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Abstract—The rapid development of autonomous driving poses
new research challenges to the on-vehicle computing system. In
particular, the execution time of autonomous driving tasks highly
depends on the specific driving environment. For instance, the ex-
ecution time of configurable sensor fusion increases significantly
as the scene becomes complex, which leads to end-to-end deadline
misses from sensing to control and may cause accidents. Thus,
a framework that can effectively utilize the system resources to
guarantee the end-to-end deadlines of autonomous driving tasks
as well as effectively prioritize the responsiveness and throughput
of the control commands is crucial for autonomous driving.
In this paper, we propose HCPerf, a performance-directed hi-

erarchical coordination framework that intelligently coordinates
the autonomous driving tasks with high execution time variation
and complex dependencies according to the driving performance
in real-time. Specifically, HCPerf mainly consists of two coordi-
nators. The internal coordinator intelligently schedules the tasks
according to the driving performance of the vehicle in order to
help them meet the end-to-end deadlines while well prioritizing
the responsiveness and throughput of the control commands. At
the same time, the external coordinator dynamically tunes the
rates of tasks according to the schedulability in order to efficiently
utilize the system resource. We conduct extensive experiments on
both simulation and hardware testbeds with the representative
autonomous driving application. The results show that HCPerf
can effectively improve the driving performance by 7.69%-45.94%
in different driving scenarios.
Index Terms—Autonomous Driving, Real-Time Scheduling.

I. INTRODUCTION

The advent of autonomous driving (AD) is an impor-

tant milestone in the automotive industry. In the meantime,

the development of various autonomous driving applications

(e.g., automated vehicle path planning, automated parking and

obstacle avoidance) makes the autonomous driving system

become increasingly complex. For instance, Apollo Cyber RT

[1], a runtime framework designed specifically for autonomous

driving, contains a large number of tasks with complex depen-

dencies. Moreover, it is expected that the number of embedded

tasks will keep increasing [2]. However, given that the cost of

the computing unit already accounts for 33% of the whole

autonomous driving vehicle [3], the cost-conscious vehicle

manufacturers are unlikely to keep adding extra computing

resources to the vehicle. The increasing number of tasks with

complex dependencies coupled with limited computing re-
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sources are posing new research challenges to the management

of autonomous driving systems.

Limitation of Existing Approaches. Responsiveness and
throughput of the control commands are two critical factors

that directly impact the driving behavior of autonomous ve-

hicles [4]. Responsiveness dictates how quickly the control

commands can be generated in particular driving scenarios

(e.g., emergency cases) in order to avoid potential accidents.

On the other hand, the throughput quantifies the number

of control commands sent to the actuator per second. A

higher throughput allows for smoother control without abrupt

turns and brakes, providing a better passenger experience

[5]. In autonomous vehicles, valid control commands can be

generated only when the end-to-end deadlines of the tasks can

be met. Thus, guaranteeing the tasks meet their end-to-end

deadlines and prioritizing the responsiveness and throughput

of the control commands is critical for autonomous driving.

Traditional embedded systems use static scheduling method-

ologies [6]–[9] to guarantee real-time performance. These

methodologies estimate the worst-case execution times of tasks

offline and then schedule tasks for execution in open-loop

manner. However, the execution times of autonomous driving

tasks have large variances which highly depend on the runtime

inputs [2]. For instance, the execution time of configurable

sensor fusion is decided by the amount of detected objects

and can vary significantly in different driving environments.

This means that the execution time is hard to measure precisely

offline. Though the worst-case execution time of the tasks can

be overestimated and the scheduling can be conducted in a

conservative manner, more computing resources need to be

added to the vehicle which leads to extra cost [10]. Thus, the

static or open-loop scheduling methods are not efficient for

autonomous driving.

On the other side, adaptive real-time scheduling is proposed

to dynamically adjust the task rate in a closed-loop manner

through monitoring the schedulability online in order to react

to the runtime execution time variation [11]–[13]. Though

these approaches can guarantee the end-to-end deadline in tra-

ditional real-time distributed systems, they are still not efficient

for autonomous driving. This is for the reason that monitoring

schedulability (e.g., system utilization) alone cannot effec-

tively tell the right time to generate control commands in order
to prioritize the responsiveness and throughput. For instance,



for the car following application [14], when an emergency

braking of the car in the front is detected, a large amount

of control commands are required in a short period in order

to generate responsive reactions [1]. Consequently, a task-

scheduling framework that can effectively guarantee the end-

to-end deadlines of the tasks while intelligently prioritizing

the responsiveness and throughput of the control commands

without requiring extra computing resources is crucial for

autonomous driving.

Observation and Challenge. Designing such a framework
is not straightforward as autonomous driving systems face a

totally different set of challenges than traditional real-time

systems. First, traditional scheduling schemes based on system

utilization [15] or acceptance ratio [6] are not efficient for

autonomous driving as they cannot effectively differentiate

the driving scenario (e.g., emergency situation) in which a

large amount of control commands are urgently required.

Thus, the driving scenario should be a critical metric to take

into account. In addition, a chain of tasks including sensing,

perception, prediction, planning and control should be sequen-

tially and periodically completed before the corresponding

deadlines in order to successfully generate control commands

in autonomous driving. Different tasks released in various con-

trol periods can coexist in the ready queue. Though allocating

computing resources to the control-related tasks (e.g., speed

control) can immediately generate valid control commands,

at the same time it may cause the tasks that have a tighter

deadline (e.g., sensing or perception) to miss the deadline

which reduces the overall throughput. Thus, how prioritizing

the responsiveness and throughput of the control commands

according to the driving scenario is a critical challenge for

autonomous driving.

In this paper, we propose HCPerf, a driving performance-

directed hierarchical coordination framework for autonomous

vehicles. HCPerf uses the configured high-level performance

metric to differentiate various driving scenarios and helps

the operating system effectively utilize system resources to

guarantee the tasks meet their end-to-end deadlines while

prioritizing the responsiveness and throughput of the control

commands accordingly. HCPerf consists of two coordinators,

the internal coordinator and the external coordinator. Specifi-

cally, the internal coordinator keeps monitoring the configured

driving performance metric of the vehicle (e.g., tracking error

for car following) and adaptively schedules the autonomous

driving tasks. For instance, when the tracking error increases,

HCPerf schedules the tasks to generate sufficient amounts of

control commands as soon as possible in order to generate a

responsive reaction to mitigate the tracking error and avoid

possible accidents. On the other hand, when the tracking error

is small, HCPerf conducts scheduling to improve the overall

throughput for achieving smoother control of the vehicle.

