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ABSTRACT

Given the tremendous volume of accessible Earth Observa-
tion (EO) data, there is a need to develop scalable Geospatial
Artificial Intelligence (GeoAl) solutions for time-sensitive
applications.  Scalability in this context refers to rapidly
processing large-scale EO data using high performance com-
puting resources. Accurate mapping of the built environment
from remote sensing (RS) imagery has been one of the cru-
cial components in GeoAl workflows for a wide spectrum
of humanitarian applications. Derived vector data of built
environment is often leveraged for disaster preparedness and
response activities. However, factors such as differences in
ortho-rectification, atmospheric conditions and human error,
results in spatial misalignment between vector data and the
timely available RS imagery. Model training for downstream
tasks such as object detection, change analysis, etc., is nega-
tively impacted due to such spatial misalignment. Although
there has been progress towards automatic alignment of vec-
tor data, the lack of scalability remains an open research
challenge. This paper proposes to leverage parallel comput-
ing to optimize an automatic vector data alignment workflow.
It further employs CPU-level multi-core parallelism for im-
proving the performance of the workflow for scalable built
environment mapping. We report observations and discuss
findings from the preliminary experiments performed on the
Summit Supercomputer.

Index Terms— scalable, geospatial, vector data align-
ment, raster, remote sensing imagery

1. INTRODUCTION

With advancements in remote sensing technology, there has
been an avalanche of Earth Observation (EO) data being gen-
erated and stored. Due to its volume, velocity and veracity
(the 3 V’s), it aptly fits into the Big Data paradigm. Thus
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this entails development of novel systems and methodologies
for effective exploration and exploitation of such information-
rich geospatial data. In tandem, there has been tremendous
progress in development of high-compute systems. However,
it is not feasible to subscribe to the idea of unlimited storage
and compute. Rapid analysis of incoming remote sensing data
to generate actionable insights becomes extremely crucial for
time-critical situations, such as rapid disaster response to ef-
fectively manage and mitigate damage to life and property.
Thus there is a dire need to develop scalable, accelerated and
optimized GeoAl workflows for effective resource utilization
of available hardware resources.

Accurate mapping of the built environment finds utility in
numerous humanitarian applications including urban sprawl
analysis, urban planning and also disaster monitoring and
management. Building damage assessment greatly benefits
from accurate mapping of buildings before and after the event.
For example, post an earthquake when the area on the ground
is inaccessible, remote sensing platforms such as drones or
airplanes form an apt choice to capture data and make sense
of the events that have transpired on the ground. In the event
of an earthquake, rapid analysis of the pre- and post-event
remote sensing imagery can help detect affected buildings
including identifying degree of damage sustained. However,
the vector data over the built up areas, as derived from a
previously captured remote sensing image might not always
align spatially with the most recently captured imagery. Dur-
ing such scenarios, it becomes crucial to first spatially align
the vector data with the most recent acquired imagery and
then proceed with applying geospatial analytic workflows.

2. RELATED WORK

There exist quite a few approaches proposed in recent litera-
ture towards performing automatic vector data alignment with
remote sensing imagery. [2] proposes to leverage difference
in the standard deviation of road and background pixels for
alignment of road segments in the vector data. The authors
in [3] seek to utilize line segment and corner detection in op-
tical images for geo-registration of vector data. The research
described in [4] proposes to use the graph based GrabCut al-
gorithm for foreground extraction, followed by shift-checking
in eight directions, shift and distance determination. The au-
thors in [5] pose the problem of spatial misalignment of vector



Source Vector

Target Raster

Input Data

'

=

Clipping of each Building Polygon from Source Vector
and Subsetting its corresponding Bounding Box from
Target Raster

Clipping Vector and Subsetting Raster

Clipped Vector and Subset Raster Pairs

| For Each Clipped Vector and Raster Pair r—

Clipped Source Vector

Rasterization of Building Polygon ‘i

Performing displacement of each Building

Subset Target Raster

Grayscale Conversion

Subset Target Raster

Bilateral Filtering

| Rasterized Building ‘i" H Subset Target Raster |

Normalized Cross-Correlation based
Template Matching to Compute
Displacement Offset in X and Y direction

v

Store Computed Offset X and
Offset Y for Building Polygon ‘i’

Polygon with its computed X and Y Offsets

Aligned Vector

Output Data

Displacement Computation

Amenable for Parallelization

|
|
|
|
1
1
1
|
|
|
1
|
|
|
|
|
1
.
!
|
|
1
1
|
|
|
|
1
1
|
|
|
|
.

