ary/critical point of the constraint violation. The latter case could lead to an infeasible

solution. An exact penalty merit function that measures the progress of both the objec-

tive and inequality constraint violation is used in the redistributed bundle method in [55].

Lower-C2 and a special strong Slater condition are assumed to ensure global convergence.

In [16], a progress function that is the maximum of a penalized objective reduction and

constraint violation is chosen. The bundle method is applied to the subproblem whose
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objective is replaced by the progress function, eliminating the general constraint. Given

lower-C1 or upper-C1 property, convergence is proved. Similar algorithm with direct as-

sumptions on the penalty and quadratic parameters are presented in [34]. Others have

chosen a different set of penalized objective functions [29].

Outside bundle methods, [14] proposed a sequential quadratic programming (SQP)

method using gradient sampling for nonconvex nonsmooth inequality constrained opti-

mization. As conventional in SQP, the constraint is relaxed through linearization while

the iterations are taken at differentiable points of the Lipschitz objectives and constraints.

The global convergence result of the algorithm shows that accumulation points are the sta-

tionary points of the exact penalty function, which can be equal to the constraint violation

function depending on the penalty parameter. A more efficient BFGS-SQP is proposed

in [13] which shows promising numerical behaviors without theoretical guarantee of con-

vergence. In [54], a smoothing function of the objective that satisfies gradient consistency

property is used together with augmented Lagrangian constraint relaxation. Extensive

discussion of constraint qualifications are presented in order to achieve convergence. Line

search of the Lagrangian function is possible due to the smoothing function which con-

verges in the limit to the nonsmooth objective. Alternating direction method of multipliers

(ADMM) has also been applied to nonsmooth nonconvex problems and in particular in-

terest to us, distributed and asynchronous parallel algorithm [20]. In [53] the convergence

analysis requires the objective to be locally prox-regular with affine constraints, similar

to those in bundle method literature. One of the difficulties in applying ADMM to our

application is the non-existence of the analytical form of part of the objective. Recently,

difference-of-convex functions have been systematically studied in [12]. In particular in-

terest to this paper, the recourse function of linearly bi-parameterized two-stage problems

with quadratic recourse is shown to have convexity-concavity property [27]. The authors

then proposed an iterative algorithm with a quadratic convex subproblem that converges

subsequently to generalized critical points. The presence of a nonsmooth concave function

from recourse function in the objective is novel and closely related to upper-C2 property.

The report is organized as follows. In Section 2, we describe general two-stage stochastic

programming problems with an emphasis on the SCACOPF problem. In particular, we

discuss the upper-type properties of R(·) that arise from such problems, which serve as

the guild lines in designing the algorithm. We also propose quadratic penalty smoothing

to enable a large group of problems to possess some upper-type property that they do

not have otherwise. In Section 3, our simplified bundle algorithm is proposed and its
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global convergence analysis is provided given novel assumptions drawn from Section 2.

The algorithm can be seen as an extension of SQP to nonsmooth nonconvex problems. We

also discuss the adjustable update rules for the approximations of second-stage optimal

value functions and its application to two-stage stochastic programming problems. An

algorithm to address possible inconsistency due to our treatment of the constraints in the

subproblems is presented in Section 3.4, whose global convergence analysis is provided as

well. Numerical experiments are shown in Section 4 that illustrate both the theoretical and

numerical capabilities of the proposed algorithm. We note that the proposed algorithms

can be parallelized efficiently for two-stage stochastic programming problems as shown

in [52], which greatly improves computational efficiency since evaluation of R(·) and its

general subgradients can be the computationally expensive. This prepares the algorithm

well for large-scale SCACOPF applications.

2 Problem description, preliminaries and regularization

Two-stage stochastic optimization problems with recourse fits within the formulation of (1).

Using expectation as an example, the nonsmooth nonconvex function R(·), also referred

to as the expected recourse function [49], can be expressed as R(x) = EΩ[r(x, ω)], where

E is the expectation operator. The function r(x, ω) is the optimal value function of the

second-stage problem parameterized by x and the random variable ω over a probability

space Ω. More specifically, r(x, ω) has the following mathematical form:

r(x, ω) =minimize
y

p(y, x, ω)

subject to c(y, x, ω) = cE(ω)

dl(ω) ≤ d(y, x, ω) ≤ du(ω)

yl(ω) ≤ y ≤ yu(ω).

(2)

In (2), the functions p(·, ·, ω) : Rp ×Rn ×Ω → R, c(·, ·, ω) : Rp ×Rn ×Ω → Rmc , d(·, ·, ω) :
Rp×Rn×Ω → Rmd are assumed to be smooth. The entries of the bound vector dl(ω) and

du(ω) are in R and the bounds on the optimization variables y is such that yl(ω) ∈ Rp,

yu(ω) ∈ Rp and ylj(ω) < yuj (ω), for all j ∈ {1, . . . , p} and ω ∈ Ω.

SCACOPF models can be established in the form of (1)–(2), where a secure state of the

power grid is found that minimizes operation cost f(·) plus the average monetary penalties

p(·, ·, ·) associated with not satisfying power demand and violating grid’s power flows over

all contingencies. Assuming uniform distribution, the sample space of ω consists of the
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set of all possible K contingencies, each taken with equal probability 1
K . The first-stage

optimization variables x in (1) correspond to power generation and power flow levels that

are to be implemented instantly in practice; while the second stage variables y are recourse

actions to be implemented should a contingency ω occur. Thus, problem (1) simplified

with discrete uniform probability distribution can be written as

minimize
x

f(x) +
1

K

K∑
i=1

ri(x)

subject to c(x) = cE

dl ≤ d(x) ≤ du

xl ≤ x ≤ xu,

(3)

where recourse functions ri(·) : Rn → R, for all i ∈ 1, . . . ,K, are the optimal solution

functions to the deterministic second-stage optimization subproblems, namely,

ri(x) =minimize
yi

pi(x, yi)

subject to c(x, yi) = cE

dli ≤ d(x, yi) ≤ dui

yli ≤ yi ≤ yui .

(4)

WhenK is relatively small, the problem can be solved as a single-stage problem through off-

the-shelf optimization packages. However, it is usually difficult to satisfy the requirement

of real-time solution time. If the number of contingencies K is exceedingly large, which

is common in real-world power grid operations, then solution through serial optimization

solvers is intractable. One approach to tackle such large-scale problems is to use memory-

distributed algorithms with the help of parallel computing [7]. The evaluation of ri(·) at a
given x is of considerable computational cost and can reach O(102) seconds for real-world

power grids. This characteristic requires the design of the optimization algorithm to avoid

evaluating ri(·) as much as possible.

2.1 Preliminaries and notations

As mentioned earlier, throughout this work, we assume functions f(·), c(·), d(·) in (1) are

smooth, while functions ri(·) are proper (A1, [47]) and locally Lipschitz. To simplify

notation, we use r(·) to replace ri(·) and let K = 1. A closed ball in Rn centered at

x̄ ∈ Rn with radius ρ > 0 is denoted as Bρ(x̄). In nonsmooth nonconvex optimization
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literature, both Clarke subgradient [11] and lower regular subgradient (8.3, [47]) have

been widely adopted in analysis. While they both enjoy the outer/upper-semicontinuity

property necessary in establishing convergence (6.6, [47] ), Clarke subdifferential, denoted

by ∂̄r(x̄), of function r(·) at x̄ is used in this work. In addition, the less common upper

regular/general subgradient offers a critical view in discussing the properties of interest.

The lower regular subdifferential of r(·) at point x̄, denoted as ∂̂r(x̄), is defined by

∂̂r(x̄) =

g ∈ Rn| lim inf
x→x̄
x ̸=x̄

r(x)− r(x̄)− ⟨g, x− x̄⟩
∥x− x̄∥

≥ 0

 , (5)

where the 2-norm ∥·∥ is used and ⟨·⟩ is the inner product in Rn. The notion of f-attentive

convergence, which is crucial for the concept of general subgradient, is defined as

xν −→
r

x̄ ⇔ xν → x̄ with r(xν) → r(x̄), (6)

where {xν} is a sequence of points. Given the assumption of Lipschitz r(·), this becomes

trivial. If there exists a sequence {xν} such that xν −→
r

x̄ and gν ∈ ∂̂r(xν) with gν → g,

g is called a lower general subgradient of r(·) at x̄, written as g ∈ ∂r(x̄). If a Lipschitz

function r is lower regular (or subdifferentially regular as in 7.25, [47]), then its lower

general subdifferential is the same as its lower regular subdifferential (Corollary 8.11, [47]).

Due to the popularity of lower-type properties in optimization, lower general subgradient

is often simply called general subgradient (8.3, [47]).

Next, as introduced in [47] and detailed in [32], upper regular subdifferential is defined

through

∂̂+r(x̄) :=− ∂̂(−r)(x̄) =

g ∈ Rn| lim sup
x→x̄
x ̸=x̄

r(x)− r(x̄)− ⟨g, x− x̄⟩
∥x− x̄∥

≤ 0

 . (7)

The general upper subdifferential at x̄ is given as ∂+r(x̄) := −∂(−r)(x̄). A function r(·)
is called upper regular if −r(·) is lower regular [47]. Some examples of upper regular

functions include all continuous concave functions and all functions strictly differentiable.

The upper/lower general subdifferential is locally bounded for Lipschitz continuous function

(9.13, [47]). An important relationship between an upper regular subgradient and Clarke

subdifferential is established next.

Lemma 2.1. (lower subdifferential and Clarke subdifferential) Let −r(·) be a Lipschitz and

lower regular function at x̄, then its Clarke subdifferential and lower general subdifferential

at x̄ are equivalent, i.e. ∂(−r)(x̄) = ∂̄(−r)(x̄).
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Proof. This Lemma is readily available from the results in [47]. By 8.49 and 9.13 in [47],

for a Lipschitz continuous function −r(·), we have its Clarke subdifferential ∂̄(−r)(x̄) =

con∂(−r)(x̄). For a lower regular function −r(·), ∂̂(−r)(x̄) = ∂(−r)(x̄) (8.11, [47]).

Given the convexity of lower regular subdifferential ∂̂(−r)(x̄) (8.6, [47]), ∂̄(−r)(x̄) =

con∂̂(−r)(x̄) = ∂̂(−r)(x̄) = ∂(−r)(x̄).

Lemma 2.2. (upper subdifferential and Clarke subdifferential) Let r(·) be Lipschitz and

upper regular at x̄, then its upper general subdifferential and Clarke subdifferential at x̄ are

equivalent. In particular, if g ∈ ∂+r(x̄), then g ∈ ∂̄r(x̄).

Proof. We rely on the properties of lower regular functions in Lemma 2.1. Since r(·) is upper
regular, by definition −r(·) is lower regular and −∂̂(−r)(x̄) = ∂̂+r(x̄) = ∂+r(x̄). By the

symmetry property of the Clarke subgradient for locally Lipschitz functions (2.3.1, [11]), we

have ∂̄r(x̄) = −∂̄(−r)(x̄). By Lemma 2.1, −∂̄(−r)(x̄) = −∂̂(−r)(x̄). Therefore, ∂+r(x̄) =

−∂̂(−r)(x̄) = ∂̄r(x̄). As a result, g ∈ ∂+r(x̄) is also a Clarke subgradient, i.e. g ∈
∂̄r(x̄).

Due to their equivalence, for upper regular functions, Clarke subgradient and upper

general subgradient can be used interchangeably. Moving on to more restrictive assump-

tions than regularity, lower-C1 functions, introduced in [51] and [47], are commonly as-

sumed in nonsmooth optimization and have a few equivalent definitions [15]. A function

r(·) : O → R, where O ⊂ Rn is open is said to be lower-Ck on O, if on some neighborhood

V of each x̄ ∈ O there is a representation

r(x) = max
t∈T

rt(x), (8)

where the functions rt(·) are of class Ck on V and the index set T is a compact space

such that rt(·) and all of its partial derivatives through order k are jointly continuous on

(t, x) ∈ T × V . Similarly, a function is upper-Ck on O if on a neighborhood V of x̄ ∈ O

we can write

r(x) = min
t∈T

rt(x), (9)

where rt(·) are of class Ck on V . The set T is compact and rt(·) and all of the partial

derivatives through order k are jointly continuous on (t, x) ∈ T × V .

A widely used T is a closed and bounded subset of Rp. Thus, if

r(x) = min
t∈T

p(t, x) (10)
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for all x ∈ O, and p(·, ·) and its first- and second-order partial derivatives in x depend

continuously on (t, x), r(·) is upper-C2. Rockafellar [46] and Clarke [10] further simplified

the objective in (10) for Lipschitz functions. If r(·) : U → R, where U ⊂ Rn is an open,

convex and bounded set, is Lipschitz, then it is upper-C2 if there exists σ > 0, a compact

set S and continuous functions b(·) : S → Rn, c(·) : S → R such that

r(x) = min
s∈S

{σ ∥x∥2 − ⟨b(s), x⟩ − c(s)} (11)

for ∀x ∈ U .

While the original definition has clear indication for two-stage optimization problems,

an alternative definition based on the function and subgradient value is more useful in

analysis. A function is called lower-C1 at x̄ if

∀ϵ > 0, ∃ ρ > 0, s.t. ∀x, x′ ∈ Bρ(x̄), g ∈ ∂r(x),

r(x′)− r(x)− ⟨g, x′ − x⟩ ≥ −ϵ
∥∥x′ − x

∥∥ . (12)

A function is lower-C1 on an open set O if it is lower-C1 for all x ∈ O. By definition, a

function r(·) is upper-C1 if −r(·) is lower-C1 at x̄.

