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Abstract—The rapid development of autonomous driving poses
new research challenges to the on-vehicle computing system. In
particular, the execution time of autonomous driving tasks highly
depends on the specific driving environment. For instance, the ex-
ecution time of configurable sensor fusion increases significantly
as the scene becomes complex, which leads to end-to-end deadline
misses from sensing to control and may cause accidents. Thus,
a framework that can effectively utilize the system resources to
guarantee the end-to-end deadlines of autonomous driving tasks
as well as effectively prioritize the responsiveness and throughput
of the control commands is crucial for autonomous driving.

In this paper, we propose HCPerf, a performance-directed hi-
erarchical coordination framework that intelligently coordinates
the autonomous driving tasks with high execution time variation
and complex dependencies according to the driving performance
in real-time. Specifically, HCPerf mainly consists of two coordi-
nators. The internal coordinator intelligently schedules the tasks
according to the driving performance of the vehicle in order to
help them meet the end-to-end deadlines while well prioritizing
the responsiveness and throughput of the control commands. At
the same time, the external coordinator dynamically tunes the
rates of tasks according to the schedulability in order to efficiently
utilize the system resource. We conduct extensive experiments on
both simulation and hardware testbeds with the representative
autonomous driving application. The results show that HCPerf
can effectively improve the driving performance by 7.69%-45.94%
in different driving scenarios.

Index Terms—Autonomous Driving, Real-Time Scheduling.

1. INTRODUCTION

The advent of autonomous driving (AD) is an impor-
tant milestone in the automotive industry. In the meantime,
the development of various autonomous driving applications
(e.g., automated vehicle path planning, automated parking and
obstacle avoidance) makes the autonomous driving system
become increasingly complex. For instance, Apollo Cyber RT
[1], a runtime framework designed specifically for autonomous
driving, contains a large number of tasks with complex depen-
dencies. Moreover, it is expected that the number of embedded
tasks will keep increasing [2]. However, given that the cost of
the computing unit already accounts for 33% of the whole
autonomous driving vehicle [3], the cost-conscious vehicle
manufacturers are unlikely to keep adding extra computing
resources to the vehicle. The increasing number of tasks with
complex dependencies coupled with limited computing re-
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sources are posing new research challenges to the management
of autonomous driving systems.

Limitation of Existing Approaches. Responsiveness and
throughput of the control commands are two critical factors
that directly impact the driving behavior of autonomous ve-
hicles [4]. Responsiveness dictates how quickly the control
commands can be generated in particular driving scenarios
(e.g., emergency cases) in order to avoid potential accidents.
On the other hand, the throughput quantifies the number
of control commands sent to the actuator per second. A
higher throughput allows for smoother control without abrupt
turns and brakes, providing a better passenger experience
[5]. In autonomous vehicles, valid control commands can be
generated only when the end-to-end deadlines of the tasks can
be met. Thus, guaranteeing the tasks meet their end-to-end
deadlines and prioritizing the responsiveness and throughput
of the control commands is critical for autonomous driving.
Traditional embedded systems use static scheduling method-
ologies [6]-[9] to guarantee real-time performance. These
methodologies estimate the worst-case execution times of tasks
offline and then schedule tasks for execution in open-loop
manner. However, the execution times of autonomous driving
tasks have large variances which highly depend on the runtime
inputs [2]. For instance, the execution time of configurable
sensor fusion is decided by the amount of detected objects
and can vary significantly in different driving environments.
This means that the execution time is hard to measure precisely
offline. Though the worst-case execution time of the tasks can
be overestimated and the scheduling can be conducted in a
conservative manner, more computing resources need to be
added to the vehicle which leads to extra cost [10]. Thus, the
static or open-loop scheduling methods are not efficient for
autonomous driving.

On the other side, adaptive real-time scheduling is proposed
to dynamically adjust the task rate in a closed-loop manner
through monitoring the schedulability online in order to react
to the runtime execution time variation [11]-[13]. Though
these approaches can guarantee the end-to-end deadline in tra-
ditional real-time distributed systems, they are still not efficient
for autonomous driving. This is for the reason that monitoring
schedulability (e.g., system utilization) alone cannot effec-
tively tell the right time to generate control commands in order
to prioritize the responsiveness and throughput. For instance,



for the car following application [14], when an emergency
braking of the car in the front is detected, a large amount
of control commands are required in a short period in order
to generate responsive reactions [1]. Consequently, a task-
scheduling framework that can effectively guarantee the end-
to-end deadlines of the tasks while intelligently prioritizing
the responsiveness and throughput of the control commands
without requiring extra computing resources is crucial for
autonomous driving.

Observation and Challenge. Designing such a framework
is not straightforward as autonomous driving systems face a
totally different set of challenges than traditional real-time
systems. First, traditional scheduling schemes based on system
utilization [15] or acceptance ratio [6] are not efficient for
autonomous driving as they cannot effectively differentiate
the driving scenario (e.g., emergency situation) in which a
large amount of control commands are urgently required.
Thus, the driving scenario should be a critical metric to take
into account. In addition, a chain of tasks including sensing,
perception, prediction, planning and control should be sequen-
tially and periodically completed before the corresponding
deadlines in order to successfully generate control commands
in autonomous driving. Different tasks released in various con-
trol periods can coexist in the ready queue. Though allocating
computing resources to the control-related tasks (e.g., speed
control) can immediately generate valid control commands,
at the same time it may cause the tasks that have a tighter
deadline (e.g., sensing or perception) to miss the deadline
which reduces the overall throughput. Thus, how prioritizing
the responsiveness and throughput of the control commands
according to the driving scenario is a critical challenge for
autonomous driving.