Meanwhile, the external coordinator monitors the schedulabil-

ity of the system and reduces end-to-end deadline misses while

efficiently utilizing system resources. To our best knowledge,

HCPerf is the first work that uses the end-to-end runtime
driving performance to direct the task scheduling and resource

management in order to balance the real-time, responsiveness

and throughput of the system. Specifically, this paper makes

the following three major contributions:

• We identify a new research challenge in real-time

scheduling of the autonomous driving system that is

introduced by the specific characteristics of autonomous

driving control.

• We design HCPerf, a hierarchical coordination framework

that overcomes the limitations of existing solutions by

intelligently considering the driving performance, the

dependencies of different tasks, and the system load.

• We evaluate HCPerf with the representative autonomous

driving application on both simulation and hardware

testbeds. Our results demonstrate that HCPerf effec-

tively improves the driving performance by 7.69%-
45.94% compared with the state-of-the-art and state-of-

the-practice approaches.

II. MOTIVATION

In this section, we use car following as a case study to

motivate the design of HCPerf.

Car following [14] is a representative application in au-

tonomous driving that controls an autonomous vehicle’s be-

havior according to the lead vehicle in the same lane. The

workflow can be mainly divided into the following steps: 1)

the autonomous vehicle detects the speed of the lead vehicle

through sensors such as camera and lidar; 2) it calculates the

speed to be reached through the data fusion and prediction

modules; 3) the planning module transmits the planned trajec-

tory to the control module; 4) the control module generates and

sends a control command to the chassis for the corresponding

operation.

Sensors Detected objects

10m/s
Car A Car B

Fig. 1. A possible scenario to cause execution time increase in the autonomous
driving system.

Figure 1 shows the specific scenario of the motivation

example. In particular, car A is an autonomous vehicle in

autonomous driving mode with the car following feature

enabled to follow a human-driven car B on an urban road.

At first, car A and car B run at a constant speed of 10m/s on

a city road. After 5 seconds of driving, the driver of car B

observes a red light 200m ahead and starts to slow down the

vehicle. At the same time, the trajectory of car B and other

obstacles (e.g., a large number of vehicles waiting for traffic

lights and pedestrians at the intersection) are detected by car

A through the camera and Lidar.
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Fig. 3. An example of the task queue. Tasks from different control cycles
(indicated by the top of each block) can coexist in the ready queue.

In order to examine this scenario, we simulate the basic

functions of an autonomous vehicle including image pre-

processing, traffic light detection and configurable sensor fu-

sion. Figure 2 shows the simulated tasks and their dependency.

The tasks are periodically released and pushed into the ready

queue. Thus, the ready queue may contain tasks that belong

to different release cycles. Figure 3 shows an example of

the ready queue. The scheduling policy in Apollo Cyber RT

[1] is adopted to schedule those tasks, in which each task is

statically assigned a priority value. In particular, the priorities

are designed according to the dependency among the tasks.

The lower the value is, the higher the priority of the task is.

In this case, Control has the highest priority. The task that has

the highest priority in the ready queue will be first executed.

In the simulated scenario, we found that the number of

detected obstacles significantly affects the processing time of

the configurable sensor fusion task. This is because it uses the

Hungarian algorithm [16], with time complexity O(n3) for
data matching. Thus, its execution time is highly dependent

on the number of obstacles (n) detected at runtime.

(a) Deadline Miss Ratio. (b) Speed Tracking Error.

Fig. 4. Motivation experiment results.

Given the execution time variation of configurable sensor

fusion, the corresponding deadline miss ratio for the au-

tonomous vehicle (Car A) is represented in Figure 4(a). We

can see that the deadline miss ratio starts to increase after

5 seconds caused exactly by the increased execution time

of the configurable sensor fusion task. Moreover, due to the

fixed priority-based scheduling policy, the increased execution

time of the configurable sensor fusion task will impact all

the subsequent tasks in the ready queue with lower priorities.

For instance, as shown in Figure 3, the runtime execution time

increase of the configurable sensor fusion task will also impact

object tracking and image pre-processing control cycles in

the following control cycles, which leads to a continuously

high deadline miss ratio. Moreover, if the computation of the

configurable sensor fusion cannot be completed within the

deadline, the fusion results of this control cycle are discarded

and the subsequent tasks cannot receive the results of the

obstacle prediction analysis. Therefore, the vehicle cannot

update its speed in a timely manner at this point resulting

in poor tracking performance. Due to the high deadline miss

ratio, the vehicle speed update becomes sluggish. Figure 4(b)

shows the speed difference between the two vehicles. At

t=23.4s when the speed of car B reduces to 2m/s before

it fully stops, a collision occurs between the two cars (the

distance between the two cars becomes 0). In summary, the car

following application performs poorly because the scheduling

based on fixed priority can not cope with the dynamic behavior

of the tasks, resulting in continuous deadline misses and

possible accidents.
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Control Command

(a) Scheduling output with traditional adaptive scheme.
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(b) Desired scheduling output.

Fig. 5. Scheduling output with traditional adaptive scheduling scheme and
preferred scheduling output for autonomous driving.