Fig. 1. Workflow of Automatic Vector Data Alignment with Remote Sensing Imagery as proposed in [1]; Dotted Box depict-
ing Displacement Computation - performed independently for each Clipped Vector and Raster Pair, thus being amenable for

Parallelization at Scale

data in the paradigm of reinforcement learning, maximizing
reward based on the color principle in cartography. However,
this approach is geared towards alignment of vector data with
geo-referenced historical raster maps and not remote sensing
imagery.

In [1], the authors present a novel workflow for alignment
of vector data that utilizes bilateral filtering[6] and Canny
edge detection[7] followed by normalized cross-correlation-
based template matching to compute the displacement offsets
in z and y directions for spatial alignment of buildings. Con-
sidering the efficacy of this approach and given that it seeks to
address the issue of spatial misalignment for geospatial vec-
tor data, it has been selected as the candidate approach for this
paper for studying, analyzing and optimizing its performance
for processing large volumes of remote sensing data. Figure 1
illustrates the workflow for automatic vector data alignment
with remote sensing imagery.

Our contributions in this work are two-fold - (1) We im-
prove the existing automatic vector data alignment workflow
by leveraging parallel computing using Dask. We document
and discuss on the performance improvement of the paral-
lel implementation as compared to its serial counterpart; and
(2) We demonstrate the scalability of the improved workflow
by deploying the parallel implementation on a high-compute
node of the Summit supercomputer and leveraging CPU-level
multi-core parallelism. We further perform preliminary ex-

periments towards documenting the performance impact for
the improved workflow by increasing the number of CPU
cores used, in the high-compute node of Summit.

3. METHODOLOGY

Scaling strategies in computing are typically geared towards
accelerating and optimizing workflows to handle increas-
ingly large volumes of data and ensuring efficient resource
utilization. In context to accelerating workflows, the par-
allel computing paradigm refers to identifying independent
components in a workflow that can be executed in parallel
to minimize the end-to-end execution time. The authors in
[8] discuss the relevance of parallel computing in context to
geospatial big data. In that regard, we identify the displace-
ment computation component of the workflow as depicted by
dotted box in Figure 1, to be independent for each clipped
vector and subset raster pair, which brings forth an excellent
opportunity to leverage parallelization at scale and accelerate
the workflow.

Dask [9] is an open-source Python library for parallel
computing. It enables to scale a Python code from leverag-
ing single CPU multiple core-level parallelism to multi-node
level parallelism in distributed clusters. The Dask Delayed
construct of Dask was used to facilitate parallelization of
the displacement computation component of the workflow.



Specifically, the code was refactored to define a function
calcShiftForFeature with the target raster and a polygon vec-
tor as its parameters. For each pair of polygon vector and
its corresponding clipped raster, this function computed the
displacement x and y values. This function was decorated
with Dask Delayed, explicitly conveying independent com-
putation using a lazy evaluation strategy. Figure 2 depicts
the task graph constructed by Dask for lazy evaluation of the
calcShiftForFeature function.

calcShiftForFeature [11)

Fig. 2. Task Graph constructed using Dask that depicts
lazy evaluation of independent ‘calcShiftForFeature* function
nodes for each of the clipped vector and corresponding raster
pairs

3.1. Experimental Setup
3.1.1. Dataset

This research builds over the previous work by [1], thus a
subset of the Microsoft Buildings Dataset [10] over the city of
Sioux Falls, South Dakota was selected. The clipped vector
data consists of 61, 520 buildings as polygon features with the
shape file occupying a disk space of 26.21M B. The raster
selected for this study is a very high resolution (VHR) multi-
spectral image tile of size 31502 x 25523 pixels with a ground
sampling distance (GSD) of 0.5 meter, occupying a disk space
of 5.99GB.