An intuitive, equivalent definition of a finite-valued, lower-C2 function r(·) on an open

set O is that for any point x̄ ∈ O, there exists a threshold value ρ0 > 0 such that r(·)+ ρ
2 ∥·∥

2

is convex on an open neighborhood of x̄ for all ρ > ρ0. It is worth noting that another

popular property: prox-regularity is closely related to lower-C2. Lower-C2 functions are

prox-regular and for Lipschitz continuous functions, prox-regularity also guarantees lower-

C2 on an open set O ⊂ Rn (13.33, [47]).

Since a function r(·) is called upper-C2 if and only if −r(·) is lower-C2 at x̄ ∈ Rn, for

a finite, Lipschitz and upper-C2 function r(·) on an open set O with x̄ ∈ O , there exists

ρ > 0, such that

−r(x) + r(x̄)− ⟨−g, x− x̄⟩ ≥ −ρ

2
∥x− x̄∥2 , (13)

where −g ∈ ∂(−r)(x̄) and x, x̄ ∈ O. Since −r(·) is lower-C2 and thus lower regular,

−g ∈ ∂̂(−r)(x̄). By definition, g ∈ ∂+(r)(x̄) and by Lemma 2.2, g ∈ ∂̄r(x̄). Inequality (13)

is equivalent to

r(x)− r(x̄)− ⟨g, x− x̄⟩ ≤ ρ

2
∥x− x̄∥2 , (14)

where g ∈ ∂+r(x̄) and x, x̄ ∈ O. Notice that there exists a uniform ρ such that (14) stands

for all x ∈ D ⊂ O and g ∈ ∂+r(x̄), where D is compact (10.54, [47], [45]). We refer to (14)

as the upper-C2 inequality. It is worth pointing out that upper-C2 does not guarantee
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differentiability, lower-C1 or lower regularity. It does ensure upper regularity where the

upper subdifferential is equivalent to Clarke subdifferential. A simple example is

f(x) =

x, −1 ≤x ≤ 0,
1

2
x, 0 ≤x ≤ 1,

(15)

which is concave and not differentiable or lower regular at x = 0.

A large number of nonsmooth nonconvex functions satisfy some of the properties de-

scribed in this section. They allow the use of Clarke subgradient in the analysis of global

convergence. To obtain desired properties for the objective function, regularization tech-

niques might be necessary.

2.2 Smoothing of the second-stage problem

In many two-stage stochastic optimization problems, the second-stage solution function r(·)
while lacking differentiability, satisfy the conditions for upper-C2 property. For example,

if the coupling of variables are in the smooth objective only, then by (10), r(·) is upper-C2.

In our target application, the first-stage variable x is coupled linearly in the constraints

of the second-stage problems [39]. If the coupling exists in inequality however, upper-C2

conditions might not be satisfied. Regularization of the problem could help smooth out the

non-differentiability. To see this, we first make the following assumption for this section

based on observation from SCACOPF problems.

Assumption 2.3. The problem (4) can be reformulated with uncoupled objective and cou-

pled constraints that are linear in the first-stage variable x.

Using non-negative slack variables sli ≥ 0, sui ≥ 0, the coupled inequality constraints

in (4) can be converted to equality constraints with

d(x, yi)− dli = sli

dui − d(x, yi) = sui

(16)

For simplicity reasons, the subscript i for the ith second-stage problem is dropped. More-

over, the slack variables sli, s
u
i can be regarded as part of the optimization variables y.

Clearly the relevant equality constraints are linear in s by definition. Separating the cou-

pled and uncoupled constraints, by Assumption 2.3, we denote the coupled constraints

as

Wx− h(y) = 0, (17)

12
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where the slack variables are considered part of y and W is the corresponding linear opera-

tor. Using one of the standard matrix norms, W is assumed to be bounded with ∥W∥ = w.

The second-stage problem from (4) now becomes

r(x) =minimize
y

p(y)

subject to Wx− h(y) = 0,

c(y) = cE,2

dl ≤ d(y) ≤ du

yl ≤ y ≤ yu,

(18)

where cE,2 is used to emphasize the uncoupled constraint. Given smooth h(·), r(·) still

might not be differentiable or upper-C2. However, it is possible now to apply the quadratic

penalty method [35] to achieve upper-C2. To illustrate both points, two simple examples

are presented where differentiability can be improved. Example 1 is a one-dimensional

optimization problem with equality constraint given in (19)

r(x) =min
y

y

s.t. y2 = x

y ≥ 0,

(19)

where y ∈ R and x ≥ 0. It is obvious that the solution function is r(x) =
√
x, x ≥ 0, which

is continuous yet not Lipschitz continuous at x = 0. Using the quadratic penalty function

with coefficient µ, the optimization problem is smoothed to (20)

rµ(x) =min
y

y + µ
∥∥y2 − x

∥∥2
s.t. y ≥ 0.

(20)

The smoothed solution function rµ(·) becomes Lipschitz continuous at x = 0, as illustrated

on the left plot in Figure 1. The value of µ is a trade-off between accurate approximation

of r(·) and the range of the transition period close to x = 0. Example 2 considers an

optimization problem on y ∈ R with an inequality constraint

r(x) =min
y

ay2 + by

s.t. y ≥ x

y ≥ 0.

(21)
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The solution function r(·) is differentiable but not continuously differentiable at x = 0.

With quadratic penalty and a slack variable s for the inequality constraint, the problem

transforms to

rµ(x) =min
y

ay2 + by + µ ∥x+ s− y∥2

s.t. y, s ≥ 0.
(22)

The function rµ(·) is then smoothed into a continuously differentiable one as seen on the

right in Figure 1. The smoothed function rµ(·) in both examples are now upper-C2.

Figure 1: Quadratic penalty smoothing example: example 1 on the left, example 2 on the right

Similarly, for the more general case, it is possible to obtain desirable properties such as

upper-C2 for second-stage solution functions by incorporating the coupled constraints into

the objective through a quadratic penalty such as

rµ(x) =minimize
y

µ ∥Wx− h(y)∥2 + p(y)

subject to c(y) = cE,2

dl ≤ d(y) ≤ du

yl ≤ y ≤ yu

(23)

where µ is the penalty coefficient. As µ → ∞, the feasible accumulation points of the

solutions to (23) become the solution to that of (4) [35]. It is worth pointing out that the

coupling part of x is converted into a squared distance function, which has been studied

extensively [42, 47]. While we focus on the linearly coupled constraint from SCACOPF,

14
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as the goal is to pursue upper-C2 of r(·), it is clear from its definition (10) that linearity

is not necessary. In fact a smooth coupling in both x and y with quadratic penalty would

suffice.

The properties of rµ(·) from (23) is examined next. The feasible set of y is denoted as

Φ(x). An important fact that is repeatedly used is that Φ(x) ≡ Φ, independent of x due

to the regularization. For rµ(·) to be continuous at x, the problem needs to have certain

bounded properties. For example, it is common to assume coercivity [17] or level-bounded

objective functions [16]. On the other hand, in our target applications, the variables x and

y are bounded above and below by real, finite values. The slack variable s, defined through

functions on x, y, are effectively bounded as well. Hence, we choose to assume bounded

domain for x and compact domain for y, denoted as X ∈ Rn and Y ∈ Rp, respectively for

simplicity. Notice again Y is now independent of x. The optimal solution set is denoted

as S(x) ⊂ Y and the continuity result is given in Lemma 2.4 based on Chapter 4 from [5],

the proof of which requires additional definitions and is left for the Appendix.

Lemma 2.4. The optimal value function of the smoothed second-stage problem rµ(·) is

continuous, and the multifunction x → S(x) is upper semicontinuous at x

In addition, the compact domain and linear coupling of rµ(·) leads to the following Lemma.

Lemma 2.5. The optimal solution function rµ(·) is Lipschitz continuous on its domain.

Proof. Given that x is bounded, the domain of y is compact, and the continuous differen-

tiability of the objective in (23), rµ(x) is bounded. Let M ∈ R > 0 be the upper bound of

the absolute value of the coupled constraint, such that

∥Wx− h(y)∥ ≤ M, ∀x ∈ X, y ∈ Y. (24)

Denote by x1, x2 two points in the domain and y1 ∈ S(x1), y2 ∈ S(y2) their corresponding

optimal solutions. To simplify the notations, write h1 = h(y1), h2 = h(y2), p1 = p(y1), p2 =

p(y2). Since y1 ∈ S(x1) and Y is independent of x, we have

µ ∥Wx1 − h1∥2 + p1 ≤ µ ∥Wx1 − h2∥2 + p2

= µ ∥W (x1 − x2) +Wx2 − h2∥2 + p2

≤ µ ∥W (x1 − x2)∥2 + 2µ[W (x1 − x2)]
T (Wx2 − h2)

+ µ ∥Wx2 − h2∥2 + p2.

(25)
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Given w = ∥W∥,

µ ∥Wx1 − h1∥2 + p1−µ ∥Wx2 − h2∥2 − p2

≤µ ∥W (x1 − x2)∥2 + 2µ[W (x1 − x2)]
T [Wx2 − h2]

≤µ ∥W (x1 − x2)∥ (∥W (x1 − x2)∥+ 2 ∥Wx2 − h2∥)

≤µw ∥x1 − x2∥ (w ∥x1 − x2∥+ 2M) .

(26)

Similarly,

µ ∥Wx2 − h2∥2 + p2−µ ∥Wx1 − h1∥2 − p1

≤µ ∥W (x1 − x2)∥2 + 2µ[W (x2 − x1)]
T [Wx1 − h1]

≤µ ∥W (x1 − x2)∥ | (∥W (x1 − x2)∥+ 2 ∥Wx1 − h1∥)

≤µw ∥x1 − x2∥ (w ∥x1 − x2∥+ 2M) .

(27)

Let
∥∥xu − xl

∥∥ = D,L = µw(wD + 2M), we have

|rµ(x1)− rµ(x2)| =
∣∣∣µ ∥Wx2 − h2∥2 + p2 − µ ∥Wx1 − h1∥2 − p1

∣∣∣
≤µw ∥x1 − x2∥ (w ∥x1 − x2∥+ 2M)

≤µw ∥x1 − x2∥ (wD + 2M)

≤L ∥x1 − x2∥ .

(28)

Next we show that an upper general subgradient of rµ(·) at x̄ can be expressed as

gµ(x̄) = 2µW T (Wx̄− h(ȳ)) ∈ ∂+rµ(x̄). (29)

Proposition 2.6. The vector gµ(x̄) in (29) is an upper general subgradient of rµ(·) in (23).

In addition, the upper-C2 inequality in (14) is satisfied with gµ(x̄), i.e., for x, x̄ in the

domain, there exists C > 0 such that rµ(x)− rµ(x̄)− gTµ (x̄)(x− x̄) ≤ C ∥x− x̄∥2.

Proof. Let p = p(y), p̄ = p(ȳ), h = h(y), h̄ = h(ȳ), where y ∈ S(x) and ȳ ∈ S(x̄). The

left-hand side of the inequality in (14) can be written as

rµ(x)−rµ(x̄)− gTµ (x̄)(x− x̄)

=µ(xTW TWx− 2hTWx+ hTh) + p− µ(x̄TW TWx̄− 2h̄TWx̄+ h̄T h̄)− p̄

− 2µ(x̄TW TWx− x̄TW TWx̄− h̄TWx+ h̄TWx̄)

=µ(∥W (x− x̄)∥2 − 2hTWx+ hTh− h̄T h̄+ 2h̄TWx) + p− p̄

=µ(∥W (x− x̄)∥2 + ∥h−Wx∥2 − ∥Wx∥2 −
∥∥h̄−Wx

∥∥2 + ∥Wx∥2) + p− p̄

=µ ∥W (x− x̄)∥2 + µ ∥h−Wx∥2 + p− µ
∥∥h̄−Wx

∥∥2 − p̄.

(30)
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Further, since y ∈ S(x), we have

rµ(x)− rµ(x̄)− gTµ (x̄)(x− x̄) ≤µw2 ∥x− x̄∥2 + µ ∥h−Wx∥2 + p− µ
∥∥h̄−Wx

∥∥2 − p̄

≤µw2 ∥x− x̄∥2 .
(31)

Taking the limit so that x → x̄,

lim sup
x→x̄
x ̸=x̄

rµ(x)− rµ(x̄)− gTµ (x̄)(x− x̄)

∥x− x̄∥
≤ 0 (32)

By definition (7), gµ(x̄) is a upper regular subgradient, hence a upper general subgradient.

Let C = µw2, the upper-C2 inequality is satisfied.

The quadratic penalty smoothing of the second-stage problems allows the following impor-

tant property to be achieved.

Proposition 2.7. The second-stage optimal solution function rµ(·) is upper-C2 and thus

satisfies the upper-C2 inequality in (14) on its domain.

Proof. There are multiple ways to show this. The most straightforward one is to apply

directly the definition (10). From Lemma 2.5, rµ(·) is Lipschitz continuous. From the

definition of rµ(·) in (23), the feasible set of the optimization variables y is compact in Rm

and independent of x. The coupling is now only in the objective, with the non-coupled

part p(·) smooth in y. Further, the coupling in objective is quadratic in x, rendering it

twice continuously differentiable in a neighborhood of both x and y. By definition leading

to (10), rµ(·) is upper-C2.

