
Title: Evaluating the Incentive for Soil Organic Carbon Sequestration from Carinata Production in the 
Southeast United States  
 
 
Abstract 
 
Soil organic carbon (SOC) can be increased by cultivating bioenergy crops to produce low-carbon fuels, 
improving soil quality and agricultural productivity. This study evaluates the incentives for farmers to 
sequester SOC by adopting a bioenergy crop, carinata. Two agricultural management scenarios – business 
as usual (BaU) and a climate-smart (no-till) practice – were simulated using an agent-based modeling 
approach to account for farmers’ carinata adoption rates within their context of traditional crop rotations, 
the associated profitability, influences of neighboring farmers, as well as their individual attitudes. Using 
the state of Georgia, US, as a case study, the results show that farmers allocated 1056×103 acres (23.8%; 
2.47 acres is equivalent to 1 hectare) of farmlands by 2050 at a contract price of $6.5 per bushel of carinata 
seeds and with an incentive of $50 Mg-1 CO2e SOC sequestered under the BaU scenario. In contrast, at the 
same contract price and SOC incentive rate, farmers allocated 1152×103 acres (25.9%) of land under the 
no-till scenario, while the SOC sequestration was 483.83×103 Mg CO2e, which is nearly four times the 
amount under the BaU scenario. Thus, this study demonstrated combinations of seed prices and SOC 
incentives that encourage farmers to adopt carinata with climate-smart practices to attain higher SOC 
sequestration benefits. 
 

Keywords: Agent-based Model; Bioenergy; Climate-smart Agriculture; Soil Organic Carbon; Incentives, 
Sustainable Aviation Fuel 
 
 
1. Background  
 
Soil Organic Carbon (SOC) is essential to maintain soil quality and agricultural productivity (Corning et al., 
2016). Besides its role in soil health, SOC is important to address the issue of climate change (Lal, 2003; 
Paustian et al., 1997). It has been estimated that global soils contain the largest terrestrial pool of organic 
carbon (approximately 2126.44 Pg), which means that small changes in SOC stock could result in 
significant impacts on the atmospheric carbon concentration (Stockmann et al., 2013). On the one hand, 
releasing just 10% of the global SOC pool would be the equivalent of 30 years of anthropogenic 
greenhouse gas (GHG) emissions (Kirschbaum, 2000). On the other hand, increasing soil organic carbon 
by 0.4% per year in the top 1m of global agricultural soil would sequester 2-3 Pg C year-1, effectively 
offsetting 20-35% of global anthropogenic GHG emissions (Minasny et al., 2017). Therefore, maintaining 
or increasing the global stock of SOC is a pressing need not only to ensure agricultural productivity and 
food security but also to combat climate change. 
 
Energy crops can play a significant role in mitigating greenhouse gases by sequestering SOC and producing 
feedstock for low-carbon biofuels (Elless et al., 2023). However, bioenergy crops production must be 
carefully planned to balance these two objectives and minimize conflicts with land use for food crops, 
grassland, or forest land (Bonin & Lal, 2014; Qin et al., 2016). Carinata (Brassica carinata or Ethiopian 
Mustard) has been identified as a potential key feedstock for producing sustainable aviation fuel (SAF) in 
the Southeast United States (SE) because of its high yield, drought, and heat tolerance, suitability for 
winter production, and low rates of mature seed shattering (Christ et al., 2020; George et al., 2021). The 
oil content of carinata is 40%, while its close competitor, canola, has 43% oil content (George et al., 2021), 
but the potential yield of carinata is around 48% higher than canola in the physiographic context of the SE 
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region. The high oil content of carinata can be converted to drop-in aviation fuels, with coproducts that 
include high protein meal for animal feed, as well as other oil and fiber products that can be used to 
produce valuable chemicals. In the context of the global debate about the land use change impacts of 
first-generation biofuels, carinata could also be valuable for its ecosystem services (George et al., 2021). 
As a winter crop, carinata provides cover crop benefits with little direct impacts on cropland use, and the 
plant residues after harvesting the seed would return significant amounts of carbon, nitrogen, and 
potassium to the soil. 
 
There are ongoing efforts to understand the requirements for carinata adoption and enable a carinata-
based SAF supply chain in the Southeast US. Ullah & Dwivedi (2022) used an agent-based model (ABM) to 
evaluate the role of farmers’ profitability, neighborhood influences, and risk aversion attitudes on 
adoption rates of carinata as a winter crop in a Cotton-Cotton-Peanut rotation in a small-scale watershed 
study. That single neighborhood-based methodological framework was subsequently extended by Ullah 
& Crooks (2023) to the state of Georgia in an effort to simulate a greater geographical scale in the US 
South and consider a large number of neighborhood effects. However, the latter study did not determine 
the land allocation decisions of the farmers who were willing to adopt carinata. Furthermore, these two 
previous studies did not consider two important variables with respect to the production economics and 
environmental aspects of carinata: 1) the yield variation across geographical locations; 2) the net carbon 
sequestration effects of winter cultivation of carinata. The estimates of yield responses and SOC changes 
due to carinata cultivation as a winter crop are available across the counties in the three states of the 
Southeast United States, Alabama, Georgia, and Florida in Field, Zhang, Marx, et al. (2022). The study used 
an agroecosystem model, DayCent, based on biophysical information (e.g., soil quality, climate), which 
determined the net change in SOC of integrating carinata into traditional crop rotation against rotation 
without carinata. Their simulations include a business-as-usual (BaU) farm management scenario and two 
climate-smart agricultural management scenarios. However, the diffusion of carinata feedstock 
production across the larger geographic area of the US South was not explored.  
 
Several studies have also examined the supply chain and techno-economic costs of SAF produced from 
carinata. Karami et al. (2022) estimated that a seed price of about $485 Mg-1 or $11 bu-1 (bushel= bu, 1 
Mg = 44.1 bu) is necessary to reduce farmers’ risk from crop rotation with carinata by 8%. Using this seed 
price, Ullah et al. (2023) estimated a price of about $0.92 L-1 for SAF produced from carinata, which is 
about $0.44 L-1 greater than the price of conventional aviation fuel (CAF). Given that the seed cost 
accounts for 80% of the total costs, therefore, the market competitiveness of SAF produced from carinata 
would require additional incentives for farmers to produce seeds. Alam et al. (2021) evaluated the 
potential role of carbon reduction on the breakeven cost of carinata-based SAF, estimating a breakeven 
price range of $0.12 L-1 to $0.66 L-1 only when both co-product and RIN credits (Renewable Identification 
Number under the US Renewable Fuel Standard program) are considered. However, the incentive for 
farmers, as the first point on the supply chain, to produce carinata using practices that sequester soil 
organic carbon at the farm level, assumed in these analyses, has not been examined. 
 