In this paper, we propose HCPerf, a driving performance-
directed hierarchical coordination framework for autonomous
vehicles. HCPerf uses the configured high-level performance
metric to differentiate various driving scenarios and helps
the operating system effectively utilize system resources to
guarantee the tasks meet their end-to-end deadlines while
prioritizing the responsiveness and throughput of the control
commands accordingly. HCPerf consists of two coordinators,
the internal coordinator and the external coordinator. Specifi-
cally, the internal coordinator keeps monitoring the configured
driving performance metric of the vehicle (e.g., tracking error
for car following) and adaptively schedules the autonomous
driving tasks. For instance, when the tracking error increases,
HCPerf schedules the tasks to generate sufficient amounts of
control commands as soon as possible in order to generate a
responsive reaction to mitigate the tracking error and avoid
possible accidents. On the other hand, when the tracking error
is small, HCPerf conducts scheduling to improve the overall
throughput for achieving smoother control of the vehicle.
Meanwhile, the external coordinator monitors the schedulabil-
ity of the system and reduces end-to-end deadline misses while
efficiently utilizing system resources. To our best knowledge,
HCPerf is the first work that uses the end-to-end runtime
driving performance to direct the task scheduling and resource

management in order to balance the real-time, responsiveness
and throughput of the system. Specifically, this paper makes
the following three major contributions:

o We identify a new research challenge in real-time
scheduling of the autonomous driving system that is
introduced by the specific characteristics of autonomous
driving control.

o We design HCPerf, a hierarchical coordination framework
that overcomes the limitations of existing solutions by
intelligently considering the driving performance, the
dependencies of different tasks, and the system load.

« We evaluate HCPerf with the representative autonomous
driving application on both simulation and hardware
testbeds. Our results demonstrate that HCPerf effec-
tively improves the driving performance by 7.69%-
45.94% compared with the state-of-the-art and state-of-
the-practice approaches.

II. MOTIVATION

In this section, we use car following as a case study to
motivate the design of HCPerf.

Car following [14] is a representative application in au-
tonomous driving that controls an autonomous vehicle’s be-
havior according to the lead vehicle in the same lane. The
workflow can be mainly divided into the following steps: 1)
the autonomous vehicle detects the speed of the lead vehicle
through sensors such as camera and lidar; 2) it calculates the
speed to be reached through the data fusion and prediction
modules; 3) the planning module transmits the planned trajec-
tory to the control module; 4) the control module generates and
sends a control command to the chassis for the corresponding
operation.
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Fig. 1. A possible scenario to cause execution time increase in the autonomous
driving system.

Figure 1 shows the specific scenario of the motivation
example. In particular, car A is an autonomous vehicle in
autonomous driving mode with the car following feature
enabled to follow a human-driven car B on an urban road.
At first, car A and car B run at a constant speed of 10m/s on
a city road. After 5 seconds of driving, the driver of car B
observes a red light 200m ahead and starts to slow down the
vehicle. At the same time, the trajectory of car B and other
obstacles (e.g., a large number of vehicles waiting for traffic
lights and pedestrians at the intersection) are detected by car
A through the camera and Lidar.
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Fig. 2. Examples of autonomous driving tasks and their dependencies. The
number in brackets represents the corresponding priority.
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Fig. 3. An example of the task queue. Tasks from different control cycles
(indicated by the top of each block) can coexist in the ready queue.

In order to examine this scenario, we simulate the basic
functions of an autonomous vehicle including image pre-
processing, traffic light detection and configurable sensor fu-
sion. Figure 2 shows the simulated tasks and their dependency.
The tasks are periodically released and pushed into the ready
queue. Thus, the ready queue may contain tasks that belong
to different release cycles. Figure 3 shows an example of
the ready queue. The scheduling policy in Apollo Cyber RT
[1] is adopted to schedule those tasks, in which each task is
statically assigned a priority value. In particular, the priorities
are designed according to the dependency among the tasks.
The lower the value is, the higher the priority of the task is.
In this case, Control has the highest priority. The task that has
the highest priority in the ready queue will be first executed.

In the simulated scenario, we found that the number of
detected obstacles significantly affects the processing time of
the configurable sensor fusion task. This is because it uses the
Hungarian algorithm [16], with time complexity O(n?) for
data matching. Thus, its execution time is highly dependent
on the number of obstacles (n) detected at runtime.
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Fig. 4. Motivation experiment results.

Given the execution time variation of configurable sensor
fusion, the corresponding deadline miss ratio for the au-

tonomous vehicle (Car A) is represented in Figure 4(a). We
can see that the deadline miss ratio starts to increase after
5 seconds caused exactly by the increased execution time
of the configurable sensor fusion task. Moreover, due to the
fixed priority-based scheduling policy, the increased execution
time of the configurable sensor fusion task will impact all
the subsequent tasks in the ready queue with lower priorities.
For instance, as shown in Figure 3, the runtime execution time
increase of the configurable sensor fusion task will also impact
object tracking and image pre-processing control cycles in
the following control cycles, which leads to a continuously
high deadline miss ratio. Moreover, if the computation of the
configurable sensor fusion cannot be completed within the
deadline, the fusion results of this control cycle are discarded
and the subsequent tasks cannot receive the results of the
obstacle prediction analysis. Therefore, the vehicle cannot
update its speed in a timely manner at this point resulting
in poor tracking performance. Due to the high deadline miss
ratio, the vehicle speed update becomes sluggish. Figure 4(b)
shows the speed difference between the two vehicles. At
t=23.4s when the speed of car B reduces to 2m/s before
it fully stops, a collision occurs between the two cars (the
distance between the two cars becomes 0). In summary, the car
following application performs poorly because the scheduling
based on fixed priority can not cope with the dynamic behavior
of the tasks, resulting in continuous deadline misses and
possible accidents.
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Fig. 5. Scheduling output with traditional adaptive scheduling scheme and
preferred scheduling output for autonomous driving.