Intuitively, as pointed out in 10.57 of [47], squared distance function on a nonempty

closed set is upper-C2. The objective, while having an additional smooth function p(·), is
only coupled in the squared distance function. From the viewpoint of (11), given a x ∈ Rn,

an open, convex and bounded neighborhood of x can be found where the objective that

defines rµ(·) in (23) fits the form in (11). It is pointed out that such a neighborhood could

contain infeasible points for the first-stage problem, while not affecting the property of the

function rµ(·) itself. Therefore, rµ(·) is upper-C2. The proposition then follows.

Proposition 2.8. If the solution set S(x) is a singleton at x̄ such that S(x̄) = {ȳ}, then
rµ(·) is differentiable at x̄ and gµ(x̄) = 2µW T (Wx̄− h(ȳ)) is the gradient ∇rµ(x̄).
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Proof. Let us take x, x̄ ∈ X and use shorthands p̄ = p(ȳ), p = p(y), h̄ = h(ȳ), h = h(y). We

can write

rµ(x)− rµ(x̄)− ḡTµ (x− x̄)

=
(
µ ∥Wx− h∥2 + p

)
−
(
µ
∥∥Wx̄− h̄

∥∥2 + p̄
)
− 2µ(Wx̄− h̄)TW (x− x̄)

=µ(∥W (x− x̄)∥2 − 2hTWx+ hTh− h̄T h̄+ 2h̄TWx) + p− p̄

=µ(∥W (x− x̄)∥2 + 2hTWx̄− 2h̄TWx̄− 2hTWx+ 2h̄TWx)

+ µ ∥h−Wx̄∥2 + p− µ
∥∥h̄−Wx̄

∥∥2 − p̄

=µ(∥W (x− x̄)∥2 − 2h̄TW (x̄− x) + 2hTW (x̄− x))

+ µ ∥h−Wx̄∥2 + p− µ
∥∥h̄−Wx̄

∥∥2 − p̄

≥µ(∥W (x− x̄)∥2 − 2h̄TW (x̄− x) + 2hTW (x̄− x))

=µ(∥W (x− x̄)∥2 − 2[h− h̄]TW (x− x̄))

(33)

Since h̄ = h(ȳ) is unique at x̄, h → h̄ as x → x̄ and

lim inf
x→x̄
x ̸=x̄

rµ(x)− rµ(x̄)− gTµ (x− x̄)

∥x− x̄∥
≥ lim

x→x̄
x ̸=x̄

µ(−2w
∥∥h− h̄

∥∥ ∥x− x̄∥)
∥x− x̄∥

= lim
x→x
x̄ ̸=x̄

−2µw
∥∥h− h̄

∥∥ = 0.

(34)

In addition, from the proof of Proposition 2.6, we know

lim sup
x→x̄
x ̸=x̄

rµ(x)− rµ(x̄)− gTµ (x− x̄)

∥x− x̄∥
≤ 0 (35)

Therefore,

lim
x→x̄
x ̸=x̄

rµ(x)− rµ(x̄)− gTµ (x− x̄)

∥x− x̄∥
= 0, (36)

and the proposition follows.

On the other hand, if the optimal solution h̄ is not unique, there could exist multiple

upper regular subgradients and rµ(·) might not be differentiable. Indeed, uniqueness of the

solution y ∈ S(x) is not guaranteed. It is possible to put more restrictions on h(·) so that

rµ(·) becomes continuously differentiable.

Proposition 2.9. The optimal solution function rµ(·) is lower-C2 on a neighborhood O of

x̄, if h(y), y ∈ S(x), is Lipschitz continuous on O, i.e., ∀x1, x2 ∈ O, there exists Lh > 0 such

that ∥h(y1)− h(y2)∥ < Lh ∥x1 − x2∥ on O. Moreover, rµ(·) is continuously differentiable

at x̄.
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To summarize, while in many nonsmooth nonconvex optimization methods, lower-C2

or prox-regularity are assumed, for some important applications such as the decomposed

formulation of SCACOPF, lower regularity of the objective is not available. The upper-type

properties however appears natural for two-stage problems, and has motivated us to make

assumptions differently than the conventional ones and design algorithms accordingly.

There are multiple convergence definitions in nonsmooth nonconvex analysis, e.g., sta-

tionary point, Karush–Kuhn–Tucker (KKT) point, (Fritz-John) critical point, etc. In this

paper, the focus is on first-order optimality condition with Clarke subgradient. Without

losing generality, problem (3) can be recast for simplicity as

minimize
x

r(x)

subject to c(x) = 0

0 ≤ x ≤ xu,

(37)

where c(x) : Rn → Rm. As mentioned earlier in this section, transforming (3) requires the

new variables x in (37) to contain slack variables, which are implicitly bounded from bound

constraints on x. We opt to keep the upper bound xu in the bound constraints explicit, as

in (3) to emphasize that the feasible set of x is bounded . We point out that the bound

constraints form a convex set, with the nonconvexity left to the equality constraints.

Problem (37) is assumed to be calm (6.4, [11]) at its local minimum. Calmness can

be viewed as a weak constraint qualification (6.4, [11]). In particular, the widely adopted

linear independence constraint qualification (LICQ) (17.2, [35]) in smooth optimization

ensures calmness. Calmness guarantees the Lagrange multiplier for the objective function

in Fritz-John critical point equation [11] is nonzero(6.4.4, [11]). Therefore, we can use

a KKT point instead of a Fritz-John critical point in the optimality condition [11]. For

problem (37), a first-order optimality condition at a local minimum x̄ is that there exists

λ̄ ∈ Rm and ζ̄l ≥ 0, ζ̄l ∈ Rn, ζ̄u ≥ 0, ζ̄u ∈ Rn such that

0 ∈ ∂̄r(x̄) +∇c(x̄)λ̄− ζ̄l + ζ̄u,

Z̄u(x̄− xu) = 0, Z̄lx̄ = 0,

cj(x̄) = 0, j = 1, . . . ,m,

λ̄jcj(x̄) = 0, j = 1, . . . ,m,

ζ̄l, ζ̄u, xu − x̄, x̄ ≥ 0.

(38)

The matrix ∇c(x̄) is of dimension n×m. The matrices Z̄u, Z̄l are diagonal matrices whose

diagonal values are ζ̄u and ζ̄l, respectively. A point that satisfies (38) is called a KKT point
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of problem (37). For upper regular functions, it is possible to establish a stronger form of

optimality condition, especially the first condition in (38) as explained in [32].

3 Simplified bundle algorithm

Given the nonsmooth nonconvex nature of problem (37), we consider the bundle methods

which have proven to be one of the most successful methods in solving such problems [25].

Bundle methods utilize information generated through previous iterative steps to form an

approximation of the objective. Typically such an approximation model is a supportive one

that produces smaller function value than the real function. Meanwhile, many such algo-

rithms rely on the quadratic coefficient in the approximation to avoid line search [37, 45].

Another feature is the existence of a robust rejection mechanism to ensure the approx-

imation is reasonable, similar to trust-region methods [35]. A solution to an iterative

subproblem generates a trial step that is either accepted or rejected. A trial point is called

a serious point if it is accepted. Convergence analysis for bundle methods typically require

the objective to have properties such as lower-C2 and lower-C1. For large-scale problems

such as SCACOPF problems, a clear drawback is that the complex update rule for the

bundle and the large number of bundle points needed in the approximation could increase

computing time considerably.

The proposed algorithm simplifies the bundle method while retain many of its features.

Motivated by the properties exhibited from two-stage stochastic optimization problems dis-

cussed in Section 2, we make the assumption that the objective r(·) is upper-C2, formalized

below.

Assumption 3.1. The Lipschitz continuous objective function r(·) in problem (37) is

upper-C2.

In particular, the inequality (14) is satisfied and since x is bounded, there exists a ρ for

the entire domain. In general, upper regularity, which is closely related to concavity, is

less explored for optimization problems. We point out that [16, 36] have studied bundle

methods and to our knowledge were the first to prove convergence for upper-C1 objective

and constraints. However, in that case the parameters of the approximation model are not

guaranteed to be finite, besides the aforementioned challenges in applying bundle method.

To take full advantage of the smooth constraints c(·), we assume uniform boundedness on

their Hessian, a common assumption in literature [14].
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Assumption 3.2. The constraints c(·) are twice differentiable. There exists a constant Hc
u

such that the Hessian of constraints c(·) satisfy 1
2x

T∇2cj(x)x ≤ Hc
u ∥x∥

2 for any x ∈ Rn

and 1 ≤ j ≤ m.

3.1 Algorithm description

The simplified bundle algorithm is an iterative method with approximated objective at each

iteration. It bears similarity to SQP methods in the treatment of constraints and can be

viewed as its extension. Compared to conventional bundle methods, the convex quadratic

approximation ϕk(·) to the objective r(·) in (37) is dependent only on the current serious

point instead of a bundle of points. More specifically, at iteration k and its serious step

xk, the local approximation model ϕk(·) is

ϕk(x) = r(xk) + gTk (x− xk) +
1

2
αk ∥x− xk∥2 , (39)

where gk ∈ ∂̄r(xk), and αk > 0 is a scalar quadratic coefficient. Equivalently, denoting

d = x− xk, ϕk(x) can be reformulated as Φk(d) such that

Φk(d) = rk + gTk d+
1

2
αk ∥d∥2 , (40)

where rk = r(xk). The function value and subgradient at xk are exact, i.e., Φk(0) =

rk,∇Φk(0) = gk. Furthermore, the smooth constraints in (37) are linearized. The sub-

problem to be solved at iteration k is

minimize
d

Φk(d)

subject to c(xk) +∇c(xk)
Td = 0,

dkl ≤ d ≤ dku,

(41)

where dkl = −xk, d
k
u = xu − xk. As in SQP algorithms, it is possible that the linearized

constraints cause the problem (41) to be infeasible. There are multiple ways to address this

issue, one of which will be presented in Section 3.4. In this section, we operate under the

assumption that (41) can be solved and its solution is denoted as dk. To measure progress

in both the objective and the constraints, the l1 merit function is adopted:

ϕ1θk(x) = r(x) + θk ∥c(x)∥1 , (42)

where ∥·∥1 is the 1-norm and θk > 0 is a penalty parameter. A line search step on the

constraints is needed in order to ensure progress in the merit function (42). The predicted
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change on the objective is defined as

δk =Φk(0)− Φk(dk) = −gTk dk −
1

2
αk ∥dk∥2 . (43)

To measure whether the approximation model Φk(·) of the objective formed at xk is still

valid at the trial step xk + dk, we define ratio ρk as

ρk =

r(xk)− r(xk + dk)− η+l δk, δk ≥ 0,

r(xk)− r(xk + dk)− η−l δk, δk < 0,
(44)

where 0 < η+l ≤ 1 and η−l ≥ 1 are two parameters of the algorithm. If ρk > 0, the model

is valid and the algorithm proceeds to line search. Otherwise, the trial step xk + dk is

rejected and the parameter αk is updated to find a different trial step. This process draws

inspiration from trust-region methods.

The change in the model objective δk is not necessarily positive. Therefore, the cor-

responding threshold η+l and η−l differ based on the sign of δk. In both cases, the actual

change in the objective r(xk)−r(xk+dk) is allowed to be slightly worse than the predicted

change. This means that if δk is non-negative, the actual decrease can be smaller than the

predicted decrease δk, though a fraction η+l of δk is required. If δk is negative, the actual

increase in objective value can be slightly larger than the predicted increase value −δk, the

degree to which is governed by η−l ≥ 1.

Let the line search parameter be βk ∈ (0, 1]. Then, the serious step taken is given as

xk+1 = xk + βkdk. Let δ
β
k = Φk(0)− Φk(βkdk), we have

δβk =Φk(0)− Φk(βkdk) = −βkg
T
k dk −

1

2
β2
kαk ∥dk∥2 . (45)

Similar to ρk, the ratio between predicted and actual change in objective at xk+1 is denoted

as ρβk , whose definition is

ρβk =

r(xk)− r(xk+1)− η+γ δ
β
k , δβk ≥ 0,

r(xk)− r(xk+1)− η−γ δ
β
k , δβk < 0.

(46)

The parameter η+γ and η−γ can have different values than η+l and η−l to increase flexibility
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of the algorithm. The first-order optimality conditions of the subproblem (41) are

gk + αkdk −∇c(xk)λ
k+1 − ζk+1

l + ζk+1
u = 0,

Zk+1
u (dk − dku) = 0, Zk+1

l (dk − dkl ) = 0,

Λk+1
[
c(xk) +∇c(xk)

Tdk
]
= 0,

ζk+1
u , ζk+1

l , dk − dkl , d
k
u − dk ≥ 0,

c(xk) +∇c(xk)
Tdk = 0,

(47)

where λk+1 ∈ Rm is the Lagrange multiplier for c(·), and ζk+1
u , ζk+1

l ∈ Rn are the Lagrange

multipliers for the bound constraints. The matrices Λk+1, Zk+1
u , Zk+1

l are diagonal matrices

whose diagonal values are λk+1, ζk+1
u and ζk+1

l , respectively. An equivalent form of the

complementarity conditions of bound constraints based on xu instead of dkl , d
k
u are

Zk+1
u (xk + dk − xu) = 0, Zk+1

l (xk + dk) = 0,

ζk+1
u , ζk+1

l , xk + dk, xu − xk − dk ≥ 0.
(48)

The line search conditions are given as follows

θk ∥c(xk)∥1 + βk(λ
k+1)T c(xk) ≥ θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 ,

θk ∥c(xk)∥1 + η+γ βk(λ
k+1)T c(xk) ≥ θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 ,

θk ∥c(xk)∥1 + η−γ βk(λ
k+1)T c(xk) ≥ θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 .