Payments or incentives for SOC sequestration can encourage farmers to adopt bioenergy crops by 
complementing the revenue from the sale of feedstock to bioenergy facilities (Mishra et al., 2021). Such 
payments for ecosystem services (PES) could influence the competitiveness of farms through three 
outcomes (Piñeiro et al., 2020): – 1) productivity (e.g., yield/acre); 2) profitability (e.g., farms’ income, 
production costs/acre); and 3) environmental sustainability (e.g., soil and water quality, climate change 
mitigation). Previous PES studies on bioenergy crops have primarily reflected the effects of soil and water 
quality improvement by reducing nitrogen loading in water (Woodbury et al., 2018), nutrient losses from 
soil (Wu et al., 2019), and application of nitrogen for farming (Li & Zipp, 2019), along with specific case 
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studies, such as the impacts on marine ecosystem of nitrogen and other nutrients loading (Jager & 
Efroymson, 2018). However, only a handful of PES studies are available that focus on the SOC 
sequestration potential of bioenergy or other crops to mitigate climate change (Antle et al., 2001, 2007; 
Mishra et al., 2021). Only Mishra et al. (2021) conducted a spatially explicit study on PES for SOC 
sequestration due to perennial bioenergy crops. However, to the best of our knowledge, none of the 
studies considered – 1) the PES for adopting seasonal bioenergy crops, such as carinata, camelina, and 
canola; 2)  the social and behavioral aspects of farmers which can affect the biophysical and economic 
outcomes of PES schemes and the dynamics of the adoption process. 
 
This study uses a spatially explicit model constrained by social, economic, and behavioral factors to 
evaluate the SOC incentives for producing carinata in the US Southeast. The hypothesis is that valuing the 
SOC potential can improve farmers’ competitiveness in producing carinata and increase SOC 
sequestration. Therefore, the current study significantly extends previous ABM studies of carinata 
adoption (Ullah & Crooks, 2023; Ullah & Dwivedi, 2022) by utilizing production economics of county-wise 
yields and SOC sequestration rates under the Business-as-Usual (BaU) and one climate-smart (no-till) 
scenarios estimated with the DayCent model (Field, Zhang, Marx, et al., 2022). We simulate the impact of 
different combinations of seed prices and SOC incentives under each of these scenarios to understand the 
effects on carinata adoption rates by farmers in Georgia and the associated changes in SOC. In the 
remainder of the paper we first present our methodology (Section 2) before presenting our results and a 
discussion of them in Section 3. Finally, Section 4 provides a conclusion to our paper and outlines areas of 
further work.  
 
 
2. Methods 
 
2.1. Study Area  
Georgia is a state in the Southeastern region of the United States having an area of around 61.2 million 
acres. The major landcover types of the state are forest (58%), agriculture/pasture (20%), transportation 
(6%), and others (16%) such as urban areas, open water, and so on (USDA/NASS, 2019). With respect to 
agricultural lands, there are three major field crops, i.e., cotton, peanut and corn, which represents 98.5% 
of the cropland in Southern Georgia (Karami et al., 2022). The vast majority of agricultural land occupied 
by these crops remains fallow in the winter season, providing opportunities for alternative crops in the 
winter. For example, it is estimated that around 1.9 million acres of these fallow lands could be utilized 
for cultivating carinata (Alam & Dwivedi, 2019). Figure 1 shows the potential land area for winter carinata 
cultivation across the counties in Georgia estimated by Field, Zhang, Marx, et al. (2022). Georgia also hosts 
the Hartfield Jackson Atlanta Airport, which is reputedly the busiest airport in the world and an ideal end 
user of carinata-based SAF. 
 
2.2. Data Description  
 
2.2.1. Geospatial Data 
For the spatial analysis part of this study, we used two geospatial datasets, specifically the Crop Data Layer 
(CDL) and a county shape file. The CDL is a remote sensing-based raster data set produced annually by the 
United States Department of Agriculture (USDA) at 30 or 56 meter spatial resolution (USDA/NASS, 2019) 
depending on the state or year. The raster data set contains 85 possible land cover categories, most of 
which represent agricultural landcovers (e.g., grassland/pasture, cotton, double crops) but also include 
other land use/cover types (e.g., forest, shrubland, wetland). We obtained the county shapefile from the 
US Census Bureau (2020). 
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Figure 1: County-wise land availability for carinata production (adopted from Field et al., 2022) 

2.2.2. Traditional Crop Production Economics 
Table 1 shows the three key production economic variables, yields, prices, and production costs, used in 
this study for determining the profitability of three major crops based on data from the USDA Economic 
Research Service (2020) for 2009 through 2019, except 2012. The year 2012 was excluded from annual 
mean and standard deviation calculations due to extreme high prices for all the three crops in the this 
year, caused by a severe drought event. These annual datasets were collected for the Southern Seaboard 
agricultural region, which covers most of the part of Georgia including the counties that have potentials 
for producing carinata. Profits (i.e., net returns) for the crops are calculated as the difference between 
price and production costs, using yields to convert prices to per acre basis. The production costs are the 
operating costs for producing a crop, including seeds, fertilizer, irrigation, fuels, labor, taxes, insurances 
and other similar services. The fixed costs, such as machinery and equipment, are not subtracted from the 
net returns as those costs do not generally affect farmers’ short-term planting decisions. The price and 
cost data were converted to real dollar values using the US producer price index (PPI) with the reference 
year of 2019. The Shapiro-Wilk normality test shows that all variables, except corn price, are normally 
distributed at a 5% significance level. 
 
2.2.3. Carinata Production Economics and SOC  
Candidate Georgia counties for carinata production were based on estimates of available land using the 
DayCent model (Field, Zhang, Marx, et al., 2022) (as shown in Figures 1 & 2). The spatially explicit DayCent 
model was previously calibrated to a depth of 20 cm for carinata grown in the Southeastern United States 
based on data from Nuseed (a commercial developer of carinata). In the DayCent simulations it was 
assumed that carinata is grown as a winter cover crop after the two cotton cash crops of a three-year 
cotton–cotton–peanut rotation, planting in mid-November, and harvesting in late May. This rotation was 
intended to avoid residual herbicide effects (Seepaul et al., 2019). The DayCent model simulations 
included three scenarios – one BaU scenario and two climate-smart (no-till and poultry litter) scenarios. 
In the BaU scenario, moderate-intensity field preparation was applied for cultivating all the crops in the 
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rotation, including carinata. In the no-till scenario, carinata was cultivated with no-till and traditional crops 
with moderate-intensity field preparation. The estimated average yields of carinata and SOC 
sequestration due to the production of carinata seeds across the selected counties in Georgia under the 
BaU and no-till scenarios are used in this study (Figure 2). The yields for BaU scenarios are somewhat 
higher than for the no-till scenario in most counties. However, the SOC sequestration rates are 
considerably higher for no-till practices than for traditional farming (Field, Zhang, Marx, et al., 2022). 
Results for the poultry litter scenario is conservative in the DayCent model, hence, this study does not 
consider it (see Field, Zhang, Marx, et al., 2022 for detail).  
 