On the other hand, the existing adaptive scheduling ap-
proach cannot perform well in autonomous driving scenarios
either. Figure 5 shows an example where ¢;-j represents task
i’s release in control cycle j. We can see that there are three
tasks (i.e., t1, to, t3) released in each control cycle. The control
command can be generated only when all the three tasks can
be completed before the corresponding deadlines. We assume
that execution time of each task is 1s and deadlines of the
corresponding tasks are as follows: ¢1-1 : 1s, t1-2 : 9} ¢4-
3:7s, to-1: 8s, t9-2 : 9s, t5-3 : 10s, t3-1 : 11s, t3-2 : 12
t3-3 : 13s. Figure 5(a) shows the scheduling output according
to the adaptive scheduling scheme which keeps monitoring
the schedulability of the system and adaptively schedules the
corresponding tasks in order to guarantee that the tasks can



meet their deadlines. We can see that all the tasks can meet
their deadlines and the control commands are generated at
t=7s, 8s and 9s respectively. However, under certain driving
scenarios (e.g., the front car suddenly brakes), the control
commands are expected to generate as soon as possible to
get a responsive reaction. Thus, the scheduling output as
shown in Figure 5(b) is preferred, which generates the control
commands earlier (i.e., at t=3s, 6s, and 9s). In summary, the
existing adaptive scheduling methodology is also not efficient
to autonomous driving for the reason that it does not take
the driving performance into account and cannot generate
control commands at the right point. Thus, a framework that
can intelligently coordinate autonomous driving tasks with
high execution time variation through well balancing the real-
time, responsiveness and throughput according to the driving
performance is critically required.

III. SYSTEM DESIGN
A. Problem Formulation

The system considered in this paper consists of a set I' of
n real-time tasks. These tasks are released periodically and
are executed on a multiprocessor platform composed of M
identical processors p;...,pps. The dependencies among the
tasks are modeled as a directed acyclic graph (DAG) as shown
in Figure 2. The nodes in the graph represent the tasks that are
connected by the corresponding edges. Edge ¢; ; € I connects
task 7; and task 7; and defines a precedence constraint between
the two tasks. For each task, the set of immediate predecessors
is defined as ipred(r;) = {r; € T' : Je;;, € E}. Task 7;
can be released and pushed into the ready queue only after
the completion of all its immediate predecessors ipred(r;)
In addition, task 7; must be completed within D; units of
time after its release. Otherwise, the output of task 7; will be
discarded. In addition, the tasks with higher priority will be
executed first in a non-preemptive manner within the ready
queue. A task without incoming edges is referred to as a
source task, whereas a task without outgoing edges is denoted
as a sink task. In an autonomous driving system, the source
tasks usually refer to the sensing-related tasks (e.g., image pre-
processing, point cloud pre-processing) whose task rates can
be configured in an allowable range. For instance, in this work,
the allowable range of GPS (IMU) is [10hz, 100hz]. The sink
tasks usually refer to the control tasks which generate control
commands (e.g., steering throttle, brake) to the vehicle.

In this work, HCPerf is designed to effectively utilize the
system resources to guarantee the end-to-end deadline while
dynamically prioritizing the responsiveness or throughput of
control commands according to the driving performance of
the autonomous driving vehicle. Specifically, the problem can
be expressed as follows: given a performance target R of an
autonomous driving control application, and the allowable rate
range of the source tasks [r7", r™a%] dynamically choose
the task rate r; and the priority adjustment coefficient ~ (a
coefficient that well balances the deadline and priority of each
task according to the vehicle driving performance) such that
in the k' control period, the tracking error (k) between the

performance target R(k) and the actual performance of the
autonomous vehicle P(k) is minimized. The problem can be
formulated as Eq.(1a).

min |R(k) — P(k la
min | [R(E) = P(F) (1)
st ™ <A (k) < AT (1b)
N < pi(k) < pmae (1c)

Constraint (1b) ensures that the scheduling policy v is
within the scheduling space. Constraint (lc) ensures that
rates of all the tasks are within the corresponding allowable
ranges. Moreover, it should be noted that P(k) and R(k)
are application-dependent. For instance, in the car following
example, the performance target R(k) is configured as the
speed of the lead car, while the performance of the autonomous
driving car P(k) is the real speed in each control cycle.

B. System Overview

Figure 6 shows the architecture and workflow of HCPerf
which mainly consists of two coordinators in order to intelli-
gently schedule the autonomous driving tasks.
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Fig. 6. System architecture and workflow of HCPerf.

Internal Coordinator. The internal coordinator mainly con-
tains the following two components: the Performance Directed
Controller and the Dynamic Priority Scheduler. It adaptively
schedules the tasks according to the driving performance of the
vehicle. In each control period, the autonomous vehicle first
obtains information about its surrounding environment through
the sensors (e.g., camera for the car following case). Then the
on-board system calculates the tracking error (e.g., difference
between the speed of the lead car and the following car in
car following). The Performance Directed Controller uses the
tracking error to estimate the nominal priority adjustment co-
efficient u. Taking v as input, the Dynamic Priority Scheduler
determines the actual priority adjustment coefficient v and
then adjusts the priorities of the ready tasks, which are then
dispatched based on the adjusted priorities. The estimation
process for w intelligently considers task deadlines and vehicle
driving performance in order to achieve the best balance.
Finally, tasks are executed and control commands for the
vehicle are produced. The process then iterates.



External Coordinator. Although the internal coordinator
can intelligently schedule the tasks within the ready queue
according to the driving performance of the vehicle, ineffi-
ciency still exists in the system due to the large execution time
variance of autonomous driving tasks. First, when the system
is overloaded, deadline misses of the end-to-end tasks can
frequently occur which prevents generating control commands
and also wastes system computing resources. Second, when
the system is underloaded, the system is not fully utilized. In
this case, more tasks can be released to improve the throughput
of control inputs to achieve smoother control. The external
coordinator is designed to improve the system efficiency in a
feedback manner. Specifically, a Task Rate Adapter is designed
in the external coordinator to adaptively adjust the rate of
the source tasks in order to 1) efficiently utilize the system
resources to improve the throughput of control commands to
the vehicle and 2) minimize the end-to-end deadline miss ratio.

In the following sections, we discuss the design of the major
components in detail. Table I shows the summary of notation
symbols utilized in the following sections.