(49)

The differences between the conditions are the parameters η+γ and η−γ in the second and

third inequalities, which stem from the unknown sign of δk and δβk . For simplicity in

implementation and analysis, we use the following alternative condition for line search

that encompasses all three

θk ∥c(xk)∥1 − η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ≥ θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 . (50)

We will show that condition (50) implies conditions in (49) in Lemma 3.6. The simplified

bundle method is presented in Algorithm 1, where ∥·∥∞ is the infinity norms. The items

involving consistency restoration such as πk−1 are explained in Section 3.4.

3.2 Convergence analysis

If the algorithm terminates in a finite number of steps, stopping test in step 4, which can

be modified if needed, is satisfied with the error tolerance ϵ and the solution is considered
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Algorithm 1: Simplified bundle method

1 Initialize x0, α0, stopping error tolerance ϵ, and k = 1. Choose scalars 0 < η+l ≤ 1,

0 < ηβ < η+γ ≤ 1, η−l ≥ 1,η−γ ≥ 1, ηα > 1 and γ > 0. Evaluate the function value

r(x0) and subgradient g(x0).

2 for k = 0, 1, 2, ... do

3 Form the quadratic function Φk in (40) and solve subproblem (41) to obtain dk

and Lagrange multiplier λk+1. (If inconsistent constraints are encountered,

enter consistency restoration and go back to step 2 with k = k + 1.)

4 if ∥dk∥ ≤ ϵ then

5 Stop the iteration and exit the algorithm.

6 Evaluate function value r(xk + dk). Compute δk in (43) and ρk in (44).

7 Set the merit function parameter θk so that θk = max {θk−1, η
−
γ

∥∥λk+1
∥∥
∞ + γ}.

If feasibility restoration is called for iteration k − 1, let

θk = max { 1
πk−1

, η−γ
∥∥λk+1

∥∥
∞ + γ}.

8 if ρk > 0 then

9 Find the line search parameter βk > 0 using backtracking, starting at

βk = 1 and halving if too large, such that the conditions in (50) are

satisfied. Evaluate r(xk+1) and compute ρβk in (46).

10 if ρβk < 0 then

11 Break and go to line 14.

12 Take the step xk+1 = xk + βkdk.

13 else

14 Reject the trial step.

15 Call the chosen αk update rules to obtain αk+1 = ηααk.
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found. Let ϵ = 0, based on step 4, ∥dk∥ = 0. As dk solves (41), optimality conditions

in (47) are satisfied, of which the first equation reduces to

gk −∇c(xk)λ
k+1 − ζk+1

l + ζk+1
u = 0. (51)

Given gk ∈ ∂̄r(xk), we have 0 ∈ ∂̄r(xk)−∇c(xk)λ
k+1−ζk+1

l +ζk+1
u . In addition, by c(xk)+

∇c(xk)
Tdk = 0 from (47), we have c(xk) = 0. So xk is feasible in terms of the equality

constraints. Together with the bound constraints that are enforced in the subproblem (41),

the rest of the equations in (38) are also satisfied. Therefore, xk satisfies (38) and is a KKT

point for (37) as the algorithm exits. In what follows, the convergence analysis is carried

out for the case with an infinite number of steps, i.e., ∥dk∥ > 0. We start by showing that

the parameter αk in Algorithm 1 eventually stabilizes, i.e., becomes constant.

Lemma 3.3. Given the assumption (3.1), Algorithm 1 produces a finite number of rejected

steps. As a consequence, the quadratic coefficient αk is bounded above and remains constant

for k large enough.

Proof. From the upper-C2 property (14), we have

r(xk + d)− rk − gTk d ≤ C ∥d∥2 (52)

for a fixed constant C > 0. In the first part of the proof we show that if at some iteration

k, αk satisfies

αk > 2C, (53)

then no rejected steps can occur in Algorithm 1 after iteration k. This means steps 8 and 10

of the algorithm ρt > 0 and ρβt > 0 will hold for all iterations t ≥ k. The inequalities (52)

and (53) imply

rk − r(xk + dk) ≥− gTk dk − C ∥dk∥2

>− gTk dk −
1

2
αk ∥dk∥2

=Φk(0)− Φk(dk).

(54)

As in the definition (44) of ρk, we distinguish between two cases based on the sign of δk.

If δk = Φk(0)− Φk(dk) ≥ 0, then since 0 < η+l ≤ 1, (54) gives

rk − r(xk + dk) >Φk(0)− Φk(dk)

≥η+l [Φk(0)− Φk(dk)] .
(55)
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If δk = Φk(0)− Φk(dk) < 0, given η−l ≥ 1, we can also write based on (54) that

rk − r(xk + dk) >Φk(0)− Φk(dk),

≥η−l [Φk(0)− Φk(dk)] .
(56)

As a consequence, by definition (44), we conclude ρk > 0. Similar inequalities hold for

xk+1 = xk + βkdk since one can write based on (52) that

r(xk)− r(xk+1) ≥− βkg
T
k dk − Cβ2

k ∥dk∥
2 > −βkg

T
k dk −

1

2
αkβ

2
k ∥dk∥

2

=Φk(0)− Φk(βkdk).

(57)

Same steps that lead to (55) and (56) for η+γ , η
−
γ imply ρβk > 0. Therefore, for t ≥ k, ρt > 0

and ρβt > 0 and thus αt = αk. Equivalently, no rejected steps occur once (53) holds. Since

αk is increased monotonically with a ratio ηα > 1 whenever a rejected step is encountered,

only a finite number of rejected steps are needed to reach αk > 2C, which are followed by

serious steps.

For the second part of the proof, suppose now αk ≤ 2C for all k. Then, only no

or a small number of rejected steps can be taken by the algorithm. The monotonically

increasing αk ensures that there exists k such that αt = αk ≤ 2C for all t ≥ k. This

completes the proof.

Remark 3.4. For simplicity, we choose to increase αk monotonically in the algorithm. In

practice, we encourage that αk be reduced if ρk > 0 and η+l > η+u where η+u is an upper

threshold for the parameter η+l . In other words, if the actual decrease in objective is bigger

than a certain ratio of the predicted decrease, then Φk(·) is a good approximation and we

reduce the quadratic coefficient to encourage larger step size. From the convergence analysis

point of view, the upper-C2 constant C is not uniform in the entire domain. A decrease

in αk allows the algorithm to adjust better to the local upper-C2 constant that could be

relatively small compared to C, which could result in improved convergence in practice.

Lemma 3.5. Given Assumption 3.2, the line search process of Algorithm 1 is well-defined,

in that a βk ∈ (0, 1] that satisfies the line search conditions in (50) exists and can be found

in a finite number of steps through backtracking step 9 as long as the Lagrange multipliers

λk+1 from (41) remain finite.

Proof. If λk+1 remains finite throughout the algorithm, then a finite θk is guaranteed as

well based on how it is chosen in Algorithm 1 step 7 as it stops increasing for k large
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enough. Since c(·) is smooth, we apply Taylor expansion to the jth equality constraint,

j = 1, ...,m, at xk for xk+1 = xk + βkdk to obtain

cj(xk+1) =cj(xk) + βk∇cj(xk)
Tdk +

1

2
β2
kd

T
kH

j
kβdk, (58)

where Hj
kβ is the Hessian ∇2cj(·) at a point on the line segment determined by xk and

xk+1. Given dk as the solution to (41), we have that cj(xk) + ∇cj(xk)
Tdk = 0 and as a

consequence, we can write based on (58) that

cj(xk+1) = (1− βk)cj(xk) +
1

2
β2
kd

T
kH

j
kβdk.

By Assumption 3.2, |cj(xk+1)| ≤ |(1− βk)cj(xk)|+ β2
kH

c
u ∥dk∥

2, which in turn implies that

∥c(xk+1)∥1 ≤ (1− βk) ∥c(xk)∥1 +mβ2
kH

c
u ∥dk∥

2 . (59)

Applying simple norm inequalities, we have

βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ≤ βk

∥∥∥λk+1
∥∥∥
∞
∥c(xk)∥1 . (60)

Since step 7 of the algorithm chooses θk ≥ η−γ
∥∥λk+1

∥∥
∞ + γ, where η−γ and γ are positive

constants, we can write based on (59) and (60) that

θk ∥c(xk)∥1 − η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣− θk ∥c(xk+1)∥1

≥ (θk − η−γ βk

∥∥∥λk+1
∥∥∥
∞
) ∥c(xk)∥1 − θk(1− βk) ∥c(xk)∥1 − θkmβ2

kH
c
u ∥dk∥

2

= (θkβk − η−γ βk

∥∥∥λk+1
∥∥∥
∞
) ∥c(xk)∥1 − θkmHc

uβ
2
k ∥dk∥

2

≥ βk

(
γ ∥c(xk)∥1 − θkmHc

uβk ∥dk∥
2
)
.

(61)

Therefore, if βk is reduced by the line search step through backtracking in Algorithm 1 to

satisfy

0 < βk ≤
ηβαk

2Hc
uθkm

, (62)

then

θk ∥c(xk)∥1 − η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣− θk ∥c(xk+1)∥1 ≥ −1

2
ηβαkβk ∥dk∥2 .

Using ceiling function ⌈·⌉, which returns the least integer greater than the input, we can

write

βk ≥ 1

2

⌈log 1
2

ηβαk
2Hc

uθkm
⌉
. (63)

We remark that both the denominator and numerator in (62) are positive and independent

of the line search. Further, by Lemma 3.3 and finite λk+1, all terms in (62) remain finite.

Therefore, the backtracking stops in finite steps. This completes the proof.
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Lemma 3.6. The βk ∈ (0, 1] that meets the line search condition in (50) also satisfies the

conditions from (49), or equivalently

βk(λ
k+1)T c(xk) ≥ −θk ∥c(xk)∥1 + θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 ,

η+γ βk(λ
k+1)T c(xk) ≥ −θk ∥c(xk)∥1 + θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 ,

η−γ βk(λ
k+1)T c(xk) ≥ −θk ∥c(xk)∥1 + θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 .

(64)

Proof. From simple absolute value inequality, we have

βk(λ
k+1)T c(xk) ≥− βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ,

η+γ βk(λ
k+1)T c(xk) ≥− η+γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ,

η−γ βk(λ
k+1)T c(xk) ≥− η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ .

(65)

Given that 0 < η+γ ≤ 1 ≤ η−γ ,

−η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ≤ −βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ≤ −η+γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ . (66)

Therefore, from (65) and (66)

βk(λ
k+1)T c(xk) ≥− η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ,

η+γ βk(λ
k+1)T c(xk) ≥− η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ,

η−γ βk(λ
k+1)T c(xk) ≥− η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ .

(67)

From the line search condition (50), we have

−η−γ βk

∣∣∣(λk+1)T c(xk)
∣∣∣ ≥ −θk ∥c(xk)∥1 + θk ∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 . (68)

Combined with (67) the proof is completed.

Lemma 3.7. The step xk+1 = xk + βkdk is a decreasing step for the merit function (42)

if βk satisfies the line search condition. Further, if the Lagrange multipliers λk is finite for

all k, the speed of decrease satisfies ϕ1θk(xk)−ϕ1θk(xk+1) > cϕ ∥dk∥2 for some constant cϕ.

Proof. For a serious step xk+1 to be taken, step 8 and 10 are satisfied so that ρk > 0, ρβk > 0.

We distinguish three cases based on the value of αk and sign of δβk . The first case is αk > 2C.

By upper-C2 property in (52), as shown in (57), we have

r(xk)− r(xk+1) >− βkg
T
k dk −

1

2
αkβ

2
k ∥dk∥

2

=Φk(0)− Φk(βkdk) = δβk .

28



J. Wang and C. G. Petra

In the second case, αk ≤ 2C and δβk ≥ 0. From the definition of ρβk in (46),

r(xk)− r(xk+1) > η+γ

[
−βkg

T
k dk −

1

2
αkβ

2
k ∥dk∥

2

]
. (69)

The third case is when αk ≤ 2C and δβk < 0, and we have

r(xk)− r(xk+1) > η−γ

[
−βkg

T
k dk −

1

2
αkβ

2
k ∥dk∥

2

]
. (70)

Rearranging the first equation in optimality condition (47), we have

gk + αkdk = ∇c(xk)λ
k+1 + ζk+1

l − ζk+1
u . (71)

Then, taking the inner product with −dk and using the last equation from (47) we have

−gTk dk − αk ∥dk∥2 = −(λk+1)T∇c(xk)
Tdk − dTk ζ

k+1
l + dTk ζ

k+1
u

= (λk+1)T c(xk)− (dk − dkl + dkl )
T ζk+1

l + (dk − dku + dku)
T ζk+1

u

= (λk+1)T c(xk)− (dkl )
T ζk+1

l + (dku)
T ζk+1

u

= (λk+1)T c(xk) + xTk ζ
k+1
l + (xu − xk)

T ζk+1
u

≥ (λk+1)T c(xk).