Table 1: Variables affecting the profitability of major row crops and their normality test between 2009 to 2019. 
Source: USDA Economic Research Service (2020). (1 bu corn = 56 lb). *p-value for Shapiro-Wilk normality test. The 
production costs involve operating costs for producing a crop, which include costs of seeds, fertilizer, irrigation, fuels, 
labor, taxes, insurances and other similar services. Price and cost data were converted to reference dollar year of 
2019 using the US Producers Price Index (PPI). Data for 2012 was excluded due to extreme high crop prices.  

Return variables  Crop Name Unit Mean  Sd  p-value* 

 
Yield  

Corn bu acre-1 129.50 17.56 0.80 

Cotton  lb acre-1 841.30 99.31 0.71 

Cottonseed lb acre-1 1361.00 160.81 0.70 

Peanut  lb acre-1 4095.10 366.19 0.07 

 
Price  

Corn $ bu-1 4.63 0.95 0.01 

Cotton  $ lb-1 0.75 0.11 0.25 

Cottonseed $ lb-1 0.08 0.02 0.15 

Peanut  $ lb-1 0.21 0.04 0.18 

 
Production cost  

Corn $ acre-1  427.60 60.94 0.92 

Cotton  $ acre-1  612.78 43.68 0.84 

Peanut $ acre-1  586.95 47.00 0.41 

 
There is no historical record of production costs for carinata in the study area. Several estimates have 
been made available from the experimental plots established under the Southeast Partnership for 
Advanced Renewables from Carinata (SPARC) (George et al., 2021; Seepaul et al., 2019). SPARC is a 
Coordinated Agricultural Project supported by the United States Department of Agriculture National 
Institute of Food and Agriculture. In light of SPARC’s suggested cultivation guides, Karami et al. (2022) 
made a detail estimation of operational cost under the conventional tillage, which is $286.32 acre-1. This 
operating cost is used for our study assuming there is no variation in till versus no-till cultivation. This 
assumption is based on the management of till and no-till scenario specified in Field, Zhang, Marx, et al. 
(2022), that generated yield and SOC data for this study, and the possible costs specified in Karami et al. 
(2022). Field, Zhang, Marx, et al. (2022) suggests that the only variation in till versus no-till cultivation of 
carinata is in the field preparation, where 2 disk passes were applied for conventional tillage and herbicide 
burndown was applied for no-till cultivation. In the context of Georgia, the cost for land preparation of 
these two different managements are similar, which can vary from $15-20 acre-1. Besides, there is no 
additional equipment costs required for carinata as this crop can be cultivated with the equipment used 
for traditional field crops, e.g., cotton, corn and peanuts. Considering the maximum average yield in 
Georgia (53.26 bu acre-1 in the BaU scenario) and the estimated operating cost ($286.32 acre-1 ), the price 
of carinata should be at least around $5.5 bu-1 to cover variable production costs. However, the variation 
in estimated yield levels, and likely production costs, across counties in Georgia mean that breakeven 
prices may vary significantly. 
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Figure 2: The Yield and changes of Soil Organic Carbon (SOC) for producing carinata in the counties of Georgia. 
Figure (a) & (b) are yields for BaU and no-till farming practices, respectively. Figure (c) & (d) are changes of SOC in 
the same order of farming practices. Source: Field, Zhang, Marx, et al. (2022). 

 
2.3. Modelling Overview  
The ABM used in this study builds on the version applied to a small-scale watershed in Ullah & Dwivedi 
(2022) which was subsequently extended by Ullah & Crooks (2023) to the state of Georgia. While both of 
those studies were useful to build an ABM framework in the first place, a more empirical model is 
necessary to understand how the profitability and diffusion of carinata adoption jointly determines the 
land allocation decisions of farmers under different farm management, yields conditions and given 
incentives for potential ecosystem services, such as SOC sequestration. Thus, in this study, farmer agents’ 
adoption decisions of carinata, under the estimated yield and SOC response rates of two farm 
management scenarios (BaU and no-till), are reflected in three sub-models – profit modeling, diffusion 
modeling and land allocation modelling (Section 2.5 to 2.7) which was not the case in previous works. 
 
The profit modeling evaluates farmers’ profits of row crop rotations with and without carinata (Section 
2.5). The diffusion modeling determines farmers’ attitudes towards adopting carinata under 
neighborhood influences (Section 2.6). The land allocation modelling determines the proportion of lands 
that farmers will allocate for carinata cultivation integrated with cotton-cotton-peanuts (section 2.7). 
Farmers decide to adopt carinata for the current period only when they find their profit with carinata 
rotation is greater than without carinata rotation in the previous period, and the neighborhood influences 
from the same previous period provide a ‘positive’ outlook for adoption. For each farmer, the adoption 
behavior of the current period is updated and feeds into the next time step. Thus, the model works in a 
recursive manner until the end of the simulation period and the land allocation decisions determine 
farmers’ expected utilities (profitability). Figure 3 shows the flow of farmers’ decision-making framework 
across the three sub-models. 
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Figure 3: Process, overview and scheduling. 

 
2.4. Model Initialization 
The model is initialized at the farm, neighborhood and global levels using the associated variables and 
parameters across 93 counties out of 159 counties of Georgia. These 93 counties were selected as they 
have potential land availability for carinata production (Figure 1). The average farm area in Georgia is 247 
acres and total farmland suitable for cultivating carinata across the 93 counties is 4,445,506 acres 
(USDA/NASS, 2019). By dividing the county-wise total farmlands with the average farm size we estimate 
about 17,998 farmers for Georgia. However, in this version of model, we create a farmer agent 
representing five farmers (1,235 acres) as a whole unit and at least three farmers (741 acres) where a 
whole unit is not possible. We chose this agent unit to reduce computational requirements and simplify 
the model. Two of the 93 counties with potential to grow carinata have less than three farmers based on 
the available land, and were excluded from the current study. A detailed discussion on how the model is 
initialized at the farm, neighborhood and global levels was given in Ullah & Crooks (2023), and the 
following paragraphs provide a brief overview. 
 