On the other hand, the existing adaptive scheduling ap-

proach cannot perform well in autonomous driving scenarios

either. Figure 5 shows an example where ti-j represents task
i’s release in control cycle j. We can see that there are three
tasks (i.e., t1, t2, t3) released in each control cycle. The control
command can be generated only when all the three tasks can

be completed before the corresponding deadlines. We assume

that execution time of each task is 1s and deadlines of the

corresponding tasks are as follows: t1-1 : 1s, t1-2 : 4s, t1-
3 : 7s, t2-1 : 8s, t2-2 : 9s, t2-3 : 10s, t3-1 : 11s, t3-2 : 12s,
t3-3 : 13s. Figure 5(a) shows the scheduling output according
to the adaptive scheduling scheme which keeps monitoring

the schedulability of the system and adaptively schedules the

corresponding tasks in order to guarantee that the tasks can



meet their deadlines. We can see that all the tasks can meet

their deadlines and the control commands are generated at

t=7s, 8s and 9s respectively. However, under certain driving

scenarios (e.g., the front car suddenly brakes), the control

commands are expected to generate as soon as possible to

get a responsive reaction. Thus, the scheduling output as

shown in Figure 5(b) is preferred, which generates the control

commands earlier (i.e., at t=3s, 6s, and 9s). In summary, the

existing adaptive scheduling methodology is also not efficient

to autonomous driving for the reason that it does not take

the driving performance into account and cannot generate

control commands at the right point. Thus, a framework that

can intelligently coordinate autonomous driving tasks with

high execution time variation through well balancing the real-

time, responsiveness and throughput according to the driving

performance is critically required.

III. SYSTEM DESIGN

A. Problem Formulation

The system considered in this paper consists of a set Γ of
n real-time tasks. These tasks are released periodically and
are executed on a multiprocessor platform composed of M
identical processors p1..., pM . The dependencies among the
tasks are modeled as a directed acyclic graph (DAG) as shown

in Figure 2. The nodes in the graph represent the tasks that are

connected by the corresponding edges. Edge ei,j ∈ E connects
task τi and task τj and defines a precedence constraint between
the two tasks. For each task, the set of immediate predecessors

is defined as ipred(τi) = {τj ∈ Γ : ∃ej,i ∈ E}. Task τi
can be released and pushed into the ready queue only after

the completion of all its immediate predecessors ipred(τi) .
In addition, task τi must be completed within Di units of

time after its release. Otherwise, the output of task τi will be
discarded. In addition, the tasks with higher priority will be

executed first in a non-preemptive manner within the ready

queue. A task without incoming edges is referred to as a

source task, whereas a task without outgoing edges is denoted

as a sink task. In an autonomous driving system, the source

tasks usually refer to the sensing-related tasks (e.g., image pre-

processing, point cloud pre-processing) whose task rates can

be configured in an allowable range. For instance, in this work,

the allowable range of GPS (IMU) is [10hz, 100hz]. The sink
tasks usually refer to the control tasks which generate control

commands (e.g., steering throttle, brake) to the vehicle.

In this work, HCPerf is designed to effectively utilize the

system resources to guarantee the end-to-end deadline while

dynamically prioritizing the responsiveness or throughput of

control commands according to the driving performance of

the autonomous driving vehicle. Specifically, the problem can

be expressed as follows: given a performance target R of an

autonomous driving control application, and the allowable rate

range of the source tasks [rmin
i , rmax

i ], dynamically choose
the task rate ri and the priority adjustment coefficient γ (a
coefficient that well balances the deadline and priority of each

task according to the vehicle driving performance) such that

in the kth control period, the tracking error E(k) between the

performance target R(k) and the actual performance of the
autonomous vehicle P (k) is minimized. The problem can be

formulated as Eq.(1a).

min
γ(k),ri(k)

|R(k)− P (k)| (1a)

s.t. γmin ≤ γ(k) ≤ γmax (1b)

rmin
i ≤ ri(k) ≤ rmax

i (1c)

Constraint (1b) ensures that the scheduling policy γ is

within the scheduling space. Constraint (1c) ensures that

rates of all the tasks are within the corresponding allowable

ranges. Moreover, it should be noted that P (k) and R(k)
are application-dependent. For instance, in the car following

example, the performance target R(k) is configured as the
speed of the lead car, while the performance of the autonomous

driving car P (k) is the real speed in each control cycle.

B. System Overview

Figure 6 shows the architecture and workflow of HCPerf

which mainly consists of two coordinators in order to intelli-

gently schedule the autonomous driving tasks.
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Fig. 6. System architecture and workflow of HCPerf.

Internal Coordinator. The internal coordinator mainly con-
tains the following two components: the Performance Directed

Controller and the Dynamic Priority Scheduler. It adaptively

schedules the tasks according to the driving performance of the

vehicle. In each control period, the autonomous vehicle first

obtains information about its surrounding environment through

the sensors (e.g., camera for the car following case). Then the

on-board system calculates the tracking error (e.g., difference

between the speed of the lead car and the following car in

car following). The Performance Directed Controller uses the

tracking error to estimate the nominal priority adjustment co-

efficient u. Taking u as input, the Dynamic Priority Scheduler
determines the actual priority adjustment coefficient γ and
then adjusts the priorities of the ready tasks, which are then

dispatched based on the adjusted priorities. The estimation

process for u intelligently considers task deadlines and vehicle
driving performance in order to achieve the best balance.

Finally, tasks are executed and control commands for the

vehicle are produced. The process then iterates.



External Coordinator. Although the internal coordinator
can intelligently schedule the tasks within the ready queue

according to the driving performance of the vehicle, ineffi-

ciency still exists in the system due to the large execution time

variance of autonomous driving tasks. First, when the system

is overloaded, deadline misses of the end-to-end tasks can

frequently occur which prevents generating control commands

and also wastes system computing resources. Second, when

the system is underloaded, the system is not fully utilized. In

this case, more tasks can be released to improve the throughput

of control inputs to achieve smoother control. The external

coordinator is designed to improve the system efficiency in a

feedback manner. Specifically, a Task Rate Adapter is designed

in the external coordinator to adaptively adjust the rate of

the source tasks in order to 1) efficiently utilize the system

resources to improve the throughput of control commands to

the vehicle and 2) minimize the end-to-end deadline miss ratio.

In the following sections, we discuss the design of the major

components in detail. Table I shows the summary of notation

symbols utilized in the following sections.

TABLE I
SYMBOL DESCRIPTION.

Symbol Description
ci Execution time of task i.
Di Relative deadline of task i.
pi Priority of task i configured by the system (Smaller value means higher priority).
di Scheduling deadline of task i.
Pi Dynamic scheduling priority of task i (Smaller value means higher priority).
np Number of processors.
Tp Remaining processing time of task on processor p.
u Nominal priority adjustment coefficient.
Q The task set in ready queue.
γ Actual priority adjustment coefficient.
E Vehicle performance tracking error.
ri Rate (i.e., frequency) of task i.
m(k) Deadline miss ratio of the system in k-th period.
F Model-free control offset term.
α Constant control gain of model-free control.
K Feedback gain of Model-Free Control.
Kp Control gain of Task Rate Adapter.
r The vector of task rate.