(72)

The third equality of (72) comes from the complementarity conditions Zk+1
l (dk − dkl ) = 0

and Zk+1
u (dk − dku) = 0 in (47). The inequality can be obtained from bound constraints

in (48) where xk ≥ 0, xu − xk ≥ 0, ζk+1
l ≥ 0 and ζk+1

u ≥ 0 for the current and previous

iteration. Next, multiplying both sides of (72) by βk and then subtracting 1
2αkβ

2
k ∥dk∥

2

leads to

−βkg
T
k dk −

1

2
αkβ

2
k ∥dk∥

2 ≥ αkβk ∥dk∥2 −
1

2
αkβ

2
k ∥dk∥

2 + βk(λ
k+1)T c(xk)

≥ 1

2
αkβk ∥dk∥2 + βk(λ

k+1)T c(xk),

(73)

where the second inequality makes use of βk ∈ (0, 1]. Notice that the left-hand side of (73)

is δβk and is not guaranteed to be positive. Multiplying both sides of (73) by η+γ and η−γ

respectively, we obtain

−η+γ βkg
T
k dk −

1

2
η+γ αkβ

2
k ∥dk∥

2 ≥ 1

2
η+γ αkβk ∥dk∥2 + η+γ βk(λ

k+1)T c(xk),

−η−γ βkg
T
k dk −

1

2
η−γ αkβ

2
k ∥dk∥

2 ≥ 1

2
η−γ αkβk ∥dk∥2 + η−γ βk(λ

k+1)T c(xk).

(74)
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Finally, we can examine the merit function ϕ1θk(·). If αk > 2C, combine the inequality

in (57), (73) and the first inequality from Lemma 3.6, we have

ϕ1θk(xk)− ϕ1θk(xk+1) =r(xk)− r(xk+1) + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

>− βkg
T
k dk −

1

2
αkβ

2
k ∥dk∥

2 + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

≥1

2
αkβk ∥dk∥2 + βk(λ

k+1)T c(xk) + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

≥1

2
αkβk ∥dk∥2 − ηββk

1

2
αk ∥dk∥2

=(1− ηβ)
1

2
αkβk ∥dk∥2 .

(75)

Otherwise, with αk ≤ 2C and δβk ≥ 0, we apply in order (69), (74) and the second inequality

from Lemma 3.6 to obtain

ϕ1θk(xk)− ϕ1θk(xk+1) =r(xk)− r(xk+1) + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

>− η+γ βkg
T
k dk − η+γ

1

2
αkβ

2
k ∥dk∥

2 + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

≥1

2
η+γ αkβk ∥dk∥2 + η+γ βk(λ

k+1)T c(xk) + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

≥1

2
η+γ αkβk ∥dk∥2 − ηββk

1

2
αk ∥dk∥2

=(η+γ − ηβ)
1

2
αkβk ∥dk∥2 ,

(76)

with η+γ − ηβ > 0. Similarly, when δβk ≤ 0, applying in order (70), (74) and the third

inequality from Lemma 3.6, we have

ϕ1θk(xk)− ϕ1θk(xk+1) =r(xk)− r(xβk+1) + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

>− η−γ βkg
T
k dk − η−γ

1

2
αkβ

2
k ∥dk∥

2 + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

≥1

2
η−γ αkβk ∥dk∥2 + η−γ βk(λ

k+1)T c(xk) + θk ∥c(xk)∥1 − θk ∥c(xk+1)∥1

≥1

2
η−γ αkβk ∥dk∥2 − ηββk

1

2
αk ∥dk∥2

=(η−γ − ηβ)
1

2
αkβk ∥dk∥2 ,

(77)

where η−γ − ηβ > 0.

Therefore, in all cases, a serious step xk+1 = xk +βkdk is a decreasing direction for the

merit function ϕ1θk(·). If λk is finite for all k, θk will stay constant for k large enough from

step 7 of Algorithm 1. Let θ̄ be the constant value for k large enough so that θk ≤ θ̄ for
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all k. Then, by (63),

βk ≥ 1

2

⌈log 1
2

ηβα0

2Hc
uθ̄m

⌉
:= β̄, (78)

due to the monotonicity of αk and θk. In other words, βk is bounded below by β̄ for all

k. From (75), (76), (77), ϕ1θk(xk) − ϕ1θk(xk+1) > (η+γ − ηβ)
1
2α0β̄ ∥dk∥2. Or simply, there

exists cϕ such that ϕ1θk(xk)− ϕ1θk(xk+1) > cϕ ∥dk∥2.

In order to obtain a stabilized λk, a constraint qualification is necessary for the con-

straints c(x) = 0 in (37). In Section 2, we discussed calmness as the weak constraint

qualification that would ensure a KKT point instead of a Fritz-John critical point in our

nonsmooth upper-C2 setup. Here, we resort to the stronger LICQ [35] to prove stabiliza-

tion of Lagrange multipliers for our proposed algorithm. A topic of further research will be

to derive the results of this section under a weak constraint qualification such as calmness.

Lemma 3.8. If LICQ of the constraints in (37) are satisfied at every accumulation points x̄

of serious steps {xk} generated by the algorithm, then the sequence of Lagrange multipliers

for the solutions to problem (41) {ζk+1
u }, {ζk+1

l } and {λk+1} are bounded. Thus, there exists

k, such that
∥∥λt

∥∥
∞ ≤ λU , ζtu ≤ ζUu and ζtl ≤ ζUl for all t ≥ k, where λU > 0, ζUu > 0, ζUl > 0

are the upper bounds. Further, this means there exists θ̄ such that θt = θ̄ for all t ≥ k.

Proof. We rewrite the first equation in optimality condition in (47) as

gk + αkdk −
m∑
j=1

λk+1
j ∇cj(xk)−

n∑
i=1

(ζk+1
l )iei +

n∑
i=1

(ζk+1
u )iei = 0, (79)

where ei ∈ Rn is a vector such that (ei)i = 1 and (ei)k = 0, k ̸= i. Since (ζk+1
l )i(ζ

k+1
u )i = 0,

the bound constraints Lagrange multipliers are combined into ζk+1 = ζk+1
l − ζk+1

u . A

component of ζk+1
l or ζk+1

u is unbounded if and only if the corresponding component in

ζk+1 is unbounded. Let I be the index set of the active bound constraints, hence

gk + αkdk =

m∑
j=1

λk+1
j ∇cj(xk) +

∑
i∈I

(ζk+1)iei. (80)

Since {xk}, {gk} are bounded (r(·) being Lipschitz continuous on a bounded domain) and

{αk} is finite by Lemma 3.3, the left-hand side of the equation stays bounded throughout

the iterations. From LICQ at x̄, we know that ∇cj(x̄) ∈ Rn and ei, i ∈ I are linearly

independent and bounded vectors. Without losing generality, suppose λk+1
j , j ∈ [1,m] is

not bounded as k → ∞. Then, we have
∥∥λk

∥∥
∞ → ∞. Passing on to a subsequence if

necessary, we can assume xk → x̄ as k → ∞, where x̄ is an accumulation point. Regardless
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of the behavior of {ζk+1}, the right-hand side of (80) will be unbounded due to linear

independence among the vectors. This is a contradiction. Same process can be repeated

for ζk+1
j , j ∈ [1,m].

Therefore, there exist λU , ζUl ≥ 0, ζUu ≥ 0 such that
∥∥λt

∥∥
∞ ≤ λU , ζtu ≤ ζUu and ζtl ≤ ζUl

for all k. Since θk is determined by λk (step 7 in Algorithm 1), there exists k and θ̄ such

that θt = θ̄ for all t ≥ k.

Theorem 3.9. Given the Assumptions 3.1 and 3.2, if the constraints in (37) satisfy the

conditions in Lemma 3.8, then every accumulation point of the solution steps {xk} gen-

erated from Algorithm 1 is a KKT point of the problem (37). That is, there exists a

subsequence of {xk} that converges to x̄, and λ̄ ∈ Rm, ζ̄u ∈ Rn, ζ̄l ∈ Rn such that the

first-order optimality conditions are satisfied at x̄

0 ∈ ∂̄r(x̄)−∇c(x̄)λ̄− ζ̄l + ζ̄u,

Z̄lx̄ = 0, Z̄u(x̄− xu) = 0,

c(x̄) = 0,

ζ̄l, ζ̄u, x̄, xu − x̄ ≥ 0.

(81)

Proof. By Lemma 3.3, there exists k0 > 0 such that for all t > k0, αt = αk0 = ᾱ and all

following steps are serious steps. By Lemma 3.8, there exists k1 > 0 such that for t > k1,

the Lagrange multipliers are bounded above and θt = θk1 = θ̄. We say k is large enough if

k ≥ max (k0, k1), in which case the parameters of the algorithm stabilizes at αt = ᾱ and

θt = θ̄ for t ≥ k.

Since the domain of x is bounded and r(·) is Lipschitz, the serious steps sequence {xk}
as well as the subgradient sequence {gk} are bounded. Therefore, there exists at least

one accumulation point for {xk}. Let x̄ be an accumulation point of {xk} and {xks} be a

subsequence of {xk} such that xks → x̄.

From Lemma 3.5, line search terminates successfully and by Lemma 3.7, for k large

enough, {ϕ1θk(xk)} is a decreasing and bounded sequence with a fixed parameter θ̄. Thus,

ϕ1θk(xk) converges. Let limk→∞ ϕ1θk(xk) → ϕ̄1θ̄, i.e., limk→∞ r(xk) + θ̄ ∥c(xk)∥1 → ϕ̄1θ̄.

From the proof of Lemma 3.7, (75), (76) and (77), we know that ϕ1θk(xk) − ϕ1θk(xk+1)

is bounded below in the order of ∥dk∥2. Therefore, limk→∞ ∥dk∥ → 0. In particular,

lims→∞ ∥dks∥ → 0. By the last equation in (47), c(xks) → 0. Thus, x̄ satisfies the equality

constraints c(·). Given that the bound constraints are satisfied by all xk, 0 ≤ x̄ ≤ xu.

Passing on to a subsequence if necessary, we let gks → ḡ, λks → λ̄, ζksu → ζ̄u, ζ
ks
l → ζ̄l.
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From the first equation in the optimality conditions (47), we have

0 = ḡ −∇c(x̄)λ̄− ζ̄l + ζ̄u. (82)

By the outer semicontinuity of Clarke subdifferential, with gks ∈ ∂̄r(xks), we have ḡ ∈
∂̄r(x̄). As a result, 0 ∈ ∂̄r(x̄)−∇c(x̄)λ̄− ζ̄l+ ζ̄u. The complementarity conditions of bound

constraints from (47) leads to Z̄u(x̄− xu), Z̄lx̄ = 0. Together with the equality constraints

c(x̄) = 0, the first-order optimality conditions (81) of problem (37) at x̄ are satisfied.

While the line search is only conducted on the less computationally expensive and

analytically known smooth constraints c(·), it is possible to avoid it altogether. In bundle

methods, it has been shown that a convex feasible set for x can make the algorithm converge

without line search [19]. Similarly, if the constraints form a convex feasible set, they do not

need to be linearized and the simplified bundle algorithm converges without line search.

Proposition 3.10. If the equality constraint c(·) and bound constraints in (37) form a

convex and bounded set in Rn, then instead of (41) we solve subproblem

minimize
x

ϕk(x)

subject to c(x) = 0,

0 ≤ x ≤ xu.

(83)

And the line search step can be skipped with xk+1 = xk + dk, dk being the solution to (83).

The convergence properties are maintained.

3.3 Application to two-stage stochastic optimization problem

The algorithm and convergence analysis can be readily extended to two-stage stochastic

programming problems, where the quadratic approximation function ϕk(·) is needed only

for the nonsmooth nonconvex second-stage solution functions. Problem (3) is approximated

locally as

minimize
x

f(x) + ϕk(x)

subject to c(x) = cE

dl ≤ d(x) ≤ du

xl ≤ x ≤ xu.

(84)

33



The first-stage objective f(·), which is continuously differentiable, is kept as it is. As a

result, we can take advantage of the sparsity structure arising from f(·) since the Hessian

of ϕk(·) is diagonal.

The update rule of αk is critical and problem dependent. It is a trade-off between

robust convergence behavior (large αk) and fast but potentially unstable convergence (small

αk). The αk in Algorithm 1 does not bear much meaningful structure from the objective

function since the Hessian itself might not exist. Nevertheless, for problems with better

differentiability, it is possible to explore ways to extract more second-order information.

One option is to use the Barzilai-Borwein (BB) gradient method [3], which can be

interpreted as an approximation to the secant equation. The update rule for αk is

αk =
sTk−1yk−1

yTk−1yk−1
, (85)

where sk−1 = xk − xk−1, yk−1 = gk − gk−1. This choice of αk can in practice increase the

convergence rate if the objective r(·) have more favorable properties [44]. Alternatively, αk

can be viewed as a measure of the inverse of a trust-region radius. The larger αk is, the

smaller the step size will be. Hence, αk can be updated based on how accurate the previous

approximation is, as in trust-region methods [35]. This view is adopted in the proposed

algorithm. A simple multiplication rule where αk+1 = ηααk, ηα > 1 could be effective

when αk is increased. In all cases, problem specific αmax and αmin can be assigned to

make the algorithm more efficient and robust. This is the area of the algorithm that is rich

for experimentation.