TABLE I
SYMBOL DESCRIPTION.
Symbol | Description
ci Execution time of task .
D; Relative deadline of task 7.
pi Priority of task i configured by the system (Smaller value means higher priority).
d; Scheduling deadline of task 4.
P; Dynamic scheduling priority of task ¢ (Smaller value means higher priority).
np Number of processors.
Tp Remaining processing time of task on processor p.
u Nominal priority adjustment coefficient.
Q The task set in ready queue.
o' Actual priority adjustment coefficient.
E Vehicle performance tracking error.
T Rate (i.e., frequency) of task 4.
m(k) Deadline miss ratio of the system in k-th period.
F Model-free control offset term.
@ Constant control gain of model-free control.
K Feedback gain of Model-Free Control.
Ky Control gain of Task Rate Adapter.
r The vector of task rate.

IV. PERFORMANCE DIRECTED CONTROLLER

In this section, we present the Performance Directed Con-
troller, which is responsible for reducing the tracking error
E(t) by regulating the nominal priority adjust parameter w(t)
which is used to determine the priority adjustment coefficient
7 (see Section V for details), which in turn determines the
priority of tasks in the ready queue. Thus scheduling is
directed by realtime performance of the autonomous vehicle.
Since the explicit mathematical relationship between FE(t)
and wu(t) is unknown, we design the Performance Directed
Controller based on the Model-Free Control (MFC) in [17] to
fulfill this goal.

MEC is a data-driven and learning-free control algorithm.
It approximates the complex and probably time-varying rela-
tionship between the car tracking error E(t) and the nominal
priority adjustment parameter u(t) as a first-order linear sys-
tem, as:

E(t) = F(t) + au(t). 2)

where E(t) represents the derivative of the car tracking error
E(t). F(t) is an offset term condensing both the unmodeled
system dynamics and the external disturbance. F'(t) is con-
tinuously updated online to guarantee the accuracy of Eq.(2)
within a short period of time. Note that this idea is similar
to approximating a complex function by a piecewise constant
function. @ < 0 is the constant control gain.

With Eq.(2), we can formulate a classical control problem
as: Design the command u(t), such that the system output
E(t) can accurately follow its reference value E(t)* = 0.

Assume that the offset term F'(¢) in Eq.(2) has been
estimated as F(t), then we can formulate the command w(t)
as:

u(t) = ~FO KB )

«
with K < 0 as the feedback gain.
Substituting Eq.(3) back into Eq.(2) yields:
E(t)= KE(t)+ F(t) — F(t), K < 0. 4)
With F(t) close to F(t), the tracking error E(t) will stay
inside a bounded ball around the origin [18].
By re-arranging Eq.(2), we derive F'(t) in Eq.(3), as:

F(t)=E{t)—au(t—T,), 5)

with u (t — Ts) as the nominal priority adjustment parameter
at the last sampling step and 7 as the control sampling period
of MEC. Consequently, the estimation of the offset term F'(t)
boils down to the problem of estimating E (t).

Directly differentiating the measured car tracking error F(t)
will amplify the measurement noise. Instead, we adopt the
Algebraic Differentiation Estimation (ADE) [19] to estimate
E(t).

ADE approximates F(t), the first-order derivative of E(t),
as its time-weighted integral [20]:

B(t) = -0

Tape

T3 / (Tapg —27)E(t —7)dr.  (6)

ADE Jo

In Eq.(6), T'apE is the width of a sliding window, inside
which the measured value of E(7),7 € [t—Tapg,t] is
recorded. Note that the integral operator in Eq.(6) serves as
a low-pass filter to attenuate the high frequency measurement
noise.

Substituting Eq.(6) into Eq.(5) yields F (¢). Substituting
Eq.(5) into Eq.(3) finally leads to u(t).

Remark: Substituting Eq.(5) back into Eq.(3) yields:

E(t) | KE(t)

uw(t) —u(t —Ts) = — +— (N

«
Dividing both sides of Eq.(7) with T leads to:

. E(t) KE(t)

at) = - o, + oT. ®)
As will be shown in the experimental results in Section VII-B,
|E(t)| < |E(t)]. With K = —1, the sign of @(t) depends prin-
cipally on the sign of E(t). Therefore, the nominal scheduling
control parameter u(t) serves as two purposes:



o When the car tracking error E(¢) becomes large, u(t)
and consequently wu(t), will increase (o < 0), so as to
prioritize the vehicle control task and endeavor to reduce
E(t) in order to achieve responsive control.

o Instead, if F(t) remains reasonably small, u(t) will re-
main stable. In this case, the task scheduler will prioritize
other tasks (e.g., tasks with the earliest deadlines) of the
autonomous driving system and guarantees the overall
task throughput.

The nominal priority adjustment parameter w(t) serves as an
input to the Dynamic Priority Scheduler, which produces the
actual priority adjustment parameter v by upper and lower-
bounding u(t). The details can be found in Section V.

V. DYNAMIC PRIORITY SCHEDULER

The Dynamic Priority Scheduler intelligently schedules the
tasks through jointly balancing the priority, the deadline and
runtime performance of the autonomous vehicle. Figure 7
shows the workflow of the Dynamic Priority Scheduler.
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Fig. 7. Workflow of the Dynamic Priority Scheduler.

In an autonomous driving system, different tasks have
different execution times. Thus, the relative deadline D; is not
an effective metric to determine whether a task is more urgent
to run in order to meet the deadline d;. For instance, a task
with loose relative deadline and longer execution time can be
more urgent to be scheduled than a task with tight relative
deadline but shorter execution time. Thus, we define the
metric, scheduling deadline, which represents the maximum
delay between the tasks’ release time and the start of its
execution in order to complete before the deadline as follows:

di=D;—¢ )

where D; denotes the relative deadline of task 7;, and ¢;
represents the execution time of 7; observed by the system.
In order to jointly balance the impact of scheduling dead-
line, priority and performance of the vehicle, we define the
dynamic scheduling priority P; of a task 7; as follows:

Pi=ryxp; +d; (10)

where the priority adjustment coefficient v € R%* is utilized
to balance the weight between the scheduling deadline d;
and the initial priority p;. Specifically, when the value of
~ is small, the scheduling approximates the deadline-based
algorithm which guarantees the completion of tasks with
earliest deadlines [21]. On the other hand, when the value

of v is large, the scheduling approximates the priority-based
algorithm which ensures the completion of important tasks.
The Dynamic Priority Scheduler maintains a list for recording
the scheduling priority P; of each task. Whenever a new task
is released and pushed into the ready queue, it is added to the
list as well. Hence the coefficient v determines the magnitude
of the P; value for each task.