3.1.2. High Performance Computing Platform

The Summit supercomputer at Oak Ridge National Labora-
tory was chosen as the High Performance Computing plat-
form for performing the scalability experiments as a part of
this study. This research focused on employing CPU-level
parallelism and thus restricted itself to leveraging the CPUs
of the HPC platform. A high-compute node of the Summit
supercomputer consists of 2 IBM POWERY CPUs with 42
cores and 6 Nvidia V100 GPUs.

4. EXPERIMENTAL RESULTS

The performance of the parallel implementation using Dask
was compared with the previously developed serial imple-
mentation deployed on a high-compute node of Summit using

1 CPU core as a baseline as depicted in Table 1. The serial
implementation took 4974.91 seconds to complete vector data
alignment with the raster remote sensing imagery, while the
parallel implementation took 3037.03 seconds; thus achieving
a speedup factor of 1.63.

Table 1. CPU-level Parallel and Serial execution runs of Au-
tomatic Vector Data Alignment deployed on Summit super-
computer

Execution Times (in seconds)

HPC Platform Parallel Serial

3037.03

Speed Up
497491 1.63

Summit

To further demonstrate the scalability of the parallel im-
plementation towards efficient resource utilization, experi-
ments were performed by consistently increasing the number
of CPU cores used in the high-compute node of Summit. Fig-
ure 3 presents the graph documenting the execution times of
the parallel implementation as the number of CPU cores are
consistently increased. It can observed that execution time is
almost linear for the initial runs up-to 16 cores, and then the
execution time improves as the number of cores are increased.
This performance improvement is largely attributed to Dask’s
default thread scheduler that scales the task graph execution
over the available number of CPU cores.
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Fig. 3. Graph depicting performance impact on increasing
the number of CPU cores for parallel execution using Dask
for the Automatic Vector Data Alignment workflow deployed
on one node of the Summit Supercomputer

5. CONCLUSION AND FUTURE WORK

In the background of massive volumes of geospatial data
generated by remote sensing platforms, the need for scal-
able GeoAl workflows has become increasingly evident.
In context to disaster preparedness and response activities
and humanitarian applications where timely response is of



essence, the issue of spatial misalignment between the pre-
viously derived vector data and the timely acquired remote
sensing imagery, is a major concern. Although there have
been research studies focused on automatic geospatial vec-
tor data alignment, there exists a research gap in regards to
addressing the scalability aspect of these workflows.

This research is aimed towards scaling an automatic
vector data alignment workflow. In that regard, this paper
proposed to leverage parallel computing in tandem with de-
ployment over a high-performance computing platform to
accelerate an automatic vector data alignment workflow. In
that regard, this study reported on the preliminary experi-
ments focused on CPU-level multi-core parallelism deployed
on a high-compute node of the Summit supercomputer. Con-
sidering the improved performance of the parallel implemen-
tation as compared to its serial counterpart, leveraging Dask
for scaling geospatial workflows seems a promising path
ahead. This also inspires adaption of similar scaling strate-
gies for maximizing the throughput of pre-processing and
post-processing tasks promoting an integrated GeoAl work-
flow deployable on high-performance computing platforms.

The future work of this research would involve exper-
iments for further improving the parallel implementation
by exploring Dask Futures and Dask Distributed towards
leveraging multi-node multi-GPU level parallelism on high
performance computing platforms. Tasking multiple GPUs
in a node as schedulable resources would further enable ef-
fective resource utilization for the existing GeoAl workflows.
With multi-node multi-GPU cluster to be deployed on high
performance computing platforms, future scalability experi-
ments would also involve measuring weak scaling governed
by Gustafson’s law[11] and strong scaling governed by Am-
dahl’s law[12] in addition to benchmarking other geospatial
vector data based workflows. The accelerated and scalable
GeoAl workflows envisaged would enable and help achieve
the capability to cater for rapid response to time-critical re-
quests and further the research for planet-scale geospatial
analysis.
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