IV. PERFORMANCE DIRECTED CONTROLLER

In this section, we present the Performance Directed Con-

troller, which is responsible for reducing the tracking error

E(t) by regulating the nominal priority adjust parameter u(t)
which is used to determine the priority adjustment coefficient

γ (see Section V for details), which in turn determines the

priority of tasks in the ready queue. Thus scheduling is
directed by realtime performance of the autonomous vehicle.
Since the explicit mathematical relationship between E(t)
and u(t) is unknown, we design the Performance Directed
Controller based on the Model-Free Control (MFC) in [17] to

fulfill this goal.

MFC is a data-driven and learning-free control algorithm.

It approximates the complex and probably time-varying rela-

tionship between the car tracking error E(t) and the nominal
priority adjustment parameter u(t) as a first-order linear sys-
tem, as:

Ė(t) = F (t) + αu(t). (2)

where Ė(t) represents the derivative of the car tracking error
E(t). F (t) is an offset term condensing both the unmodeled

system dynamics and the external disturbance. F (t) is con-
tinuously updated online to guarantee the accuracy of Eq.(2)

within a short period of time. Note that this idea is similar

to approximating a complex function by a piecewise constant

function. α < 0 is the constant control gain.
With Eq.(2), we can formulate a classical control problem

as: Design the command u(t), such that the system output
E(t) can accurately follow its reference value E(t)∗ = 0.
Assume that the offset term F (t) in Eq.(2) has been

estimated as F̂ (t), then we can formulate the command u(t)
as:

u(t) =
−F̂ (t) +KE(t)

α
(3)

with K < 0 as the feedback gain.
Substituting Eq.(3) back into Eq.(2) yields:

Ė(t) = KE(t) + F (t)− F̂ (t),K < 0. (4)

With F̂ (t) close to F (t), the tracking error E(t) will stay
inside a bounded ball around the origin [18].

By re-arranging Eq.(2), we derive F̂ (t) in Eq.(3), as:

F̂ (t) = ˆ̇E(t)− αu (t− Ts) , (5)

with u (t− Ts) as the nominal priority adjustment parameter
at the last sampling step and Ts as the control sampling period

of MFC. Consequently, the estimation of the offset term F̂ (t)
boils down to the problem of estimating Ė (t).
Directly differentiating the measured car tracking error E(t)

will amplify the measurement noise. Instead, we adopt the

Algebraic Differentiation Estimation (ADE) [19] to estimate

Ė(t).
ADE approximates Ė(t), the first-order derivative of E(t),

as its time-weighted integral [20]:

ˆ̇E(t) =
6

T 3
ADE

∫ TADE

0

(TADE − 2τ)E(t− τ)dτ. (6)

In Eq.(6), TADE is the width of a sliding window, inside

which the measured value of E(τ), τ ∈ [t− TADE , t] is
recorded. Note that the integral operator in Eq.(6) serves as

a low-pass filter to attenuate the high frequency measurement

noise.

Substituting Eq.(6) into Eq.(5) yields F̂ (t). Substituting
Eq.(5) into Eq.(3) finally leads to u(t).

Remark: Substituting Eq.(5) back into Eq.(3) yields:

u(t)− u(t− Ts) = −
ˆ̇E(t)

α
+
KE(t)

α
(7)

Dividing both sides of Eq.(7) with Ts leads to:

u̇(t) = −
ˆ̇E(t)

αTs
+
KE(t)

αTs
(8)

As will be shown in the experimental results in Section VII-B,

|Ė(t)| � |E(t)|. WithK = −1, the sign of u̇(t) depends prin-
cipally on the sign of E(t). Therefore, the nominal scheduling
control parameter u(t) serves as two purposes:



• When the car tracking error E(t) becomes large, u̇(t)
and consequently u(t), will increase (α < 0), so as to
prioritize the vehicle control task and endeavor to reduce

E(t) in order to achieve responsive control.
• Instead, if E(t) remains reasonably small, u(t) will re-
main stable. In this case, the task scheduler will prioritize

other tasks (e.g., tasks with the earliest deadlines) of the

autonomous driving system and guarantees the overall

task throughput.

The nominal priority adjustment parameter u(t) serves as an
input to the Dynamic Priority Scheduler, which produces the

actual priority adjustment parameter γ by upper and lower-
bounding u(t). The details can be found in Section V.

V. DYNAMIC PRIORITY SCHEDULER

The Dynamic Priority Scheduler intelligently schedules the

tasks through jointly balancing the priority, the deadline and

runtime performance of the autonomous vehicle. Figure 7

shows the workflow of the Dynamic Priority Scheduler.
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Fig. 7. Workflow of the Dynamic Priority Scheduler.

In an autonomous driving system, different tasks have

different execution times. Thus, the relative deadline Di is not

an effective metric to determine whether a task is more urgent

to run in order to meet the deadline di. For instance, a task
with loose relative deadline and longer execution time can be

more urgent to be scheduled than a task with tight relative

deadline but shorter execution time. Thus, we define the

metric, scheduling deadline, which represents the maximum

delay between the tasks’ release time and the start of its

execution in order to complete before the deadline as follows:

di = Di − ci (9)

where Di denotes the relative deadline of task τi, and ci
represents the execution time of τi observed by the system.
In order to jointly balance the impact of scheduling dead-

line, priority and performance of the vehicle, we define the

dynamic scheduling priority Pi of a task τi as follows:

Pi = γ ∗ pi + di (10)

where the priority adjustment coefficient γ ∈ R0+ is utilized

to balance the weight between the scheduling deadline di
and the initial priority pi. Specifically, when the value of
γ is small, the scheduling approximates the deadline-based
algorithm which guarantees the completion of tasks with

earliest deadlines [21]. On the other hand, when the value

of γ is large, the scheduling approximates the priority-based
algorithm which ensures the completion of important tasks.