Deriving v from wu(t). We determine the value v from
the nominal priority adjustment parameter w(t) in order to
intelligently consider the impacted driving performance (e.g.,
tracking error). Specifically, to guarantee that all the tasks in
the ready queue ) can be completed before the correspond-
ing deadlines, we first determine the allowable range of 7,
[0, Ymaz] that satisfies the following constraints:

c1+ %ZB‘*‘ ;Pi;:l “ <Dy, i€Q
CQ+ZTZ})+E’+W<D2, 1€Q (In

where the first term in each equation (e.g., c1) represents the
execution time of the task observed by the system, i.e. the
execution time from the last run of the task. The second term,
ZTPT", denotes the parallel processing time required to com-
plete the existing tasks currently running on the processors.
The third term (e.g., =~ ) denotes the time required
to run those tasks that have higher dynamic priority in the
processor pool.

We can find that there are two possible outcomes in the
search for Vmaz:

1) NO 7mqq. exists in the allowable range that can meet the
constraints in Eq.(11). This means that no scheduling solution
exists that can guarantee that all the tasks meet their deadlines.
This is due to the system is overloaded and cannot handle
the tasks. This situation can be detected and adjusted with
the external coordinator which reduces the task rates of the
corresponding tasks. In this case we set 7 to zero.

2) A feasible 7,4, can be obtained. In this case, the nominal
priority adjustment parameter wu(f) from the Performance
Directed Controller is used to determine ~y. Note that u(¢) from
Eq.(3) does not consider the bounds for v which are derived
from the need to guarantee the deadline for all waiting tasks
at the current moment. Therefore, we need to pick the best
matching value for u within the range [0, Yq.]- The scheduler
maps u to «y in the range [0, Ymaz| as follows.

0, u(t) <0
Y= U(t), 0 S U(t) S Ymax (12)
TYmaz > U(t) > Ymaz

Finally, the scheduler uses the computed ~ to sort the task
queue. At the time when a task can be dispatched, all the
tasks in the ready queue will have their dynamic priorities
computed according to Eq.(10) and the one with the highest
dynamic scheduling priority is dispatched.



VI. TASK RATE ADAPTER

The Task Rate Adapter is designed as a feedback controller.
It takes the deadline miss ratio of the tasks as input and
regulates the rates of the source tasks in order to effectively uti-
lize the system resources. Specifically, the Task Rate Adapter
adaptively tunes the system load in order to 1) fully utilize
the system resources to improve the throughput of the control
commands and 2) minimize the deadline miss in order to avoid
wasting computing resources.
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Fig. 8. Workflow of Task Rate Adapter.

Figure 8 shows the architecture and workflow of the Task
Rate Adapter. It is worth noting that the Task Rate Adapter
jointly considers all the processors and adjusts the rates of all
the source tasks at the same time due to the following reasons.

1) Unlike the conventional vehicle system where each task
is bounded to a specific processor, our system does not bound
each task to a particular processor a priori. Instead, according
to the variation of task execution time and task scheduling
algorithms, the same tasks released in different periods can be
executed on different processors in order to fully utilize the
system resource. Thus, in this work, we consider the deadline
misses on all the processors collectively.

2) End-to-end tasks existing in an autonomous driving
system should be considered comprehensively. HCPerf is
designed to improve the performance of the whole system by
jointly considering the rates of all the existing tasks at the
same time. For instance, a task can be triggered or executed
only when all its precursor tasks are completed. Thus, the least
waiting time can be achieved if all its precursor tasks can be
completed at the same time by jointly tuning the rates of them
in a comprehensive manner.

An autonomous driving system has a stringent real-time
requirement. Thus, a proportional controller, which incurs low
runtime overhead, is designed for online task rate adaptation.

Let R = {r1,72,...,rn} be the set of adjustable task rates
in the autonomous driving system. As shown in Figure 8, the
workflow of the Task Rate Adapter is as follows:

(1) Given a target deadline miss ratio m; and the measured
deadline miss ratio of the system m(k) € R, where k denotes
the control period index, the deadline miss ratio error is
computed as e(k) = m; — m(k). If m(k) = 0, e(k) is set
to a pre-defined small positive value.

(2) Based on e(k) and the offline profiled data, the Task Rate
Adapter computes a control input roue € RY to optimize the

deadline miss ratio target,
rout = Kpe(k) +r(k), (13)

where r(k) represents the current system task rates, Tout
indicates the adapted task generation rates, and K, > 0 is the
control gain. At system initialization, K, is set from offline
profiled data. If e(k) < 0, the system is considered overloaded
and the task rate adapter reduces the task generation rates to
alleviate the system load. On the other hand, if e(k) > 0,
the task rate adapter increases the task generation rates to
enhance the system-level task execution throughput. The Task
Rate Adapter will gradually decrease the value of K, to reduce
the influence of e(k) as the system becomes more and more
stable. When K, is reduced to 0, the task rates become stable.
However, when the Task Rate Adapter observes an unusual
change in the system’s task processing time variations, K,
will be reset to the value from offline profiled data.

(3) The autonomous driving system applies the configura-
tion reut in order to conduct the end-to-end tasks.

In summary, the Task Rate Adapter can quickly adjust the
system load to effectively solve the problem of overload or
underload which cannot be effectively solved with the internal
coordinator. In this way, the system can meet the maximum
throughput without deadline miss, and the system resource
can be effectively utilized. At the same time, the Task Rate
Adapter can help to guarantee the schedulability of the system
through maintaining the utilization of the processors below the
specified utilization bound according to [21].