It is also possible to gauge αk based on function value, in addition to the trust-region

ratio ρk. If the function value range of r(·) is known, such rules might provide better

estimate of αk. For example, we can find αk by requiring the minimum value of ϕk(·) over
a chosen subset of domain X ′ ⊂ X to be larger than certain ratio of the function value at

xk, i.e.,

minimize
x∈X′

ϕk(x) ≥ ηkrk (86)

where ηk is the chosen ratio.

The same ρk is computed and if ρk > 0 is not satisfied as in step 8 and 14 of Algorithm 1,

ηk is increased by the fixed increase ratio ηα with ηk+1 = ηαηk. Using ηk as an intermediate

parameter, αk is then obtained as the minimum value that would hold (86) true. The choice

of αk thus depends on local function value rk and subgradient gk as well as ηk and will no

longer stay monotonic throughout the iterations as in Algorithm 1.
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More importantly in practice, αk can be reduced when ρk behaves well, e.g., is close to

1. In our experience, reducing αk helps to achieve convergence faster while the algorithm

remains robust due to the mechanism of rejecting a step. To further speed up convergence,

scalar αk can also be replaced by a diagonal matrix with varying values. One way of

specifying the diagonal values is to take into account the distance between a component of x

and its upper and lower bounds. It is possible that multiple components of the optimization

variable x reach their upper/lower bounds. Since they are more likely to stay at the bounds,

it is reasonable to assign them larger corresponding diagonal values of the matrix αk to

encourage movement of other components of x. For a first-order algorithm, this could make

a difference in convergence and proves to be so in the SCACOPF application.

3.4 Consistency restoration in linearized constraint

As mentioned previously, the linearized constraints of the model subproblem (41) can

become infeasible even when the original problem (37) is feasible, a phenomenon referred

to as inconsistency, which is also present in SQP methods. In this section we propose

a supplemental consistency restoration algorithm to tackle this difficulty. This algorithm

solves, instead of (41), a penalized subproblem where the constraints are incorporated

into the objective in hope of generating a new serious point with consistent linearized

constraints. As is common with penalty methods, the accumulation points might not be

feasible KKT points. For the update rule of the penalty parameter, we borrow an idea from

a sequential linear-quadratic programming (SLQP) method in [6] that relies on a feasibility

problem solution.

Whenever problem (41) has inconsistent linearized constraints, the following penalty

problem is formulated:

minimize
d

πkΦk(d) +
∥∥c(xk) +∇c(xk)

Td
∥∥
1

subject to dkl ≤ d ≤ dku,

(87)

where πk ≥ 0 is the penalty parameter. While (87) is straightforward, to avoid the difficul-

ties with nonsmooth objective, as conventional in SQP methods, the following equivalent
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quadratic programming problem is solved instead

minimize
d,v,w

πkΦk(d) +

m∑
j=1

(vj + wj)

subject to cj(xk) +∇cj(xk)
Td = vj − wj , j = 1, ...m,

dkl ≤ d ≤ dku,

0 ≤ v, w,

(88)

where v, w ∈ Rm are slack variables. Denoting dk, v
k, wk as the solutions to (88), the

first-order optimality conditions of problem (88) involving d are

πk [gk + αkdk] +

m∑
i=1

λk+1
j ∇cj(xk)− ζk+1

l + ζk+1
u = 0,

λk+1
j

[
cj(xk) +∇cj(xk)

Tdk − vkj + wk
j

]
= 0, j = 1, . . . ,m,

cj(xk) +∇cj(xk)
Tdk − vkj + wk

j = 0, j = 1, . . . ,m,

Zk+1
u (dk − dku) = 0, Zk+1

l (dk − dkl ) = 0,

ζk+1
u , ζk+1

l , dk + xk, xu − xk − dk ≥ 0.

(89)

Here, λk+1 ∈ Rm,ζk+1
u , ζk+1

l ∈ Rn are the Lagrange multipliers for the constraints on d.

The matrices Zk+1
u , Zk+1

l are diagonal matrices whose diagonal values are ζk+1
u and ζk+1

l ,

respectively. The remaining optimality conditions on slack variables v and w are

1− λk+1
j − pk+1

j = 0, j = 1, ...m,

1 + λk+1
j − qk+1

j = 0, j = 1, ...m,

P k+1vk = 0, Qk+1wk = 0,

vk, wk, pk+1, qk+1 ≥ 0,

(90)

where pk+1, qk+1 ∈ Rm are the Lagrange multipliers for vk, wk. The matrices P k+1, Qk+1

are diagonal matrices whose diagonal values are pk+1 and qk+1, respectively.

Based on whether the slack variable bound constraints are active, the relations between

Lagrange multipliers can be simplified. To see that, define the sign function σk
j : Rn →

R, j = 1, . . . ,m of d such that

σk
j (d) =


−1, cj(xk) +∇cj(xk)

Td < 0

0, cj(xk) +∇cj(xk)
Td = 0

1, cj(xk) +∇cj(xk)
Td > 0

. (91)
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In addition, we divide the constraints into two sets based on the value of cj(xk)+∇cj(xk)
Tdk.

For simplicity, the two sets are referred to as the set of active and inactive equality con-

straints as we do without slack variables. More specifically, the active equality constraint

set is defined at dk as

Ak = {1 ≤ j ≤ m|cj(xk) +∇cj(xk)
Tdk = 0}, (92)

and the inactive equality constraint set is

Vk = {1 ≤ j ≤ m|cj(xk) +∇cj(xk)
Tdk ̸= 0}. (93)

We can now integrate the optimality conditions (90) into (89) in the following Lemma.

Lemma 3.11. For inactive equality constraints cj(·), j ∈ Vk, λ
k+1
j = σk

j (dk). For active

equality constraints, i.e., j ∈ Ak, −1 ≤ λk+1
j ≤ 1.

Proof. Note first that for any 1 ≤ j ≤ m, the slack variable solutions satisfy vkjw
k
j = 0.

This is due to the bound constraints on v, w and their presence in the objective. Next,

we consider the three cases given the value of cj(xk) +∇cj(xk)
Tdk, which corresponds to

the three values of σk
j (dk) for j = 1, . . . ,m. The first two cases both have j ∈ Vk. If

σk
j (dk) = 1, then by the third equation in (89), vkj > 0, wk

j = 0. From the complementarity

equations in (90), the corresponding Lagrange multiplier to vkj is 0, i.e., pk+1
j = 0. By the

first equation in (90), λk+1
j = 1. If σk

j (dk) = −1, then similarly using the third equation

in (89), vkj = 0, wk
j > 0 and the corresponding Lagrange multiplier qk+1

j = 0. By the second

equation in (90), λk+1
j = −1. The first part of the Lemma is proven.

In the last case, j ∈ Ak, i.e., σ
k
j (dk) = 0. By the third equation in (89), we have vkj =

0, wk
j = 0. Combine the first two equations in (90) through summation and subtraction,

we obtain

λk+1
j =

1

2
(qk+1

j − pk+1
j ),

2 = pk+1
j + qk+1

j .

(94)

Applying the bound constraints on pk+1, qk+1 to the second equation in (94), we have 0 ≤
pk+1
j ≤ 2, 0 ≤ qk+1

j ≤ 2 and therefore from the first equation in (94) −1 ≤ λk+1
j ≤ 1.

Similar to (43), we define δπk
k to be the change in objective of the penalty subprob-

lem (88) with penalty πk, which based on (87) is

δπk
k =πk

(
−gTk dk −

1

2
αk ∥dk∥2

)
+ ∥c(xk)∥1 −

∥∥c(xk) +∇c(xk)
Tdk

∥∥
1
. (95)
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The ratios ρk and ρβk are again used to address the nonsmoothness of r(·), whose definitions
are given in (44) and (46). The algorithm also requires line search given dk to obtain a

serious step xk+1 = xk + βkdk, βk ∈ (0, 1]. To simplify the analysis, we adopt in this

section η−γ = η+γ = 1 and η−l = η+l = 1, making the definition of ρk, ρ
β
k in (44) and (46)

identical across branches. Thus for a serious step, regardless of the value of αk, the same

expression between predicted and actual change in r(·) is satisfied. That is, for a serious

step, r(xk)− r(xk+1) > Φk(0)− Φk(βkdk) and r(xk)− r(xk + dk) > Φk(0)− Φk(dk).

The renewed merit function and line search conditions are

ϕ1πk
(x) = r(x) +

1

πk
∥c(x)∥1 , (96)

and
1

πk
∥c(xk)∥1 +

βk
πk

(λk+1)T∇c(xk)
Tdk ≥ 1

πk
∥c(xk+1)∥1 − ηβ

1

2
αkβk ∥dk∥2 , (97)

respectively.

To update the penalty parameter, the following feasibility problem is also solved:

minimize
d

∥∥c(xk) +∇c(xk)
Td

∥∥
1

subject to dkl ≤ d ≤ dku.

(98)

Denote by dfk the solution to (98) and δfk its predicted decrease, whose form is

δfk = ∥c(xk)∥1 −
∥∥∥c(xk) +∇c(xk)

Tdfk

∥∥∥
1
. (99)

Notice that δfk ≥ 0. This value is compared against δπk
k .

The consistency restoration algorithm is given in Algorithm 2. It is called upon by

Algorithm 1 when inconsistency occurs at step 3 and exits after one serious step iteration

in step 14 of Algorithm 2. However, it is possible that the linearized constraints remain

inconsistent and Algorithm 2 is called repeatedly. In this case, the update rule of the

penalty parameter ensures that the algorithm converges toward critical points for linearized

constraint violations. A point x̄ is called a critical point of the linearized constraint violation

of c(·) if δfk = 0 at x̄. Notice such a critical point can be either feasible or infeasible to the

original problem (37).

While Algorithm 2 solves a penalized subproblem instead, it includes all the elements

in Algorithm 1 to deal with the nonsmoothness of r(·), including the update rule for αk.

Thus, we can reuse many of the same conclusions from Section 3.2 and only provide rigorous

proofs if necessary. Since the acceptance and rejection of a trial step is based on ρk and
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Algorithm 2: Simplified bundle method: consistency restoration

1 Given xk, αk, r(xk), g(xk), θk and other parameters such as ϵ from Algorithm 1,

choose the update coefficient 0 < ηπ, ηf < 1 for πk and error tolerance ϵf ≥ 0.

2 If πk−1 does not exist, let πk = 1
θk
. Otherwise let πk = min (πk−1,

1
θk
). Solve (88)

with πk and obtain dk.

3 Solve the feasibility problem (98) to obtain solution dfk and compute δfk from (99).

4 if δfk < ϵf then

5 Stop the iteration and exit the algorithm.

6 while δπk
k < ηfδ

f
k do

7 Reduce πk through πk = ηππk and re-solve (88) with the updated πk.

8 Obtain the solution dk and Lagrange multipliers λk+1 given πk. Evaluate

r(xk + dk) and compute δk in (43) and ρk in (44).

9 if ρk > 0 then

10 Find the line search parameter βk > 0 using backtracking, starting at βk = 1

and halving if too large, such that (97) is satisfied. Compute ρβk in (46).

11 if ρβk < 0 then

12 Break and go to 17.

13 Take the serious step xk+1 = xk + βkdk.

14 Exit consistency restoration. Go back to Algorithm 1 and start a new iteration.

15 else

16 Reject the trial step and update αk with αk+1 = ηααk.

17 Go back to step 2.
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ρβk , which in turn solely relies on properties of r(·), Lemma 3.3 holds true, as claimed in

the following Lemma.

Lemma 3.12. Under the Assumption (3.1) of upper-C2 property for the objective r(·),
the consistency restoration Algorithm 2 produces a finite number of rejected steps. Conse-

quently, the parameter αk of Algorithm 2 stabilizes, i.e., there exists k such that αt = αk

for all t ≥ k.

Proof. Since Algorithm 2 has identical mechanism for rejecting steps and increasing αk

to Algorithm 1, which only relies on the property of r(·), the proof of Lemma 3.3 can be

directly applied here. That is, only a finite number of rejected steps are needed to achieve

αk > 2C, which guarantees ρk > 0, ρβk > 0, and produces a serious step. If αk ≤ 2C for all

k, then only finite number of rejected steps are generated, which also ensures ρk > 0, ρβk > 0

for k large enough. As a result, there exists a k such that αt = αk for t ≥ k (see proof of

Lemma 3.3), with a finite number of rejected steps produced.

The following lemma shows that the update rule for πk in Algorithm 2 is well-defined.

Lemma 3.13. The steps 6-7 in Algorithm 2 terminates successfully, i.e., there exists a

πk > 0 such that δπk
k ≥ ηfδ

f
k and such a πk can be found within finite steps.