The Dynamic Priority Scheduler maintains a list for recording

the scheduling priority Pi of each task. Whenever a new task

is released and pushed into the ready queue, it is added to the

list as well. Hence the coefficient γ determines the magnitude
of the Pi value for each task.

Deriving γ from u(t). We determine the value γ from
the nominal priority adjustment parameter u(t) in order to
intelligently consider the impacted driving performance (e.g.,

tracking error). Specifically, to guarantee that all the tasks in

the ready queue Q can be completed before the correspond-

ing deadlines, we first determine the allowable range of γ,
[0, γmax] that satisfies the following constraints:

⎧⎪⎪⎨
⎪⎪⎩
c1 +

∑
Tp

np
+

∑
Pi<P1

ci

np
< D1, i ∈ Q

c2 +
∑

Tp

np
+

∑
Pi<P2

ci

np
< D2, i ∈ Q

. . .

(11)

where the first term in each equation (e.g., c1) represents the
execution time of the task observed by the system, i.e. the

execution time from the last run of the task. The second term,∑
Tp

np
, denotes the parallel processing time required to com-

plete the existing tasks currently running on the processors.

The third term (e.g.,

∑
Pi<P1

ci

n ) denotes the time required

to run those tasks that have higher dynamic priority in the

processor pool.

We can find that there are two possible outcomes in the

search for γmax:

1) No γmax exists in the allowable range that can meet the

constraints in Eq.(11). This means that no scheduling solution

exists that can guarantee that all the tasks meet their deadlines.

This is due to the system is overloaded and cannot handle

the tasks. This situation can be detected and adjusted with

the external coordinator which reduces the task rates of the

corresponding tasks. In this case we set γ to zero.

2) A feasible γmax can be obtained. In this case, the nominal

priority adjustment parameter u(t) from the Performance

Directed Controller is used to determine γ. Note that u(t) from
Eq.(3) does not consider the bounds for γ which are derived
from the need to guarantee the deadline for all waiting tasks

at the current moment. Therefore, we need to pick the best

matching value for u within the range [0, γmax]. The scheduler
maps u to γ in the range [0, γmax] as follows.

γ =

⎧⎨
⎩

0, u(t) < 0
u(t), 0 ≤ u(t) ≤ γmax

γmax, u(t) > γmax

(12)

Finally, the scheduler uses the computed γ to sort the task
queue. At the time when a task can be dispatched, all the

tasks in the ready queue will have their dynamic priorities

computed according to Eq.(10) and the one with the highest

dynamic scheduling priority is dispatched.



VI. TASK RATE ADAPTER

The Task Rate Adapter is designed as a feedback controller.

It takes the deadline miss ratio of the tasks as input and

regulates the rates of the source tasks in order to effectively uti-

lize the system resources. Specifically, the Task Rate Adapter

adaptively tunes the system load in order to 1) fully utilize

the system resources to improve the throughput of the control

commands and 2) minimize the deadline miss in order to avoid

wasting computing resources.
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Fig. 8. Workflow of Task Rate Adapter.

Figure 8 shows the architecture and workflow of the Task

Rate Adapter. It is worth noting that the Task Rate Adapter

jointly considers all the processors and adjusts the rates of all

the source tasks at the same time due to the following reasons.

1) Unlike the conventional vehicle system where each task

is bounded to a specific processor, our system does not bound

each task to a particular processor a priori. Instead, according
to the variation of task execution time and task scheduling

algorithms, the same tasks released in different periods can be

executed on different processors in order to fully utilize the

system resource. Thus, in this work, we consider the deadline

misses on all the processors collectively.

2) End-to-end tasks existing in an autonomous driving

system should be considered comprehensively. HCPerf is

designed to improve the performance of the whole system by

jointly considering the rates of all the existing tasks at the

same time. For instance, a task can be triggered or executed

only when all its precursor tasks are completed. Thus, the least

waiting time can be achieved if all its precursor tasks can be

completed at the same time by jointly tuning the rates of them

in a comprehensive manner.

An autonomous driving system has a stringent real-time

requirement. Thus, a proportional controller, which incurs low

runtime overhead, is designed for online task rate adaptation.

Let R = {r1, r2, ..., rN} be the set of adjustable task rates
in the autonomous driving system. As shown in Figure 8, the

workflow of the Task Rate Adapter is as follows:

(1) Given a target deadline miss ratio mt and the measured

deadline miss ratio of the system m(k) ∈ R, where k denotes
the control period index, the deadline miss ratio error is

computed as e(k) = mt − m(k). If m(k) = 0, e(k) is set
to a pre-defined small positive value.

(2) Based on e(k) and the offline profiled data, the Task Rate
Adapter computes a control input rout ∈ RN to optimize the

deadline miss ratio target,

rout = Kpe(k) + r(k), (13)

where r(k) represents the current system task rates, rout
indicates the adapted task generation rates, and Kp ≥ 0 is the
control gain. At system initialization, Kp is set from offline

profiled data. If e(k) < 0, the system is considered overloaded
and the task rate adapter reduces the task generation rates to

alleviate the system load. On the other hand, if e(k) > 0,
the task rate adapter increases the task generation rates to

enhance the system-level task execution throughput. The Task

Rate Adapter will gradually decrease the value ofKp to reduce

the influence of e(k) as the system becomes more and more

stable. When Kp is reduced to 0, the task rates become stable.

However, when the Task Rate Adapter observes an unusual

change in the system’s task processing time variations, Kp

will be reset to the value from offline profiled data.

(3) The autonomous driving system applies the configura-

tion rout in order to conduct the end-to-end tasks.
In summary, the Task Rate Adapter can quickly adjust the

system load to effectively solve the problem of overload or

underload which cannot be effectively solved with the internal

coordinator. In this way, the system can meet the maximum

throughput without deadline miss, and the system resource

can be effectively utilized. At the same time, the Task Rate

Adapter can help to guarantee the schedulability of the system

through maintaining the utilization of the processors below the

specified utilization bound according to [21].