Stability Analysis: Here we analyze the stability of our
external coordinator when the estimated deadline miss ratio is
different from the real deadline miss ratio at runtime. g > 0
represents the proportion of the task rate to the system load
to the change of deadline miss ratio. The deadline miss ratio
m(k + 1) can be expressed as:

m(k+1)=m(k) +gx* (r(k+1) —r(k)) (14)

When k& — 400 which means the system has been running
for a sufficiently long time, the system task rate r(k + 1) =
(k) due to the feedback regulation of the Task Rate Adapter.
Thus Eq.(14) becomes m(k + 1) = m(k), so the curve of
deadline miss ratio will be smooth. This analysis shows that
our external coordinator can effectively handle the task rate
and minimize the deadline misses ratio to a stable situation.

It is worth noting that, HCPerf mainly focuses on the
coordination of the tasks that utilize CPU. Although the tasks
such as object detection use GPU at the same time during the
detection process, they also use CPU for data fetching. For the
GPU, HCPerf dynamically monitors and records its execution
time and tries to guarantee the end-to-end deadline.

VII. EVALUATION

A. Experimental Setup

1) Simulation Testbed: We build the simulator based on
Apollo [1]. Figure 9 shows the corresponding architecture
which consists of: 1) an Auto-Driving Simulator, 2) a Vehicle



Control Simulator and 3) the Scheduling Framework. Specif-
ically, the Auto-Driving Simulator is implemented as a dis-
tributed real-time system to simulate the execution of the tasks
with different dependencies, the corresponding communica-
tion and resource allocation. The Vehicle Control Simulator
simulates the trajectories of an autonomous vehicle. When it
receives control commands from the Auto-Driving Simulator,
it directs the vehicle to perform corresponding actions such
as acceleration, deceleration, and steering. The Scheduling
Framework mainly encapsulates different scheduling schemes.
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Fig. 9. Simulation Testbed.

Fig. 10. Hardware Testbed.

2) Hardware Testbed: Our hardware testbed consists of
1:10 scaled cars as shown in Figure 10. Each scaled car
is built on a realistic one-tenth scaled car chassis with a
four-wheel-drive brushless drivetrain for fast acceleration and
steering. Moreover, the car is equipped with a variety of
sensors, including a 2D scanning LiDAR as the primary
navigation sensor, an inertial measurement unit (IMU), and a
camera. The sensing and actuation components are controlled
using an onboard embedded computer (Core-3399J) [22]. We
incorporate the scheduling and control schemes into the system
to interact with the onboard system for evaluation.
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3) Task Graph: Figure 11 shows the task graph adopted
in the evaluation which includes 23 tasks from sensing to
control. For each task, we also present its priority-value pair
in brackets. The smaller the priority number is, the higher its
priority and the higher its value. Moreover, we measure the
execution time of the tasks in different environments. Figure
12 shows the results for four of them as an example. Based on
the measurement, we determine the range of execution time
for each task. All the measurements are obtained by running
Apollo [1] on the Nvidia Jetson TX2 [23] platform which is
widely adopted in autonomous driving research [24].

4) Baselines:

o HPF [25]: HPF (High Priority First) assigns a priority
to each task offline. The task with the highest priority is
scheduled to be executed in a non-preemptive way.

o EDF [21]: EDF (Earliest Deadline First) assigns priority
to tasks based on their absolute deadlines. The task with
the earliest deadline gets the highest priority.

o« EDF-VD [8]: In EDF-VD, the deadlines of all high-
criticality tasks are shortened with a scaling factor and
this modified deadline is called the virtual deadline. At
runtime, all high-criticality tasks are executed according
to their virtual deadlines and all low-criticality tasks are
executed with their actual deadlines using EDF.

o Apollo [1]: Apollo is the state-of-the-practice. It binds
different tasks to different processors and then uses the
statically assigned priority to select tasks for execution.

B. Evaluation with Different Applications

1) Evaluation with car following:

We first evaluate the effectiveness of HCPerf with car fol-
lowing. The performance metric is configured as the tracking
error between the following car and the lead car [14]. The
following driving case is utilized: the speed of the lead vehicle
follows a sine function with a period of 7s and the speed is
bounded in the range [10m/s,20m/s]. In addition, at t=10s,
we increase the execution time of the configurable sensor
fusion task from 20ms to 40ms to emulate a load increase
as the result of encountering a complex scene. The execution
time stays at the high level until t=80s when it is restored to
the normal value. The task execution time and corresponding
deadlines are configured according to the discussion in Section
VII-A and the work presented in [24], [26].
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Fig. 13. System performance of the scenario in which the speed of the lead
car follows a sine function.

Figure 13 represents the evaluation result. In particular,
Figure 13(a) shows the speed of the lead vehicle and that
of the following vehicle with different schemes in a 0.5s
time window. Specifically, a small time window is selected to



highlight the difference for easy visualization. We can see the
speed of the following car with HCPerf is the closest to that
of the lead car. Figure 13(b) shows the corresponding speed
error (speed of the lead car v, minus that of the following
car v). Table II summarizes the RMS of the speed tracking
errors. HCPerf has the best performance here with an RMS
of 0.55m /s while the other schemes have much higher speed
errors due to the following reasons. When the tracking error
begins to increase, HCPerf gives higher priority to the control
related tasks to generate control commands as soon as possible
and make the time interval between two control commands
as short as possible. In this case, the speed of the following
vehicle can be frequently updated to achieve better driving
performance. However, the fixed priority-based scheduling
scheme adopted in Apollo cannot make the update in time
without taking the tracking error or the execution time variance
into account. HPF allocates more computing resources to the
pre-defined important tasks. Thus, the other tasks usually miss
their deadlines and the control commands cannot be effectively
generated in this case which leads to low performance. For
EDF and EDF-VD, they first schedule the tasks that have
the earliest deadlines. Thus, the control task cannot be timely
scheduled. In this case, the control commands cannot be timely
generated which leads to a delay in speed updates.