Proof. Since dk is the solution to (88) (and equivalently (87)), we have by (99) and (95)

δπk
k ≥πk

(
−gTk d

f
k − 1

2
αk

∥∥∥dfk∥∥∥2)+ ∥c(xk)∥1 −
∥∥∥c(xk) +∇c(xk)

Tdfk

∥∥∥
1

=πk

(
−gTk d

f
k − 1

2
αk

∥∥∥dfk∥∥∥2)+ δfk ≥ πk

(
−∥gk∥

∥∥∥dfk∥∥∥− 1

2
αk

∥∥∥dfk∥∥∥2)+ δfk ,

(100)

where the last inequality uses Cauchy-Schwarz inequality. From Lemma 3.12 and Lipschitz

continuity, dfk , gk, and αk are all bounded. Assigning D =
∥∥dku − dkl

∥∥ = ∥xu∥, we derive

the condition on πk such that δπk
k ≥ ηfδ

f
k as

πk ≤
(1− ηf )δ

f
k

∥gk∥D + 1
2αkD2

. (101)

Thus, such πk > 0 exists as long as δfk > 0. And since πk is reduced through ηπ < 1,

only a finite number of steps are needed to obtain a πk that satisfied (101) through step

9. If δfk = 0 and consistency restoration Algorithm 2 is still called, the algorithm would

terminate at step 5 (and had converged to a critical point to the linearized constraint).
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Lemma 3.14. Given a nonzero penalty parameter πk > 0 and Assumption 3.2, the line

search step 10 of Algorithm 2 finds βk ∈ (0, 1] satisfying the condition (97) in a finite

number of steps.

Proof. Since c(·) is smooth, by Taylor expansion of its jth component,

cj(xk + dk)− cj(xk) = ∇cj(xk)
Tdk +

1

2
dTkH

j
kdk, (102)

where 1 ≤ j ≤ m and the Hessian Hj
k depends on both xk and dk. Similarly,

cj(xk+1) =cj(xk) + βk∇cj(xk)
Tdk +

1

2
β2
kd

T
kH

j
kβdk. (103)

From Assumption 3.2,

|cj(xk+1)| = |cj(xk) + βk∇cj(xk)
Tdk +

1

2
β2
kd

T
kH

j
kβdk|

≤ |cj(xk) + βk∇cj(xk)
Tdk|+ β2

kH
c
u ∥dk∥

2 .

(104)

From the definition of σk
j in (91), we can write

|cj(xk) +∇cj(xk)
Tdk| = σk

j (dk)
[
cj(xk) +∇cj(xk)

Tdk
]
. (105)

Using the fact that the absolute function | · | is convex, the function |cj(xk) +∇cj(xk)
Td|

is convex in d. Taking its value at d = 0, d = dk and βkdk, we have by convexity

|cj(xk) + βk∇cj(xk)
Tdk| ≤ (1− βk)|cj(xk)|+ βk|cj(xk) +∇cj(xk)

Tdk|. (106)

Applying (106) to (104),

|cj(xk+1)| ≤ (1− βk)|cj(xk)|+ βk|cj(xk) +∇cj(xk)
Tdk|+ β2

kH
c
u ∥dk∥

2

= (1− βk)|cj(xk)|+ βkσ
k
j (dk)

[
cj(xk) +∇cj(xk)

Tdk
]
+ β2

kH
c
u ∥dk∥

2 .
(107)

Let us denote the cardinality of Ak and Vk by |Ak| and |Vk|, respectively. By summing

up (107) over j ∈ Vk and realizing that |cj(xk)| ≥ σk
j (dk)cj(xk), we have∑

j∈Vk

|cj(xk+1)| ≤
∑
j∈Vk

|cj(xk)|+ βk
∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk + |Vk|β2
kH

c
u ∥dk∥

2 . (108)

Similarly, we sum up (107) over j ∈ Ak and apply its definition in (92) to write∑
j∈Ak

|cj(xk+1)| ≤(1− βk)
∑
j∈Ak

|cj(xk)|+ |Ak|β2
kH

c
u ∥dk∥

2 . (109)
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Further, by (108) and (109), we have∑
j∈Vk

(|cj(xk)| − |cj(xk+1)|) ≥− βk
∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk − |Vk|β2
kH

c
u ∥dk∥

2 ,

∑
j∈Ak

(|cj(xk)| − |cj(xk+1)|) ≥βk
∑
j∈Ak

|cj(xk)| − |Ak|β2
kH

c
u ∥dk∥

2 .
(110)

Summing the two equations in (110) and applying |Ak|+ |Vk| = m gives us

∥c(xk)∥1 − ∥c(xk+1)∥1 ≥ −βk
∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk + βk
∑
j∈Ak

|cj(xk)| −mβ2
kH

c
u ∥dk∥

2 .

(111)

From Lemma (3.11) and the definition of Ak in (92), we can write

m∑
j=1

λk+1
j ∇cj(xk)

Tdk =
∑
j∈Vk

λk+1
j ∇cj(xk)

Tdk +
∑
j∈Ak

λk+1
j ∇cj(xk)

Tdk

=
∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk −
∑
j∈Ak

λk+1
j cj(xk).

≥
∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk −
∑
j∈Ak

|cj(xk)|.

(112)

The inequality in (112) comes from the second part of Lemma 3.11. Through simple

algebraic calculations and applying (111) and (112)

1

πk
∥c(xk)∥1 −

1

πk
∥c(xk+1)∥1 +

βk
πk

m∑
j=1

λk+1
j ∇cj(xk)

Tdk ≥

1

πk

∑
j∈Ak

βk|cj(xk)| −
βk
πk

∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk −
1

πk
mβ2

kH
c
u ∥dk∥

2

+
βk
πk

∑
j∈Vk

σk
j (dk)∇cj(xk)

Tdk −
βk
πk

∑
j∈Ak

|cj(xk)| ≥ − 1

πk
mβ2

kH
c
u ∥dk∥

2 .

(113)

Thus, if βk satisfies

0 < βk ≤
ηβαkπk
2mHc

u

, (114)

where both the denominator and numerator are positive and independent of the line search,

we have (97) satisfied. Using ceiling function ⌈·⌉, we can write

βk ≥ 1

2

⌈log 1
2

ηβαkπk
2mHc

u
⌉
. (115)

If πk > 0, the line search then successfully terminates after a finite number of steps based

on the backtracking rule.

The decrease in merit function follows, similar to Lemma 3.7.
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Lemma 3.15. The serious step xk+1 = xk + βkdk is a descent step for the merit func-

tion (96) if βk is obtained through line search in Algorithm 2. Further, if πk stabilizes at

a finite value, i.e., there exists k such that πt = πk := π̄ > 0 for all t ≥ k, then the speed

of descent satisfies ϕ1πk
(xk)− ϕ1πk

(xk+1) > cπϕ ∥dk∥
2 for some cπϕ > 0.

Proof. Since ρk > 0, ρβk > 0 at any serious step, and η+l = η−l = η+γ = η−γ = 1, we can

compactly write based on definitions (44) and (46)

rk − r(xk + dk) >Φk(0)− Φk(dk),

rk − r(xk+1) >Φk(0)− Φk(βkdk).
(116)

Using the upper-C2 property of r(·), as in (57) from Lemma 3.7, we have

r(xk)− r(xk+1) >− βkg
T
k dk −

1

2
αkβ

2
k ∥dk∥

2 . (117)

Let us rearrange the first equation in the KKT conditions (89) and obtain

πk [gk + αkdk] = −
m∑
j=1

λk+1
j ∇cj(xk) + ζk+1

l − ζk+1
u . (118)

Taking the dot product with −dk on both sides of (118) leads to

−πk

[
gTk dk + αk ∥dk∥2

]
=

m∑
j=1

λk+1
j ∇cj(xk)

Tdk − dTk ζ
k+1
l + dTk ζ

k+1
u . (119)

Recall that dkl = −xk and dku = xu − xk. Applying the complementarity conditions, which

are the fourth, fifth equation in (89), (119) is simplified to

−πk

[
gTk dk + αk ∥dk∥2

]
=

m∑
j=1

λk+1
j ∇cj(xk)

Tdk − (dk − dkl + dkl )
T ζk+1

l + dTk ζ
k+1
u

=

m∑
j=1

λk+1
j ∇cj(xk)

Tdk + xTk ζ
k+1
l + (dk − dku + dku)

T ζk+1
u

=

m∑
j=1

λk+1
j ∇cj(xk)

Tdk + xTk ζ
k+1
l + (xu − xk)

T ζk+1
u

≥
m∑
j=1

λk+1
j ∇cj(xk)

Tdk.

(120)

The last inequality utilizes the bound constraints from the previous iteration 0 ≤ xk ≤ xu,

and ζk+1
u , ζk+1

l ≥ 0. Multiplying by βk and subtracting πk
1
2αkβ

2
k ∥dk∥

2 from both sides
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of (120) and using βk ∈ (0, 1] results in

πk

[
−βkg

T
k dk −

1

2
αkβ

2
k ∥dk∥

2

]
≥πkβkαk ∥dk∥2 − πk

1

2
αkβ

2
k ∥dk∥

2 + βk

m∑
j=1

λk+1
j ∇cj(xk)

Tdk

≥πk
1

2
αkβk ∥dk∥2 + βk

m∑
j=1

λk+1
j ∇cj(xk)

Tdk

=πk
1

2
αkβk ∥dk∥2 + βk(λ

k+1)T∇c(xk)
Tdk.

(121)

From (117), the merit function satisfies

ϕ1πk
(xk)− ϕ1πk

(xk+1) =r(xk)− r(xk+1) +
1

πk
∥c(xk)∥1 −

1

πk
∥c(xk+1)∥1

≥− βkg
T
k dk −

1

2
αkβ

2
k ∥dk∥

2 +
1

πk
∥c(xk)∥1 −

1

πk
∥c(xk+1)∥1 .

(122)

Applying (121) and the line search condition (97), we have

ϕ1πk
(xk)− ϕ1πk

(xk+1) ≥
1

2
αkβk ∥dk∥2 +

βk
πk

(λk+1)T∇c(xk)
Tdk

+
1

πk
(∥c(xk)∥1 − ∥c(xk+1)∥1)

≥1

2
αkβk ∥dk∥2 − ηβ

1

2
αkβk ∥dk∥2

=(1− ηβ)
1

2
αkβk ∥dk∥2 .

(123)

Given πk > 0, the conclusion follows. In addition, if πk stabilizes, based on (115)

βk ≥ 1

2

⌈log 1
2

ηβα0π̄

2mHc
u
⌉
:= β̄π. (124)

Thus, from (123), ϕ1πk
(xk) − ϕ1πk

(xk+1) > (1 − ηβ)
1
2α0β̄

π ∥dk∥2. Or equivalently, there

exists cπϕ > 0 such that ϕ1πk
(xk)− ϕ1πk

(xk+1) > cπϕ ∥dk∥
2.

In general, the global convergence analysis from Section 3.2 stands when πk is bounded

away from 0 and θk is bounded from above. This is reflected in the following two theorems

similar to Theorem 3.9.

Theorem 3.16. Under the Assumptions 3.1, 3.2 and LICQ conditions of Lemma 3.8, if

Algorithm 2 is called finite many times, then every accumulation points of the serious step

sequence {xk} generated from Algorithm 1 and 2 is a KKT point of problem (37).

The proof is similar to that of Theorem 3.9 and straightforward. Since there are only

finite number of consistency restoration steps, the linearized constraints become consistent
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for k large enough. Thus, only Algorithm 1 is called for k large enough. We can directly

apply Theorem 3.9 to obtain 3.16.

Before stating the next theorem, we note that πk and θk are designed to impact each

other through step 7 of Algorithm 1 and step 1 in Algorithm 2. Therefore, if 1
πk

does

not stay bounded, θk will not either. On the other hand, if πk is bounded below from a

nonzero value, together with the conditions in Lemma 3.8, both 1
πk

and θk are finite for all

k. In addition, for k large enough, both stop increasing. A stabilized πk at nonzero values

essentially requires step 7 in Algorithm 2 to be encountered only finitely many times.

Theorem 3.17. Under the Assumptions 3.1, 3.2 and LICQ conditions of Lemma 3.8, if

Algorithm 2 is called infinitely many times with nonzero stabilized penalty parameter, i.e.,

πt = πk > 0 for all t ≥ k, then any accumulation points of the sequence {xk} generated

by Algorithm 1 and 2 is either a KKT point of (37) or a critical point of the linearized

constraint violation of c(·).

The proof is again similar to that of Theorem 3.9 and a brief framework is presented

here. First, by Lemma 3.12, let k be large enough such that αt = αk for all t ≥ k

and all steps produced by both algorithms are serious steps. We note that by design

both penalty parameters θk and 1
πk

in merit function (42) and (96) increase monotonically

across iterations and algorithms. By Lemma 3.8, λk is bounded for k large enough. Given a

nonzero and stabilized πk for k large enough, θk is also bounded and remains constant based

on step 7 in Algorithm 1. Together with step 7 in Algorithm 2, the merit functions ϕ1θk(·)
and ϕ1πk

(·) for both algorithms (42) and (96) have the same parameter θk = 1
πk

= θ̄, where

θ̄ denotes the stabilized value. Hence, by Lemma 3.7 and 3.15, {ϕ1πk
(xk)} and {ϕ1θk(xk)}

at serious steps xk decreases monotonically in the order of ∥dk∥2 and is bounded below.

Therefore, dk generated by both algorithms, regardless of the order they are called, satisfies

dk → 0.

Compared to the case in Theorem 3.16, it is possible that a finite number of calls of

Algorithm 1 are followed by all consistency restoration calls of Algorithm 2, in which case

an accumulation point of {xk} might be infeasible. This can be seen from the constraints

of the penalty problem in (88) where v, w could be nonzero at an accumulation point x̄ of

{xk} even as dk → 0.