Stability Analysis: Here we analyze the stability of our
external coordinator when the estimated deadline miss ratio is

different from the real deadline miss ratio at runtime. g ≥ 0
represents the proportion of the task rate to the system load

to the change of deadline miss ratio. The deadline miss ratio

m(k + 1) can be expressed as:

m(k + 1) = m(k) + g ∗ (r(k + 1)− r(k)) (14)

When k → +∞ which means the system has been running

for a sufficiently long time, the system task rate r(k + 1) =
r(k) due to the feedback regulation of the Task Rate Adapter.
Thus Eq.(14) becomes m(k + 1) = m(k), so the curve of
deadline miss ratio will be smooth. This analysis shows that

our external coordinator can effectively handle the task rate

and minimize the deadline misses ratio to a stable situation.

It is worth noting that, HCPerf mainly focuses on the

coordination of the tasks that utilize CPU. Although the tasks

such as object detection use GPU at the same time during the

detection process, they also use CPU for data fetching. For the

GPU, HCPerf dynamically monitors and records its execution

time and tries to guarantee the end-to-end deadline.

VII. EVALUATION

A. Experimental Setup

1) Simulation Testbed: We build the simulator based on
Apollo [1]. Figure 9 shows the corresponding architecture

which consists of: 1) an Auto-Driving Simulator, 2) a Vehicle



Control Simulator and 3) the Scheduling Framework. Specif-

ically, the Auto-Driving Simulator is implemented as a dis-

tributed real-time system to simulate the execution of the tasks

with different dependencies, the corresponding communica-

tion and resource allocation. The Vehicle Control Simulator

simulates the trajectories of an autonomous vehicle. When it

receives control commands from the Auto-Driving Simulator,

it directs the vehicle to perform corresponding actions such

as acceleration, deceleration, and steering. The Scheduling

Framework mainly encapsulates different scheduling schemes.

Auto-Driving 

Simulator

Vehicle Control

Simulator

Scheduling

Framework

Control

Signal

Environment

Information 

HCPerf

Interface 

Car Following

Lane Keeping

Fig. 9. Simulation Testbed. Fig. 10. Hardware Testbed.

2) Hardware Testbed: Our hardware testbed consists of
1:10 scaled cars as shown in Figure 10. Each scaled car

is built on a realistic one-tenth scaled car chassis with a

four-wheel-drive brushless drivetrain for fast acceleration and

steering. Moreover, the car is equipped with a variety of

sensors, including a 2D scanning LiDAR as the primary

navigation sensor, an inertial measurement unit (IMU), and a

camera. The sensing and actuation components are controlled

using an onboard embedded computer (Core-3399J) [22]. We

incorporate the scheduling and control schemes into the system

to interact with the onboard system for evaluation.
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3) Task Graph: Figure 11 shows the task graph adopted
in the evaluation which includes 23 tasks from sensing to

control. For each task, we also present its priority-value pair

in brackets. The smaller the priority number is, the higher its

priority and the higher its value. Moreover, we measure the

execution time of the tasks in different environments. Figure

12 shows the results for four of them as an example. Based on

the measurement, we determine the range of execution time

for each task. All the measurements are obtained by running

Apollo [1] on the Nvidia Jetson TX2 [23] platform which is

widely adopted in autonomous driving research [24].

4) Baselines:
• HPF [25]: HPF (High Priority First) assigns a priority

to each task offline. The task with the highest priority is

scheduled to be executed in a non-preemptive way.

• EDF [21]: EDF (Earliest Deadline First) assigns priority

to tasks based on their absolute deadlines. The task with

the earliest deadline gets the highest priority.

• EDF-VD [8]: In EDF-VD, the deadlines of all high-

criticality tasks are shortened with a scaling factor and

this modified deadline is called the virtual deadline. At

runtime, all high-criticality tasks are executed according

to their virtual deadlines and all low-criticality tasks are

executed with their actual deadlines using EDF.

• Apollo [1]: Apollo is the state-of-the-practice. It binds

different tasks to different processors and then uses the

statically assigned priority to select tasks for execution.

B. Evaluation with Different Applications

1) Evaluation with car following:
We first evaluate the effectiveness of HCPerf with car fol-

lowing. The performance metric is configured as the tracking

error between the following car and the lead car [14]. The

following driving case is utilized: the speed of the lead vehicle

follows a sine function with a period of 7s and the speed is

bounded in the range [10m/s, 20m/s]. In addition, at t=10s,
we increase the execution time of the configurable sensor

fusion task from 20ms to 40ms to emulate a load increase

as the result of encountering a complex scene. The execution

time stays at the high level until t=80s when it is restored to

the normal value. The task execution time and corresponding

deadlines are configured according to the discussion in Section

VII-A and the work presented in [24], [26].

(a) Speed. (b) Speed Error.

(c) Distance Tracking Error. (d) Deadline Miss Ratio.

Fig. 13. System performance of the scenario in which the speed of the lead
car follows a sine function.

Figure 13 represents the evaluation result. In particular,

Figure 13(a) shows the speed of the lead vehicle and that

of the following vehicle with different schemes in a 0.5s

time window. Specifically, a small time window is selected to



highlight the difference for easy visualization. We can see the

speed of the following car with HCPerf is the closest to that

of the lead car. Figure 13(b) shows the corresponding speed

error (speed of the lead car vr minus that of the following
car v). Table II summarizes the RMS of the speed tracking
errors. HCPerf has the best performance here with an RMS

of 0.55m/s while the other schemes have much higher speed
errors due to the following reasons. When the tracking error

begins to increase, HCPerf gives higher priority to the control

related tasks to generate control commands as soon as possible

and make the time interval between two control commands

as short as possible. In this case, the speed of the following

vehicle can be frequently updated to achieve better driving

performance. However, the fixed priority-based scheduling

scheme adopted in Apollo cannot make the update in time

without taking the tracking error or the execution time variance

into account. HPF allocates more computing resources to the

pre-defined important tasks. Thus, the other tasks usually miss

their deadlines and the control commands cannot be effectively

generated in this case which leads to low performance. For

EDF and EDF-VD, they first schedule the tasks that have

the earliest deadlines. Thus, the control task cannot be timely

scheduled. In this case, the control commands cannot be timely

generated which leads to a delay in speed updates.

TABLE II
ROOT MEAN SQUARE VALUES OF SPEED TRACKING ERROR.