TABLE I
ROOT MEAN SQUARE VALUES OF SPEED TRACKING ERROR.
HPF EDF  EDF-VD  Apollo  HCPerf
RMS (m/s) 1.02  0.99 0.78 1.28 0.55

Figure 13(c) represents the distance error of the following
car which indicates the distance between the two cars with
different schemes. Since the speed of the lead car oscillates
in this experiment, we see that the distance errors for all
the schemes also oscillate. What is important here is the
magnitude of the oscillation. HCPerf shows the least amount
of fluctuation. The RMS values of distance tracking error are
summarized in Table III.

TABLE III
ROOT MEAN SQUARE VALUES OF DISTANCE TRACKING ERROR.
HPF EDF EDF-VD  Apollo  HCPerf
RMS (m) 12.24 12.22 12.07 12.31 11.27

Figure 13(d) shows the deadline miss ratio during this
process. At first, all the schemes can meet the task deadlines
due to the very low system load. HCPerf has a deadline miss
at t=0s due to the need for the Task Rate Adapter to reset
when the system has an important change or when the system
is just being initialized. The controller needs a brief period of
adjustment to find the optimal task rate to determine the best
load for the system. At t=10s, due to the increase in the task
execution time, the baseline schemes start to generate deadline
misses, and this situation lasts until t=80s when the low system
load is restored. In contrast, HCPerf detects the increase in
system load and dynamically adjusts the task rates accordingly.

As a result, it only experiences a brief period where deadline
misses occur and then quickly brings the deadline miss ratio
to zero and keeps it at that level until t=80s when the load sees
another big change. At t=80s when the system load decreases,
the deadline miss ratio of all the schemes decreases. HCPerf,
similar to what happened at t=10s, quickly brings the deadline
miss ratio down to O after a brief adjustment.

2) Evaluation with Lane Keeping:

We evaluate the effectiveness of HCPerf with the other rep-
resentative application, lane keeping. Specifically, lane keeping
enables the autonomous driving vehicle to follow the desired
lane by adjusting the front steering angle [27]. Performance
metric is configured as the lateral offset position of the vehicle
from the centerline of the planned path in this case. For the
setup, we configure the longitudinal speed of the vehicle to be
fixed at 5m/s and the objective of the controller is to minimize
the lateral offset of the vehicle from the center of the lane.
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Fig. 14. Simulation experiment result of loop driving.

Figure 14(a) shows the loop driving scenario in which the
autonomous car drives along an oval-shaped closed-loop fol-
lowing the clockwise direction. The performance is measured
by the deviation of the car from the center of the lane. The
smaller the deviation is, the better the performance. Figure
14(b) shows the result of lane-keeping errors (i.e. lateral
offsets). When the car is driving in a straight line, the lane-
keeping offset errors are 0. However, during the four turns in
the loop, we can see that the difference in the performance
among different schemes is prominent. HCPerf has much
better performance due to the following reasons. Specifically,
when the vehicle is driving in a straight line without any
steering operation, the detected tracking error is 0. In this
case, HCPerf schedules the tasks in order to maximize the
throughput and tries to guarantee that all the tasks in the
ready queue can meet their deadlines. However, when the
vehicle starts to turn and the lane offset (tracking error) is
observed, HCPerf dynamically adjusts the priority in order
to generate the control commands in a short time. Then, the
system generates the steering operation quickly to reduce the
error of lane-keeping offset. Unlike HCPerf, Apollo conducts
scheduling only based on each task’s fixed priority, leading
to the worst lane-keeping performance. Other baselines are
unaware of the vehicle lane offset, so they keep the original
scheduling method, resulting in large errors. This is because
the control commands cannot be generated fast enough even
if they ensure the tasks can meet their deadlines. The RMS
values of lateral offset errors are summarized in Table IV.



TABLE IV
ROOT MEAN SQUARE VALUES OF LATERAL OFFSET ERROR.

HPF
0.093

EDF
0.075

EDF-VD
0.051

Apollo
0.159

HCPerf
0.027

RMS (m)

3) Hardware Evaluation:

In this section, we evaluate the effectiveness of HCPerf with
the car following application using the hardware testbed. Two
scaled cars are used in the experiment: the lead car is set to
follow a fixed driving routine, while the following car is set to
car following mode. Each test runs for 20s. In the experiment,
the lead car first performs an acceleration for 5s, and then
maintains a constant speed for 10s, followed by a deceleration
for 5s. The cars run in a straight line without turning.
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Fig. 15. Hardware experiment with car following.

Figure 15 shows the evaluation results. Figure 15(a) shows
the overall speed record of the vehicles in the car following
process. In general, the autonomous driving vehicle follows
the reference vehicle through three stages of acceleration,
smooth running and deceleration. Figure 15(b) shows the
speed error of the following car from 5s to 10s. We can see
that HCPerf not only has the smallest speed error, but also has
the smallest magnitude of fluctuation. Table V summarizes the
speed tracking error of different schemes.

TABLE V
ROOT MEAN SQUARE VALUES OF SPEED TRACKING ERROR.

HPF
0.015

EDF
0.013

EDF-VD
0.012

Apollo
0.021

HCPerf
0.009

RMS (m/s)

Figure 15(c) shows the distance tracking error, which rep-
resents the variation of the distance between the following car
and the lead car in the 20s period. Unlike the simulation, the
speed record of the lead car is affected by the presence of
noise. Thus, if the following car cannot responsively generate
the control commands, it will lead to more serious tracking
errors. Thus, HCPerf can significantly decrease the distance

tracking error by 46.2% compared with Apollo and 29.2% to
the baselines on average. In particular, the speed error appears
below 0 due to the speed noise and the lag in the throttle
control of the scaled car can be observed. The RMS values of
distance tracking errors are summarized in Table VI.