Three categories of farmers are created at the farm level using the historical crop data layers (USDA/NASS, 
2019) – 1) cotton-cotton-cotton farmers (53%); 2) cotton-cotton-peanut farmers (43%); and 3) cotton-
cotton-corn farmers (4%). These three 3-year rotations are the major traditional crop rotations in the 
study area, which were utilized to estimate profits from the traditional crops without carinata. Carinata is 
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integrated as Cotton-Cotton-Carinata-Peanut rotation for BaU and no-till scenarios based on – a) 
agronomic requirements (e.g., the herbicide effect for cultivating carinata after peanuts) (Seepaul et al., 
2019); b) the analysis of most preferred and profitable three-year crop rotation in Georgia (see Ullah et 
al. (2022) for detail) . Thresholds of the farmers adoption of carinata rotation are set using two normal 
distributions, corresponding to high and low initial willingness scenarios (Section 2.6).  
 
The neighborhood in this study is defined as a county and its immediate adjacent counties. Two 
neighborhood diffusion types are selected – 1) Traditional and 2) Expansion diffusion (Jordan-Bychkov, 
1997) as shown in Figure 4. The rationale for exploring these different diffusion processes is to explore 
how carinata production might spread over the area under two policy options – one in which a pilot study 
is focused on a small geographical location, and one in which farmers are selected from across the state, 
i.e., Southern Georgia for this study. At the global level, parameters for crop production economics are 
set at the initialization of the model. Besides following the initialization framework of the previous ABM 
(Ullah & Crooks, 2023), two shapefiles provide county-wise yield and SOC changes of carinata for each of 
the BaU and no-till scenarios.  
 

A                                                                                      B 

 

 

                                                                                   
Figure 4: Adoption scenarios at early time steps where red agents (i.e., farmers) are the adopters: (A) traditional 
(B) expansion diffusion examples. 

 
2.5. Profit Modeling 
The expected profits during each three-year rotation of traditional row crops are based on the Net Present 
Value (NPV) of net returns calculated from yields, market prices, and cost of production for the previous 
period of rotation (Figure 3). Thus, the expected profit from traditional rotations without carinata for each 
farmer for period t is calculated using Eq. 1. 

 

𝑃𝐹𝑡 =  ∑ (𝑌𝑡−1,𝑛,𝑐 ∗ 𝑃𝑡−1,𝑛,𝑐 − 𝐶𝑡−1,𝑛,𝑐)
𝑛,𝑐

∗ 𝑁𝑃𝑡,𝑛    … … … … … … … … … … …   (1) 

 
Where,  t = 0, 1, 2, ….11 are each 3-year rotation periods, t = 0 is the base period. The n values are 1, 2, or 
3 that represents the 1st, 2nd, and 3rd year of rotation period t, respectively, and c = 1, 2, 3 are crops, where 
1 = corn, 2 = cotton, 3 = peanuts. The first term in the equation (PF) is the expected profit of a crop for a 
particular year calculated from yield (Y), price (P), and cost (C), which are stochastically generated for each 
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rotation period based on Table 1. The third term, NP, is the multiplier to determine the NPV, where 

𝑁𝑃𝑡,𝑛 =
1

(1+𝑟)(3𝑡+𝑛) , and r is the real discount rate (Godsey, 2008). All the production economics are 

calculated on a per acre basis. 
 
The expected profit from a crop rotation for each farm with carinata (PG) is calculated using Eq. 2. The 
contract price, production cost, and SOC incentive for carinata is constant over the simulation period. 
However, the yields and SOC vary across the counties (Figure 2).  

 
𝑃𝐺𝑡 = 𝑃𝐶𝑡 ∗ 𝑁𝑃𝑡,𝑛=1 + 𝑃𝐶𝑡 ∗ 𝑁𝑃𝑡,𝑛=2 + (𝑃𝐴𝑡 + 𝑆𝑂𝐶 ∗ 𝐼𝑛𝑐) ∗ 𝑁𝑃𝑡,𝑛=2 + 𝑃𝐸𝑡 ∗ (1

− 𝑘) ∗ 𝑁𝑃𝑡,𝑛=3   … … … … … … … … … … … … … … … … … (2) 
 
where,  

PCt = expected profit from cotton 
PAt = expected profit from carinata 
SOC = Soil Organic Carbon sequestration rate (Mg CO2e acre-1) 
Inc = Incentive for per Mg CO2e SOC sequestration, s.t. SOC > 0,  
PEt = expected profit from peanuts 
k = yield loss of peanuts for late cultivation after carinata, ∀ k = 0.1 
NPt,(n=1,2,3) = multiplier of NPV values in the 1st, 2nd, and 3rd year, respectively, for period t 

 
The profits in Eq. 2 are calculated as a function of yield, price, and production cost, similar to the first term 
in the parenthesis of Eq. 1. In addition, an incentive is applied for the counties having positive SOC during 
the simulation to observe its impact on adoption behavior. Any county with negative or no change of SOC 
would receive no SOC incentive, but all the selected counties in Georgia have positive SOC. There could 
be some loss of peanuts yields due to planting after growing carinata between mid-November to end-
May. We assigned an average loss of 10%, estimated from Drake et al. (2014). 
 
2.6. Diffusion Modeling 
Adopting carinata will be a new experience for farmers in the study area, and is analogous to new 
technology diffusion, which empirically follows an S-shaped curve (Alexander et al., 2013; Rogers, 2003). 
A number of approaches have been proposed for modeling technology diffusion processes (Alkemade & 
Castaldi, 2005), along with adopting new agricultural technologies in an agent-based modeling framework 
(Shang et al., 2021). In this study, we applied an adoption threshold approach proposed by Alexander et 
al. (2013), which was an extension of the work of Berger (2001). However, the novelty in our approach is 
in evaluating diffusion types, such as traditional and expansion diffusion (which are discussed below). The 
approach is based on two parameters: local adoption rate (AR) and individual adoption threshold (AT).  
 
In the model, the current local AR is calculated from the net proportion of positive minus negative profit 
experiences from carinata among the farmers in the neighborhood from the previous time step. Each 
farmer is assigned an adoption threshold (AT) value that defines his degree of ‘resistance’ to change. If 
the AR value for a time step within the neighborhood is greater than the AT of an individual farmer, then 
the farmer shows a ‘positive’ attitude about adopting carinata due to neighborhood influence (see Figure 
3). This diffusion process has been used in other agent-based models of adoption, for example on new 
technology adoption with respect to new irrigation suggested by Berger (2001). However, Berger (2001) 
applied a mathematical programming approach using experimental plot-level data to estimate crop 
production economics. We use farm production economics at the unit level by procuring secondary data 
(section 2.2.2). Furthermore, Berger’s (2001) study used extensive sample surveys and plot-level 
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experimental data to represent the farm economics for the whole region. In this study we use remote 
sensing-based crop data layers, which are freely available, and estimate the crop economics over the 
cultivated farmlands. This allows the model to relate the profitability of farmers with direct spatial 
interactions, which influence the spatially explicit diffusion process as well. The use of readily available 
remote sensing data also allows us to instantiate and parameterize the model quickly compared to when 
more time-consuming field work is needed (Robinson et al., 2007). 
 