HPF EDF EDF-VD Apollo HCPerf
RMS (m/s) 1.02 0.99 0.78 1.28 0.55

Figure 13(c) represents the distance error of the following

car which indicates the distance between the two cars with

different schemes. Since the speed of the lead car oscillates

in this experiment, we see that the distance errors for all

the schemes also oscillate. What is important here is the

magnitude of the oscillation. HCPerf shows the least amount

of fluctuation. The RMS values of distance tracking error are

summarized in Table III.

TABLE III
ROOT MEAN SQUARE VALUES OF DISTANCE TRACKING ERROR.

HPF EDF EDF-VD Apollo HCPerf
RMS (m) 12.24 12.22 12.07 12.31 11.27

Figure 13(d) shows the deadline miss ratio during this

process. At first, all the schemes can meet the task deadlines

due to the very low system load. HCPerf has a deadline miss

at t=0s due to the need for the Task Rate Adapter to reset

when the system has an important change or when the system

is just being initialized. The controller needs a brief period of

adjustment to find the optimal task rate to determine the best

load for the system. At t=10s, due to the increase in the task

execution time, the baseline schemes start to generate deadline

misses, and this situation lasts until t=80s when the low system

load is restored. In contrast, HCPerf detects the increase in

system load and dynamically adjusts the task rates accordingly.

As a result, it only experiences a brief period where deadline

misses occur and then quickly brings the deadline miss ratio

to zero and keeps it at that level until t=80s when the load sees

another big change. At t=80s when the system load decreases,

the deadline miss ratio of all the schemes decreases. HCPerf,

similar to what happened at t=10s, quickly brings the deadline

miss ratio down to 0 after a brief adjustment.

2) Evaluation with Lane Keeping:
We evaluate the effectiveness of HCPerf with the other rep-

resentative application, lane keeping. Specifically, lane keeping

enables the autonomous driving vehicle to follow the desired

lane by adjusting the front steering angle [27]. Performance

metric is configured as the lateral offset position of the vehicle

from the centerline of the planned path in this case. For the

setup, we configure the longitudinal speed of the vehicle to be

fixed at 5m/s and the objective of the controller is to minimize
the lateral offset of the vehicle from the center of the lane.
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Fig. 14. Simulation experiment result of loop driving.

Figure 14(a) shows the loop driving scenario in which the

autonomous car drives along an oval-shaped closed-loop fol-

lowing the clockwise direction. The performance is measured

by the deviation of the car from the center of the lane. The

smaller the deviation is, the better the performance. Figure

14(b) shows the result of lane-keeping errors (i.e. lateral

offsets). When the car is driving in a straight line, the lane-

keeping offset errors are 0. However, during the four turns in

the loop, we can see that the difference in the performance

among different schemes is prominent. HCPerf has much

better performance due to the following reasons. Specifically,

when the vehicle is driving in a straight line without any

steering operation, the detected tracking error is 0. In this

case, HCPerf schedules the tasks in order to maximize the

throughput and tries to guarantee that all the tasks in the

ready queue can meet their deadlines. However, when the

vehicle starts to turn and the lane offset (tracking error) is

observed, HCPerf dynamically adjusts the priority in order

to generate the control commands in a short time. Then, the

system generates the steering operation quickly to reduce the

error of lane-keeping offset. Unlike HCPerf, Apollo conducts

scheduling only based on each task’s fixed priority, leading

to the worst lane-keeping performance. Other baselines are

unaware of the vehicle lane offset, so they keep the original

scheduling method, resulting in large errors. This is because

the control commands cannot be generated fast enough even

if they ensure the tasks can meet their deadlines. The RMS

values of lateral offset errors are summarized in Table IV.



TABLE IV
ROOT MEAN SQUARE VALUES OF LATERAL OFFSET ERROR.

HPF EDF EDF-VD Apollo HCPerf
RMS (m) 0.093 0.075 0.051 0.159 0.027

3) Hardware Evaluation:
In this section, we evaluate the effectiveness of HCPerf with

the car following application using the hardware testbed. Two

scaled cars are used in the experiment: the lead car is set to

follow a fixed driving routine, while the following car is set to

car following mode. Each test runs for 20s. In the experiment,

the lead car first performs an acceleration for 5s, and then

maintains a constant speed for 10s, followed by a deceleration

for 5s. The cars run in a straight line without turning.

(a) Experimental Speed Record. (b) Speed Error.

(c) Distance Tracking Error. (d) Deadline Miss Ratio.

Fig. 15. Hardware experiment with car following.

Figure 15 shows the evaluation results. Figure 15(a) shows

the overall speed record of the vehicles in the car following

process. In general, the autonomous driving vehicle follows

the reference vehicle through three stages of acceleration,

smooth running and deceleration. Figure 15(b) shows the

speed error of the following car from 5s to 10s. We can see

that HCPerf not only has the smallest speed error, but also has

the smallest magnitude of fluctuation. Table V summarizes the

speed tracking error of different schemes.

TABLE V
ROOT MEAN SQUARE VALUES OF SPEED TRACKING ERROR.

HPF EDF EDF-VD Apollo HCPerf
RMS (m/s) 0.015 0.013 0.012 0.021 0.009

Figure 15(c) shows the distance tracking error, which rep-

resents the variation of the distance between the following car

and the lead car in the 20s period. Unlike the simulation, the

speed record of the lead car is affected by the presence of

noise. Thus, if the following car cannot responsively generate

the control commands, it will lead to more serious tracking

errors. Thus, HCPerf can significantly decrease the distance

tracking error by 46.2% compared with Apollo and 29.2% to

the baselines on average. In particular, the speed error appears

below 0 due to the speed noise and the lag in the throttle

control of the scaled car can be observed. The RMS values of

distance tracking errors are summarized in Table VI.

TABLE VI
ROOT MEAN SQUARE VALUES OF DISTANCE TRACKING ERROR.

HPF EDF EDF-VD Apollo HCPerf
RMS (m) 0.084 0.083 0.072 0.117 0.063

Figure 15(d) shows the deadline miss ratio in the hardware

experiment. We record the result once per second. After

the initial adjustment procedure, HCPerf is able to keep the

deadline miss ratio at 0 for the rest of the experiment, while

other schedulers have deadline misses throughout the whole

car following process in the range of 2-6%.