If an accumulation point x̄ is feasible, i.e., c(x̄) = 0, then {xk} converges subsequently

to a KKT point of problem (37), the proof of which is the same as in Theorem 3.9 at

this point. Otherwise, if x̄ is infeasible, i.e., c(x̄) ̸= 0, it is not a KKT point. Meanwhile,
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from (95), given still dk → 0, we have δπk
k → 0. From step 7 in Algorithm 2, the update

rule of πk enforces ηfδ
f
k ≤ δπk

k . Therefore, with a constant parameter ηf , we obtain δfk → 0.

Hence, for an infeasible accumulation point x̄, the update rule for the penalty parameter πk

results in x̄ being a critical point of linearized constraint violation of c(·). This convergence
result is similar to the exact penalty method for smooth objectives [35].

Finally, the following theorem covers the case when the penalty parameter πk → 0.

Theorem 3.18. Under the Assumptions 3.1, 3.2 and LICQ conditions of Lemma 3.8, if

Algorithm 2 is called infinite many times and πk → 0, then any accumulation points of the

serious steps {xk} generated from Algorithm 1 and 2 is a critical point of the linearized

constraint violation c(·).

Proof. From Lemma 3.8 , we know that the Lagrange multipliers from Algorithm 1 are

bounded. Therefore, a πk → 0 is caused by step 7 in Algorithm 2 being called infinitely

many times which in turn increases θk as well. Because we are considering an infinite

number of iterations where δfk > 0 (otherwise the algorithm would have terminated at step

4), by Lemma 3.13, the number of loops between step 6 and 7 is finite for each k. Thus, to

have infinite many step 7, we must have an infinite number of iterations that would enter

step 7 at least once. Let k be one of the iterations where πk is reduced through step 7. To

simplify the analysis, we denote by π0
k = min (πk−1,

1
θk
) the penalty parameter at iteration

k after step 2. Then the change in objective of the penalized problem (88) with π0
k, before

the update to πk at step 7, is

δ0k = π0
k

(
−gTk d

0
k −

1

2
αk

∥∥d0k∥∥2)+ ∥c(xk)∥1 −
∥∥c(xk) +∇c(xk)

Td0k
∥∥
1
, (125)

where d0k is the solution of (88) with π0
k. Since π0

k enters step 7 in Algorithm 2, δ0k < ηfδ
f
k .

Given d0k as the solution to (88) with π0
k and using the definition of δfk in (99),

ηfδ
f
k > δ0k =π0

k

(
−gTk d

0
k −

1

2
αk

∥∥d0k∥∥2)+ ∥c(xk)∥1 −
∥∥c(xk) +∇c(xk)

Td0k
∥∥
1

≥π0
k

(
−gTk d

f
k − 1

2
αk

∥∥∥dfk∥∥∥2)+ ∥c(xk)∥1 −
∥∥∥c(xk) +∇c(xk)

Tdfk

∥∥∥
1

=π0
k

(
−gTk d

f
k − 1

2
αk

∥∥∥dfk∥∥∥2)+ δfk

≥π0
k

(
−∥gk∥

∥∥∥dfk∥∥∥− 1

2
αk

∥∥∥dfk∥∥∥2)+ δfk .

(126)

46



J. Wang and C. G. Petra

Since xk, gk and αk are all bounded, assigning D = ∥du − dl∥ = ∥xu∥, we have

(1− ηf )δ
f
k ≤π0

k

(
∥gk∥

∥∥∥dfk∥∥∥+
1

2
αk

∥∥∥dfk∥∥∥2)
=π0

k

(
∥gk∥D +

1

2
αkD

2

)
.

(127)

Therefore, as πk and π0
k approach 0, so does δfk . This proves that as xk → x̄, δfk → 0.

Thus, x̄ is a critical point of the linearized constraint violation of c(·).

Theorem 3.18 is a relatively weak result in the sense that it does not distinguish between

an accumulation point x̄ that is feasible, i.e., c(x̄) = 0 and infeasible. Stronger results

are possible for smooth optimization even under a less restrictive constraint qualification,

Mangasarian–Fromovitz constraint qualification. For example, Byrd et. al. [6] show that

if πk → 0 and c(x̄) = 0, then their SLQP algorithm converges to a KKT point. Such result

for (nonsmooth) upper-C2 objective function is not evident to us and will be the subject

of our future research.

4 Numerical Applications

We present three numerical examples to demonstrate the theoretical and numerical capabil-

ities the proposed algorithm offers. The examples are chosen within the general formulation

of two-stage optimization problems. For nonsmooth nonconvex optimization problems, a

wildly popular assumption of the objective function is lower-C2 or prox-regular and the

constraints are often assumed to be convex. The first two problems are synthetic problems

designed to showcase the extra theoretical convergence analysis our algorithm brings to

problems that do not satisfy these lower-type of properties. They are simple and computa-

tionally inexpensive. We also present a comparison of results with the redistributed bundle

method in [45], which we drew inspiration from.

Example 1. (Differentiable but not continuously differentiable objective) Example 1 has

the following mathematical formulation:

min
x∈R3

f(x1)+µ[(x2 −
1

2
)2 + x23] + r(x)

s.t. −5 ≤x1 ≤ 5, 0 ≤ x2 ≤ 50, −1 ≤ x3 ≤ 10,

(128)

where µ = 105 and f(x1) : R → R is a continuously differentiable function. The function
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Figure 2: Feasible set of y2, y3 plane of example 1 (left) and example 2 (right)

r(·) is the solution to the second-stage problem

min
y∈R3

∥x− y∥2

s.t. y2 ≤ y23, −5 ≤ y1 ≤ 5,

− 5 ≤ y2 ≤ 5, 0 ≤ y3 ≤ 10.

(129)

It is obvious that r(·) is a squared-distance function and thus upper-C2. In addition,

r(·) turns out to also be lower-C1, but not lower-C2 at x̃ = [x1,
1
2 , 0], where x1 can be any

value within its bounds. This translates to r(·) being differentiable but not continuously

differentiable at x̃, as shown in the feasible region plot on the left of Figure 2. In this

case, our proposed algorithm offers global convergence support compared to algorithms

that require a lower-C2 objective. It needs to be pointed out that r(·) is continuously

differentiable at remaining points in the domain and thus other algorithms with carefully

chosen parameters can succeed in solving Example 1 regardless.

The true solution is obtained by treating the two-stage problem as one problem with

variables in R6 and solved with Ipopt. The proposed Algorithm 1 starts with α0 = 1.0, ϵ =

10−8 and the redistributed bundle method in [45] is implemented with Γ = 2, µ0 = 1, η0 =

1. The initial point is set to x0 = [1, 50, 5]T . The simplified bundle method exits in 4

iterations. While both algorithms quickly moved close to the solution, due to the lack

of lower-C2 property at x̃ = [x1,
1
2 , 0] (∀x1 ∈ [−5, 5]), the convexification parameter ηn

registers a large value for the redistributed bundle method. Given the error tolerance at

10−8, the redistributed bundle method will require more iterations and could potentially
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Figure 3: Convergence and quadratic coefficient plots for example 1

be destabilized due to numerical error from the large value of ηn. This problem disappears

if error tolerance is set to a larger number. Figure 3 shows the numerical result of error

measure against the number of iterations for both redistributed and simplified bundle

method. The quadratic coefficient, which decreases in the simplified bundle method as

explained in Remark 3.4, is also plotted for both algorithms.

Example 2. (Non-differentiable) Example 2 has the following form:

min
x∈R3

f(x1)+µ[(x2 −
1

2
)2 + x23] + r(x)

s.t. −5 ≤x1 ≤ 5, 0 ≤ x2 ≤ 50,

−5 ≤x3 ≤ 5.

(130)

Again, µ = 105 and f(x1) is a continuously differentiable function. The function r(·) is the
solution to the second-stage problem

min
y∈R3

∥x− y∥2

s.t. y2 ≤ y23, −5 ≤ y1, y2, y3 ≤ 5.

(131)

Example 2 is designed to only vary slightly from Example 1 to illustrate the large group

of problems the proposed algorithm can tackle. With a slight change in the constraint to

allow y3 < 0, the solution function r(·) is no longer differentiable on x3 = 0 as multiple

solutions y exist. This is illustrated on the right plot in Figure 2.
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Figure 4: Convergence and quadratic coefficient plots for example 2

However, r(·) remains upper-C2 and the convergence analysis for the proposed algo-

rithm applies. Figure 4 shows the objective and quadratic coefficient for both redistributed

and simplified bundle method from the same starting point as in Example 1. Similar con-

clusions as in Example 1 can be drawn.

Example 3. (smoothed SCACOPF) Example 3 is a SCACOPF problem with affine active

power constraint for contingency (second-stage) problems. The network data used in this

example is from the ARPA-E Grid Optimization competition [39]. The complete mathe-

matical formulation is complex but the master (first-stage) problem fits in the form of (1),

where r is the recourse function of the contingency problems. Details of the problem setup

can be seen in [39]. The number of contingency problems that are solved to evaluate r is

100.

The coupling constraint between master and contingency variables can be viewed as

linear in the former (x) but it is nonsmooth. This means recourse function r might not be

upper-C2. However, using a quadratic penalty of the coupling constraints in the contin-

gency problems, r in (1) becomes upper-C2 and the problem is referred to as the smoothed

SCACOPF, in contrast to the original non-smoothed one. The proposed algorithm is ap-

plied to the smoothed SCACOPF, where the quadratic penalty parameter µ is set to 109.

While this means the convergence analysis applies, we only solve an approximated prob-

lem. To verify the accuracy of the solution, the true solution is obtained by solving the

extensive form of the SCACOPF with Ipopt. It is plotted with the optimization results
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Figure 5: Convergence plots for example 3

in Figure 5. We also plot the non-smoothed objective evaluated at the optimal solution

x gained from the smoothed problem at each iteration. The rejected steps are marked as

well. Within 200 iterations, the non-smoothed objective reach within 0.010% error of the

true solution, which is acceptable and useful in practice. To speed up convergence of this

first-order method, the quadratic coefficient αk is reduced whenever possible. For large-

scale problems with 104 coupled optimization variables and 105 contingencies, the extensive

form of the SCACOPF would be impractical, while the simplified bundle algorithm has

been successfully deployed to supercomputers [52].

5 Conclusions

In this report, we have motivated, proposed and analyzed algorithms for a group of non-

smooth, nonconvex optimization problems. We show that many two-stage (stochastic)

optimization problems, including our target application SCACOPF problems exhibit in-

teresting properties which are not thoroughly investigated previously. This has lead to our

design and analysis of the simplified bundle algorithm whose global convergence can be

achieved under upper-C2 objectives. The algorithm is scalable and has been implemented
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on parallel computing platforms. Numerical experiments show promising convergence and

scaling results.
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Appendix A: Continuity of the second-stage solution function

This appendix details the continuity of rµ(·) in (23). We consider continuity of rµ(·) using
Proposition 4.4 from [5]. The related notations are denoted as follows. The set S(x) ⊂ Y

is the optimal solutions at x. We denote by Φ(x) ⊂ Rm the feasible set of y in the recourse

subproblem. From the constraints in (23), an important observation is that Φ(x) = Φ,

for all x, i.e., the feasible set for y is independent of x due to smoothing. To simplify the

notations, instead of applying compact set theories on the extended real vector space, it is

reasonable to assume the following.

Assumption A.1. The optimization variables x and y are bounded. The feasibility sets

for x and y, denoted as X ∈ Rn and Y ∈ Rm, respectively, are bounded. Moreover, Y is

compact.

We establish in Lemma A.2 that under the given assumption, the optimization prob-

lem in (23) meets the conditions in Proposition 4.4 in [5], which directly establishes the

continuity of rµ(·).

Lemma A.2. The optimization problem (23) satisfies the conditions in Proposition 4.4

in [5] at a given x, which are (1) the function f(x, y) is continuous on X × Y , (2) the

multifunction Φ(·) is closed, (3) there exists α ∈ R and a compact set C ⊂ Y such that for

every x′ in a neighborhood of x, the level set

levαf(x
′, ·) := {y ∈ Φ(x) : f(x′, y) ≤ α} (132)

is nonempty and contained in C, (4) for any neighborhood Vy of the set S(x̄),x̄ ∈ X, there

exists a neighborhood Vx of x̄ such that Vy ∩ Φ(x) ̸= ∅ for all x ∈ Vx.

Proof. The objectives and constraints in the recourse subproblem are twice continuously

differentiable, as mentioned when introducing (2), which guarantees (1) for the entire

feasible set Φ(x). Assumption A.1, consistent with the constraints and bounds on y,

ensures a closed feasible set and thus (2) is met. Since f(x′, y) is continuously differentiable

on X × Y , it is also bounded. Denoting a neighborhood of x as Vx, the obvious choice

of α to make the level set levαf(x
′, ·), ∀x′ ∈ Vx nonempty is to let it be the maximum

value of f(x′, ·) on C. Therefore, an α exists such that f(x′, y) ≤ α,∀x′ ∈ Vx, y ∈ Φ(x′).

Given the compact set Y ⊂ Rm, a compact subset C ⊂ Y can be found such that the

level set levαf(x
′, ·) is contained in C. Thus, (3) is satisfied. To see (4), let ȳ ∈ S(x̄)
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and Vy be a neighborhood of ȳ. Since Φ(x) is independent of x and compact, it is clear

Vy ∩ Φ(x) ̸= ∅.

We can then prove Lemma 2.4.

Proof. Applying Proposition 4.4 in [5] and Lemma A.2 directly, rµ(·) is continuous for any
x ∈ X and the multifunction x → S(x) is upper semicontinuous at x.
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