Farmers that adopt carinata at the very beginning (first time step), considered risk takers in this study, are 
called innovative farmers. These innovative farmers will adopt carinata if only the profit conditions are 
met. Innovators will create the first net-positive AR. If the initial contract price of carinata is not as high 
enough to get positive return for any innovator, a new price is set in the model. The positive experience 
of innovators will influence other farmers. When other farmers find that the adoption rate due to adopting 
carinata by the innovators in the neighborhood is higher than their own AT, then those farmers cultivate 
carinata in the second time step. Sequentially, all the farmers including innovators and other farmers will 
update their experiences over each next time step in the simulation period. The AT values of individual 
farmers were assigned from normal distributions with a mean of 0.2 (Alexander et al., 2013; Jin et al., 
2019), but with different standard deviations, depending on the initial willingness and diffusion types. 
 
For expansion diffusion, two different distributions were used using standard deviations of 0.102 and 
0.1216, to represent the low willingness and high willingness scenarios, respectively, thereby setting the 
innovator category at around 2.5% and 5% of total farmers (Ullah & Dwivedi, 2022). As the diffusion rate 
is slow in the early stage, only a small portion of farmers are willing to adopt carinata. In the low-
willingness case, 2.5% of the farmers initially are willing to adopt new technology according to the theory 
of diffusion of innovations (Rogers, 2003). We selected 5% innovators to generate a less restrictive 
adoption rate and higher willingness to adopt a new crop in the initial stage. The AR was fixed at 0 for the 
base year. By using the selected distribution of AT, innovators had negative or zero AT values. Thus, setting 
an AR value of 0 at the initial stage fulfills the neighborhood requirement mathematically. That is to say, 
the innovators also adopt carinata if their AT values are equal or less than AR even though there are no 
experienced farmers in the community in the base year. 
 
In the case of traditional diffusion, we select a single county in the Little River Watershed as a pilot site, 
which represents 2.5% of farmers in Georgia. Little River Watershed has been a prominent scientific 
experimental site for the agricultural extension in Georgia since 1967 (Bosch et al., 2007). We included 
three adjacent counties in the Little River Watershed as a pilot site to obtain 5% of farmers for the high 
willingness case. We assigned AT value 0 for these farmers for the same reason as in the expansion 
diffusion case, i.e., to make sure the AT value is equal or less than initial AR value. However, there remains 
the question of how to assign the AT values for the rest of the farmers, who do not exist in the pilot sites 
and are separated from the distribution of innovators? Even though we split the farmer population 
between innovators and non-innovators, the distribution of AT should be comparable with the non-
partitioned distribution applied for expansion diffusion. To solve this problem, we applied a truncated 
normal distribution which is bounded between 2.5% and 100% for the low initial willingness scenario with 
the same mean and standard deviation value applied for the expansion diffusion. For the higher 
willingness scenario, the boundary was between 5% and 100%. Thus, we eliminate the innovators who 
are below the lower threshold and generate AT values for rest of the farmers using a truncated normal 
distribution as shown in Equation 3 (Botev & L’ecuyer, 2017):  
 

𝐴𝑇 = Φ−1 (Φ(𝛼) + 𝑈 ∗ (Φ(𝛽) −  Φ(𝛼))) 𝜎 +  𝜇 … … … … … … … . . (3) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



where, 
Φ is the cumulative normal distribution function, 
U is the uniform random number on (0,1) 
μ,σ are the mean and standard deviation 
α and β are the values to truncate the distribution range, e.g.,(.025,1) for low initial willingness 
scenario. 

 
2.7. Land Allocation Modeling 
The previous ABM of carinata adoption (Ullah & Dwivedi, 2022) applied the Mean-Variance (MV) modern 
portfolio optimization theory to determine farmers’ land allocation decisions under their associated risk 
perceptions. However, this theoretical model could be misleading as integrating carinata in the traditional 
crop with a reasonable contract price will always bring additional profits for the farmers, while the land 
allocation rate could be either too low or too high in the MV method due to the volatility of production 
economics. This biased estimation could result from three shortcomings inherent to the classical MV 
portfolio optimization (see details in Kim et al., 2015): – 1) limitation of the use of variance for measuring 
risk, which represents both upside and downside deviations, whereas from investors point of view 
sometimes an upside deviation could mean less risk. 2) The input parameters of the model (e.g., means, 
variances and covariances) are difficult to estimate. Historical record could be helpful, but prediction of 
the future parameters is a difficult task, and for the case of carinata, there is no historical record of 
production economics as well. 3) The model is highly sensitive with respect to the resulting portfolio, as 
even a small deviation in the input values can have large effects on the portfolio and investment decisions. 
 
Another approach to modeling land allocation to carinata is to use data on farmers’ attitudes towards 
adopting oilseed crops (Embaye et al., 2018), which suggests that it is unlikely that farmers would allocate 
all of their farmland for cultivating carinata. A primary survey on farm and farmers’ characteristics, such 
as in Embaye et al. (2018), could be helpful to understand the overall attitudes of different farmers. 
However, such perception-based information may not accurately reflect actual land allocations as farmers 
may change their mind when they evaluate their benefits during the actual implementation of an 
agricultural program (Park et al., 2022). Considering these unresolved issues in the previous literature and 
methodological approaches, we relied on the historical land allocation pattern from agricultural extension 
programs, such as conservation programs, to approximate farmers’ land allocation decisions for carinata.  
 
Conservation programs were implemented to improve soil, water and air quality associated with 
practices, such as cover cropping (Park et al., 2022). The USDA environmental quality incentives program 
(EQIP) and conservation stewardship program (CSP) are two of the largest conservation programs in terms 
of acreages and spending (Coppess & Gramig, 2018). Both programs give direct financial and technical 
assistance to farmers for conservation practices on land that remain in farming, therefore, they are 
considered ‘working land’ programs. CSP supports long term contracts (5 years) for the entire farm that 
need to meet a certain threshold of conservation over the years, whereas EQIP provides direct financial 
support for short term contracts (usually less than 3 years) to recover or share the cost of adding, 
maintaining, or improving conservation practices. EQIP is a target specific program and is more effective 
than CSP at the county level (Park et al., 2022) but the CSP imposes thresholds on farmers adding new 
conservation practices over the existing one. Since farmers make short-term (3 years) rotation decisions 
and there is no additivity other than integrating carinata into the cotton-cotton-peanuts rotation, we use 
data on EQIP adoption rates in Georgia to estimate the range of potential land allocation to carinata in 
this study as follows. The average land allocation rate per farming contract under the EQIP program 
between 2014 – 2022 in Georgia is 74.79 acres, which is around 30% of the average farm size in the state 
(USDA, 2022). However, to reflect greater flexibility in our simulation results, we use a uniform distribution 
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of 20-50% to model the proportion of land allocated by farmers that choose to adopt carinata. Although 
lower than the average land enrollment rate for EQIP in Georgia, the lower bound of this range requires 
farmers to commit a significant portion of their farmland to carinata production after adoption. The upper 
bound of the range can be considered conservative since farmers may plant 100% of their land to carinata 
over the winter to increase profits. 
 