C. Prioritize Responsiveness and Throughput

In this section, we use another real-world example to show

how HCPerf effectively prioritizes the responsiveness and

throughput of the control commands in different scenarios

according to the driving performance. Specifically, we use the

response time of control commands to quantify the responsive-

ness of the system which is defined as the duration between

the release and execution of the control task. Moreover,

as the throughput directly impacts the passenger perceived

experience, we adopt the passenger perceived comfort [5] to

dictate the system throughput. The higher the throughput is,

the more abrupt acceleration and deceleration can be avoided.

Thus, better passenger perceived comfort can be achieved.

0s 10s 12s 100s

10m
5m

20m/s

10m/s

20s

Lead car

Following 
car

Low load

High load

9s

8m
10m

Speed

Deceleration brake 
Stable speed

Adjust

Stable speed

Traffic Jam

Sp
ee

d

20m/s20m/s

20m/s

Smooth Traffic

Fig. 16. The overall driving process of the car following application.

Figure 16 shows the overall driving process of the car

following application. At the beginning, the two cars drive at

a stable speed with 20m/s. When T=10s, the lead car starts to
decelerate facing a traffic jam. As the number of vehicles in

the surrounding grows, the completion time of corresponding

tasks increases which leads to deadline misses and the control

commands cannot be generated in time. At the same time, the

distance between the two vehicles starts to decrease and the

tracking error increases accordingly. When the tracking error

is detected, HCPerf starts to improve the responsiveness of

the control commands in order to avoid potential accidents

and mitigate the tracking error.

Figure 17 represents the tracking error, the response time

of the control command and the user-perceived comfort.



As shown in Figure 17(a), the tracking error dramatically

increases to 5m when t=10s. According to the tracking error,

HCPerf allocates computing resources to the control task in

order to generate as many as possible control commands

immediately in order to achieve responsive control to avoid

a potential collision. Thus, the tracking error is effectively

mitigated to 2m when t=12s. Figure 17(b) shows that the

response time of the control task is reduced and the passenger

discomfort increases in this process. This is the reason that the

computing resources are allocated to the control tasks and the

other tasks with tighter deadlines may miss their deadlines.

Thus, the overall system throughput decreases during this

period. After t=20s, when the two vehicles pass by the road

sections with traffic jam, the number of surrounding vehicles

decreases and the system load decreases accordingly. Thus,

the tracking error is further mitigated. Then, HCPerf allocates

more computing resources to the tasks with tighter deadlines

to improve the system throughput. After T=20s, the passenger

discomfort is effectively reduced to provide a good experience.

(a) Tracking Error. (b) RT vs. Passenger Discomfort.

Fig. 17. Tracking error, response time and passenger discomfort.

D. Ablation Study

In this section, we conduct an ablation analysis by compar-

ing the full version of HCPerf with a version that does not

include the External Coordinator. The experiment setup has

referenced the car following simulation setup.

(a) Speed Error. (b) Deadline Miss Ratio.

Fig. 18. System performance with and without the External Coordinator.

From figure 18(a), we can see that the full version has

smaller fluctuations in speed tracking, which means better

driving performance. Figure 18(b) shows that, due to the

absence of the External Coordinator, the system produces a

low deadline miss ratio throughout the simulation that cannot

be reduced to 0 as the full version does, which leads to a

failure to guarantee the task deadlines. In terms of the final

distance tracking error, the full version is 0.5m better than

the Internal Coordinator version. In summary, the Internal

Coordinator of HCPerf can optimize the driving performance,

while the External Coordinator can regulate the deadline miss

ratio, and the two parts cooperate to obtain better performance.

E. Overhead Analysis

We use the hardware platform to measure the computation

overhead of HCPerf. The analysis is the average overhead for

multiple scenarios. The methods utilized in the paper have

linear complexity, so there are no huge fluctuations in compu-

tational overhead. The overhead consists of the computation

overhead for Internal Coordinator and External Coordinator.

The measured average execution time of HCPerf is less than

5ms per period of 1s, which is moderate for implementation.

VIII. RELATED WORK

Resource Management in Autonomous Driving Platform.
Autonomous driving has gained significant interest across

industry and academia, leading to numerous studies aimed

at optimizing accuracy, efficiency, and real-time performance.

Bateni et al. [28] presented a temporally predictable energy

optimization framework for running DNN workloads in GPU-

enabled automotive systems. Bateni et al. [29] developed

a model to predict the system overhead of each memory

management method based on application characteristics, and

by performing per-task memory management policy switching

and kernel overlap, the scheduler can relieve system memory

pressure and reduce multitasking response time. However,

these approaches mainly focused on the trade-off between

real-time and accuracy in perception, while HCPerf considers

end-to-end real-time performance across sensing, perception,

prediction, planning, and control.

Real-time Scheduling. Numerous studies propose scheduling
and analysis methodologies to ensure timing correctness for

embedded systems. Guo et al. [6] proposed a cache-aware

partitioned scheduling that covers inter-task cache interference.

Choi et al. [7] proposed a class-level fixed priority preemptive

scheduler and its schedulability analysis framework with weak

hard real-time constraints. Liu et al. [8] studied real-time

scheduling of hybrid critical systems, where low-critical tasks

can still guarantee some services in high-critical mode and

reduce the execution budget. Bateni et al. [9] proposed a

time-predictable runtime system capable of guaranteeing DNN

workload deadlines by efficient approximation. Existing task

scheduling and analysis mechanisms cannot be directly applied

to autonomous driving, as they cannot ensure end-to-end dead-

lines due to significant runtime execution time variation. More-

over, current adaptive approaches cannot effectively determine

the optimal point for timely control command generation. In

contrast, HCPerf intelligently prioritizes responsiveness and

throughput by taking into account runtime driving performance

and user comfort.

IX. CONCLUSION

In this paper, we propose HCPerf, a performance-directed

hierarchical coordination framework for autonomous driving.

It intelligently coordinates the autonomous driving tasks with



high execution time variation and complex dependencies ac-

cording to the driving performance. Specifically, the internal

coordinator intelligently schedules the tasks according to the

driving performance. The external coordinator dynamically

adjusts the rates of tasks according to the schedulability of the

system. The experiment results show that HCPerf effectively

improves the driving performance by 7.69%-45.94%.
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