2.8. Model simulation over the landscape of Georgia  
As noted in Section 2.4, the landscape of the study includes 93 counties, which have potentials for carinata 
production. The model was simulated over 33 years (2018-2050) with a rotation of 3 years for each time 
step (t). The first 3-year rotation step (t=1) is 2018–2020, and the simulation was started with information 
on crop production economics between 2015 and 2017 (the base year, t=0) converted to real dollar values 
with the reference year of 2019. We captured the possible market, production, environmental, 
neighborhood, farmers’ individual attitudes by setting the model’s parameter values as highlighted below. 
 
Table 2 shows the values of parameters used for simulating the profit sub-model as well as for sensitivity 
analysis of production economics under varying carinata contract prices and incentives for SOC 
sequestration. We set the initial farmgate contract price of carinata seed to $5.5 bu-1 to represent a 
breakeven price based on assumptions about the average production cost and yield in Georgia (see 
section 2.2.3), and simulated prices (2019 dollars) of $5.5 bu-1, $6 bu-1, $6.5 bu-1 and $7 bu-1. There were 
very little changes in adoption rates and land allocation after $7 bu-1 as the adoption rates plateaued at 
this price. Assuming an average yield of 53.26 bu acre-1 and SOC change of 0.12 Mg CO2e acre-1 due to 
carinata production in Georgia under the BaU scenario, an increase in contract price of $0.5 bu-1 could be 
compensated by an incentive of $222 Mg-1 CO2e for the sequestered carbon. However, we set the ranges 
of SOC incentive between $0-200 Mg-1 CO2e (0 means no incentive) with $50 increments to observe how 
different levels of incentives affect the adoption decisions of farmers across the state of Georgia. 
 
In the profit modeling, the mean and standard deviation values of traditional crop yields, prices and 
production costs were used to capture the stochasticity of production economics (Table 2). However, the 
corn price was not normally distributed (Table 1). Therefore, a Poisson distribution with mean price ($4.63 
bu-1) of corn were used as model inputs to capture the skewness in the distribution. The effect of time on 
returns from the various crop rotations was captured with an annual real discount rate of 6% (Upadhaya 
& Dwivedi, 2019), which was adopted for the investment decisions in agroforestry, in accordance with 
annual average stock market return with adjustment of inflation. 
 
For the neighborhood effects, the model is designed to implement both the low and high willingness 
scenarios as well as traditional and expansion diffusions. The expansion diffusion appears to be a better 
option from the policy perspective because learning centers for the farmers are spread over a larger 
geographic region in this scenario. Thus, the maximum adoption rates occur earlier than the traditional 
diffusions cases (Ullah & Crooks, 2023). Even though there is no obvious case to determine the level of 
initial willingness to adopt carinata, low willingness is suggested by Rogers’s classical theory of diffusion 
of innovations (Rogers, 2003). Therefore, to keep more focus on production economics and SOC 
incentives, maintain the brevity of the paper and minimize the run time of the program, we considered 
the low willingness and expansion diffusion scenario for the neighborhood sub-model in this study. For 
the land allocation sub-model, a uniform distribution of 20-50% is applied to model the proportion of land 
allocated by farmers who adopt carinata (see Section 2.7 for explanation).  
 
To implement the simulation work, we preprocessed the agents' environment first, especially using 
geospatial techniques for estimating total land resources and the best rotation with carinata. Then, we 
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built our profit, neighborhood, and land allocation models in the NetLogo 6.3.0 environment (Wilensky, U. 

,1999, see the Data Availability Statement section). Figure 5 shows an example output of a model run by 2050 
with a SOC incentive of $50 Mg-1 CO2e at price $6.5 for no-till farming practices. For each scenario, the 
model was run 20 times at first, then, it was run with 40 and 80 repetitions to observe the stochasticity 
with a more granular view. There were no visible changes from 40 runs to 80 runs, therefore, no further 
repetition was evaluated. The results in this paper are the average values of 40 runs. 
 
Table 2: Variables and parameters of production economics. One bu corn = 56 lb. N(µ, 2ס) represents the normal 
distribution, P(µ) represents Poisson distribution. 

 
 

 
Figure 5: An example simulation output of a model run (SOC incentive = $50 Mg-1 CO2e, Carinata contract price = 
6.5, Expanded diffusion, Low initial willingness scenario).  

 
3. Results and Discussion 
 
As can be seen in Figure 6, most of the farmers do not find carinata cultivation a profitable enterprise at 
a contact price of $5.5 bu-1 with BaU farming. Only 15.3% of farmers find it profitable at this seed price in 

Parameters  Values for simulation  Reference  

Corn yield  N (129.50 bu acre-1, 17.56) (USDA Economic Research Service, 2020) 
Cotton yield N (841 lb acre-1, 99.31) (USDA Economic Research Service, 2020) 
Cottonseed yield N (1361 lb acre-1, 160.81) (USDA Economic Research Service, 2020) 
Peanut yield N (4095.1 lb acre-1, 366.19)  (USDA Economic Research Service, 2020) 
Corn price P ($4.63 bu-1)  (USDA Economic Research Service, 2020) 
Cotton price  N ($0.75 bu-1, 0.11) (USDA Economic Research Service, 2020) 
Cottonseed price  N ($0.08 bu-1, 0.02) (USDA Economic Research Service, 2020) 
Peanut price  N ($0.21 lb-1, 0.04)  (USDA Economic Research Service, 2020) 
Carinata contract price ($ bu-1) $5.5, $6, $6.5, $7  
Corn production cost N ($427.60 acre-1, 60.94)  (USDA Economic Research Service, 2020) 
Cotton production cost  N ($612.78 acre-1, 43.68)  (USDA Economic Research Service, 2020) 
Peanut production cost  N ($586.95 acre-1, 47.00)  (USDA Economic Research Service, 2020) 
Carinata production cost $286.32 acre-1 (Seepaul et al., 2019) 
SOC incentives ($Mg-1 CO2e)  $0, $50, $100, $150, $200    
Annual discount rate  6% (Upadhaya & Dwivedi, 2019) 
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the long run under the high SOC incentive of $200 Mg-1 CO2e. However, a significantly higher number of 
farmers (60.6%) adopt carinata with the same price and a lower SOC incentive ($150 Mg-1 CO2e) for the 
no-till farming practice. It is also striking that the adoption rates for no-till scenario with a contract price 
of $6.5 bu-1 and $50 Mg-1 CO2e SOC incentive are comparable with any scenario of BaU farming at higher 
prices, such as $7 bu-1. These findings follow from the much higher potential for SOC sequestration with 
carinata under no-till, relative to BaU farming, hence, farmers gain more profits with the incentives. For 
instance, the average SOC sequestration rate for Georgia, according to the DayCent result, is 0.12 Mg CO2e 
acre-1 for BaU farming (Field, Zhang, Marx, et al., 2022, Figure 2), but is around 3.5 times (0.42 Mg CO2e 
acre-1) that level for no-till farming. The effect of yield differences under the two farming practices are 
also distinguishable from Figures 2 and 6. For example, more farmers adopt carinata at prices of $6-6.5 
bu-1 with no SOC incentive ($0 Mg-1 CO2e) with BaU farming than with no-till farming. These results reflect 
the fact that the overall yield of carinata under BaU farming is slightly higher than with no-till farming; the 
average yields of carinata are 53.25 bu acre-1 and 51.67 bu acre-1 for BaU and no-till farming, respectively.  
 

 
Figure 6: The total number of farmers who adopted carinata over the years for two farming scenarios at five levels 
of incentives for SOC sequestration and at the four price levels.  

 
Determining the land allocation is the final objective in understanding the potential carinata seed supply 
and carbon sequestration, as well as ecological benefits across the region. Figure 7 shows the land 
allocation results have similar trend as in Figure 6. The similarity reflects the uniform distribution land 
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allocation rates over a range of 20-50% in the model which would tend to the average value (i.e., 35%) for 
a large sample size. Since there is no established carbon market for bioenergy crops, this study evaluated 
different combinations of contract prices and SOC incentives. Existing carbon markets in the US and 
Canada, suggest that prices for carbon credits remain low, suggesting that high SOC incentives may not 
be feasible based on current policies and demand (Lokuge & Anders, 2022; Popkin, 2023). Figure 7, shows 
that under no-till cultivation an SOC incentive of $50 Mg-1 CO2e with a contract price of $6.5 bu-1 and an 
SOC incentive of $0 Mg-1 CO2e with a contract price of $7 bu-1 could attain the maximum land allocation 
area. Figure 8 further discusses the results of the $6.5 bu-1 contract price scenarios. 
 

 
Figure 7: The total land allocated by the adopters over the years for two farming scenarios at five levels of incentives 
for SOC sequestration and at the four price levels.  

 
According to Figure 8, at a price of $6.5 bu-1 there is no significant difference between two BaU farming 

scenarios (S1 and S3) both in land allocation and SOC sequestration. The no-till farming with the same price 
but without SOC incentive (S2) attain almost the same land allocation as the two BaU scenarios in the long-
run. However, the SOC sequestration is considerably higher for S2, compared to S1 and S3. This result means 
that an incentive for SOC sequestration would bring greater profits to farmers adopting no-till farming 
practices. This finding becomes more obvious for the S4 scenario. Land allocation for no-till farming (S4) 
scenario with a contract price of $6.5 bu-1 and SOC incentive of $50 Mg-1 CO2e is consistently higher after 
2029 than the BaU scenario (S3) with the same price and incentive. For instance, the total land allocations 
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for S3 and S4 are around 1056 ×103 (23.8%) and 1152 ×103 (25.9%) acres by 2050, respectively. With these 
land allocation rates, the estimated seed supplies for S3 and S4 for the same year are 1275.1 x103 and 
1349.7x103 Mg, respectively (1 Mg = 44.1 bu of carinata seed). The SOC sequestration amount for S4 is 
483.83x103 MgCO2e by 2050, which is 3.82 times that for S3. These results are very interesting from a 
policy perspective. If there are no SOC incentives and market is free, farmers interested in cultivating 
carinata would do so under the BaU farming scenario because of the higher yield levels relative to the no-
till farming, requiring a contract price of as high as $6.5-$7 bu-1 to achieve relatively high adoption rates 
(Figure 6 & 7). At a price of $6.5 bu-1 and $50 Mg-1 CO2e incentive, farmers will receive a SOC payment of 
$21 acre-1 or $0.41 bu-1 (or a total price of $6.91 bu-1) that achieve higher adoption rates. Such intervention 
would encourage the no-till farming scenario which increases SOC sequestration significantly. In contrast, 
even at a $7 bu-1 price and without SOC incentives, farmers would allocate the similar number of acres 
but prefer BaU farming practices because of higher yields relative to no-till farming practices. Therefore, 
the net effect of investment for encouraging farmers toward carinata adoption could be the same without 
incentive and higher prices, but a trade-off between contract price and SOC incentive would be more 
effective for increasing SOC sequestration with similar or slightly higher investment.  
 

 
Figure 8: The total land allocated by the adopters over the years for four scenarios and their associated total SOC 
sequestrations. Scenario 1 (S1) = BaU farming, price $6.5, SOC incentive $0; Scenario 2 (S2) = No-till farming, price 
$6.5, SOC incentive $0; Scenario 3 (S3) = BaU farming, price $6.5, SOC incentive $50; Scenario 4 (S4) = no-till farming, 
price $6.5, SOC incentive $50.   

 
Several additional factors, such as the stochasticity of traditional crops’ economics, farmers’ individual 
attitudes and associated neighborhood effects could affect the results presented above. How those 
factors affect carinata adoption and land allocation should be understood before implementation. Figure 
9 shows the variations in the results for the four scenarios shown in Figure 8. Scenario 1 (S1) has overall 
higher land allocation numbers compared to S2 but has similar variations. For scenario 3 and 4 (S3 & S4), 
the variations in land allocation are highest between the rotation years, 2032 and 2038. In fact, this is the 
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transition period, when majority of the farmers learn from early adopters. A significant proportion of 
farmers in the earlier part of the simulation period remain undecided, hence, widespread variations in 
adoption are obvious. Over time, a greater proportion of farmers become more positive about carinata 
adoption and region-wide more consistent decisions appear. This is because, with higher adoption rates, 
the distribution is close to that of an average level model where most of the farmers show a common 
attitude towards adopting carinata. Therefore, after 2038, the variances in adoption decisions decrease 
for S4. However, greater variations exist for S3 compared to S4 even in the long run. This happens because 
in that scenario farmers see lower carinata profitability and are affected more by the stochasticity of 
traditional crops’ profitability. In addition, land allocation results for S4 have lower variance in the long 
run, which is also related to the distribution of yields under no-till farming. For no-till farming, the 
distribution of yield and SOC changes rates are N(51.67 bu acre-1, 1.7) and N(0.42 Mg acre-1, 0.04) across 
the counties, while for BaU farming the distributions are N(53.25 bu acre-1, 2.0) and N(0.11 Mg acre-1, 
0.04). Thus, no-till farming has slightly lower but more consistent yield levels and higher SOC sequestration 
rates across the counties in Georgia. Still, the overall pattern of variations is not highly distinguishable 
across the scenarios for this contract price and time steps. Less variations will be expected with higher 
contract prices and longer time steps. 
 

 
Figure 9: The mean land allocation area for four scenarios and their associated standard deviations (error bar).  
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4. Conclusion  
 
Oilseed cover crops, such as carinata, camelina, and canola, have received significant attention for the 
production of SAF. This paper explored the potential benefits of incentives to sequester SOC on farmers’ 
adoption of carinata, which has high yields and oil contents and can be produced as a winter crop with 
little to no impacts on cropland use. Results from our model suggest that a combination of carinata seeds’ 
contract price at $6.5 bushel-1 and incentive for SOC sequestration at $50 Mg-1 CO2e can persuade farmers 
to adopt carinata with no-till farming practices, which accelerates SOC accumulation. Similar to what one 
might observe in the real world (e.g., Rogers, 2003), the adoption rate for this newly introduced bioenergy 
crop was low at first but changing the dynamics of initial willingness can speed up the rate of adoption, 
especially under the expansion diffusion scenario. In addition to SOC sequestration, incentives would 
provide cover crop benefits and other ecosystem benefits (e.g., improving soil and water quality).  
 
There are several existing conservation programs at the federal, state and local level of the United States 
aimed at incentivizing farmers to adopt cover crops with significant success (Wallander et al., 2021), 
leading to increases in adoption by 50% between 2012 and 2017. However, these cover crops are usually 
not harvested whereas bioenergy crops like carinata will be harvested for producing SAF, thereby, 
enabling full carbon mitigation benefits. Given the cover crop benefits, oilseed bioenergy crops may be 
alternatives or complements for existing cover crop programs. Therefore, a critical research question is 
whether SOC incentives for oilseed bioenergy crops should be fully provided by the carbon market? 
Currently, there are limited carbon markets in agriculture in the US and Canada (Lokuge & Anders, 2022), 
and so far there is no initiatives or studies with regards to carbon market for oilseed bioenergy crops. The 
prices in other carbon markets are on the lower end of the range of SOC incentives evaluated in this study. 
Therefore, carinata adoption for SAF production would benefit by receiving incentives from existing cover 
crop programs under no-till farming, which would lower the carbon price required to be profitable. 
 
This study evaluated potential contract prices against variable costs to reflect short-term decisions by 
farmers, whereas market contract prices for SAF feedstock crops would be determined by many factors, 
including allocated fixed costs, demand for the SAF, government credit schemes, inflation, investors’ 
return compared to other enterprises with same investments and so on. As such, the prices discussed in 
this study do not cover all the potential components of final contract prices that would be determined in 
actual markets. Also, our simulations are performed in 2019 dollars with data up to that year, and so do 
not capture recent high inflationary trends in the global economy. Existing SAF production mandates, such 
as the 2021 White House SAF target of 3 billion gallons by 2030 and 35 billion gallons by 2050, would 
increase the value of feedstock, such as carinata. The resulting higher contract seed prices could lower 
the required carbon payments necessary for farmers to adopt carinata. 
 
A key assumption of the simulations in this study is that farmers’ make short-term (3 years) carinata 
production decisions but keep the same traditional crop rotation over the next 33 years, since long-term 
commitment is essential to retaining the benefits of sequestered SOC. In reality farmers may be reluctant 
to sign long term contracts (Khanna et al., 2017), which has led to the slow growth of perennial crops 
adoption. Yet, changes in rotation and crop management practices over time can lead to the release of 
SOC to the atmosphere. Thus, our simulation scenarios can be interpreted as assuming that sequestered 
SOC could be preserved by providing incentives that ensure farmers profitability over the simulation 
period. Given the infancy of carbon credit markets, solutions to the permanence and additionality 
requirements for sequestered SOC are still being developed. Therefore, existing carbon credit markets 
vary widely in their approaches to these issues, including treating SOC accumulation as a side-effect of 
no-till or minimum-till practices with no active monitoring or reducing carbon payment to account for 
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potential/natural loss of SOC over time (Sellars et al., 2021). In addition, our simulations evaluated the net 
SOC benefits of carinata adoption under no-till farming versus a baseline of conventional tillage for all 
agents. However, the adoption of no-till and cover crops has increased in the US in recent years 
(Wallander et al., 2021), but the majority of farmers in our region of study still do not use no-till farming 
and its use is often combined with minimum- or conventional-tillage within the rotation period. Although 
this means that the baseline for many farmers in Georgia would be no-till, a mix of no-till and conventional 
tillage, or other conservation practices rather than conventional tillage, the information necessary to 
characterize the baseline for individual farms/farmers is not publicly available. Therefore, the results in 
this study provide a starting point for understanding the role of SOC incentives for carinata adoption that 
would need to be complemented with data on specific farm baselines during the actual implementation 
of such a program. 
 
In addition to the limitations of the assumptions discussed above, other follow-up areas of inquiry to this 
study include: 1) Considering the dynamic environmental factors, such as weather conditions that can 
affect the crop yield, as well as yield and SOC sequestration variations within the counties; 2) Considering 
the entire supply chain for carinata-based SAF; 3) Further examination of the land allocation approach 
used in this study and the assumption that these lands will remain in cotton-cotton-carinata-peanut 
rotation up to 2050. To address these gaps, our future modeling work will consider frost event 
frequencies; variations the yield and net soil organic carbon changes within the counties, including other 
Southeastern US states beyond Georgia; and integrate with spatially explicit supply chain model to help 
optimize the carbon footprint for carinata-based SAF. We will also further examine conditions and policies 
to promote long-term commitment to SOC sequestration practices. Even with these limitations and areas 
of further work, this paper offers a new way to explore the potential role of SOC incentives on the 
adoption of bioenergy crops. The provision of the source code and data allows others to extend or adapt 
the model for their own purposes towards climate-smart solutions that reduce greenhouse gas emissions. 
 
Data Availability Statement 
 
Data and detail codes are available in the https://github.com/KaziMaselUllah/Incentive_SOC_Carinata. 
Interested readers can run the model to observe other scenarios, such as, traditional diffusion and high 
initial willingness scenarios or extend the model as they see fit or just replicate what is presented in this 
paper.  
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