TABLE VI
ROOT MEAN SQUARE VALUES OF DISTANCE TRACKING ERROR.
HPF EDF EDF-VD  Apollo  HCPerf
RMS (m)  0.084  0.083  0.072 0.117 0.063

Figure 15(d) shows the deadline miss ratio in the hardware
experiment. We record the result once per second. After
the initial adjustment procedure, HCPerf is able to keep the
deadline miss ratio at O for the rest of the experiment, while
other schedulers have deadline misses throughout the whole
car following process in the range of 2-6%.

C. Prioritize Responsiveness and Throughput

In this section, we use another real-world example to show
how HCPerf effectively prioritizes the responsiveness and
throughput of the control commands in different scenarios
according to the driving performance. Specifically, we use the
response time of control commands to quantify the responsive-
ness of the system which is defined as the duration between
the release and execution of the control task. Moreover,
as the throughput directly impacts the passenger perceived
experience, we adopt the passenger perceived comfort [5] to
dictate the system throughput. The higher the throughput is,
the more abrupt acceleration and deceleration can be avoided.
Thus, better passenger perceived comfort can be achieved.
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Fig. 16. The overall driving process of the car following application.

Figure 16 shows the overall driving process of the car
following application. At the beginning, the two cars drive at
a stable speed with 20m/s. When T=10s, the lead car starts to
decelerate facing a traffic jam. As the number of vehicles in
the surrounding grows, the completion time of corresponding
tasks increases which leads to deadline misses and the control
commands cannot be generated in time. At the same time, the
distance between the two vehicles starts to decrease and the
tracking error increases accordingly. When the tracking error
is detected, HCPerf starts to improve the responsiveness of
the control commands in order to avoid potential accidents
and mitigate the tracking error.

Figure 17 represents the tracking error, the response time
of the control command and the user-perceived comfort.




As shown in Figure 17(a), the tracking error dramatically
increases to Sm when t=10s. According to the tracking error,
HCPerf allocates computing resources to the control task in
order to generate as many as possible control commands
immediately in order to achieve responsive control to avoid
a potential collision. Thus, the tracking error is effectively
mitigated to 2m when t=12s. Figure 17(b) shows that the
response time of the control task is reduced and the passenger
discomfort increases in this process. This is the reason that the
computing resources are allocated to the control tasks and the
other tasks with tighter deadlines may miss their deadlines.
Thus, the overall system throughput decreases during this
period. After t=20s, when the two vehicles pass by the road
sections with traffic jam, the number of surrounding vehicles
decreases and the system load decreases accordingly. Thus,
the tracking error is further mitigated. Then, HCPerf allocates
more computing resources to the tasks with tighter deadlines
to improve the system throughput. After T=20s, the passenger
discomfort is effectively reduced to provide a good experience.
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Fig. 17. Tracking error, response time and passenger discomfort.

D. Ablation Study

In this section, we conduct an ablation analysis by compar-
ing the full version of HCPerf with a version that does not
include the External Coordinator. The experiment setup has
referenced the car following simulation setup.
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Fig. 18. System performance with and without the External Coordinator.

From figure 18(a), we can see that the full version has
smaller fluctuations in speed tracking, which means better
driving performance. Figure 18(b) shows that, due to the
absence of the External Coordinator, the system produces a
low deadline miss ratio throughout the simulation that cannot
be reduced to O as the full version does, which leads to a
failure to guarantee the task deadlines. In terms of the final
distance tracking error, the full version is 0.5m better than
the Internal Coordinator version. In summary, the Internal

Coordinator of HCPerf can optimize the driving performance,
while the External Coordinator can regulate the deadline miss
ratio, and the two parts cooperate to obtain better performance.

E. Overhead Analysis

We use the hardware platform to measure the computation
overhead of HCPerf. The analysis is the average overhead for
multiple scenarios. The methods utilized in the paper have
linear complexity, so there are no huge fluctuations in compu-
tational overhead. The overhead consists of the computation
overhead for Internal Coordinator and External Coordinator.
The measured average execution time of HCPerf is less than
Sms per period of 1s, which is moderate for implementation.

VIII. RELATED WORK

Resource Management in Autonomous Driving Platform.
Autonomous driving has gained significant interest across
industry and academia, leading to numerous studies aimed
at optimizing accuracy, efficiency, and real-time performance.
Bateni et al. [28] presented a temporally predictable energy
optimization framework for running DNN workloads in GPU-
enabled automotive systems. Bateni et al. [29] developed
a model to predict the system overhead of each memory
management method based on application characteristics, and
by performing per-task memory management policy switching
and kernel overlap, the scheduler can relieve system memory
pressure and reduce multitasking response time. However,
these approaches mainly focused on the trade-off between
real-time and accuracy in perception, while HCPerf considers
end-to-end real-time performance across sensing, perception,
prediction, planning, and control.

Real-time Scheduling. Numerous studies propose scheduling
and analysis methodologies to ensure timing correctness for
embedded systems. Guo et al. [6] proposed a cache-aware
partitioned scheduling that covers inter-task cache interference.
Choi et al. [7] proposed a class-level fixed priority preemptive
scheduler and its schedulability analysis framework with weak
hard real-time constraints. Liu et al. [8] studied real-time
scheduling of hybrid critical systems, where low-critical tasks
can still guarantee some services in high-critical mode and
reduce the execution budget. Bateni et al. [9] proposed a
time-predictable runtime system capable of guaranteeing DNN
workload deadlines by efficient approximation. Existing task
scheduling and analysis mechanisms cannot be directly applied
to autonomous driving, as they cannot ensure end-to-end dead-
lines due to significant runtime execution time variation. More-
over, current adaptive approaches cannot effectively determine
the optimal point for timely control command generation. In
contrast, HCPerf intelligently prioritizes responsiveness and
throughput by taking into account runtime driving performance
and user comfort.

IX. CONCLUSION

In this paper, we propose HCPerf, a performance-directed
hierarchical coordination framework for autonomous driving.
It intelligently coordinates the autonomous driving tasks with



high execution time variation and complex dependencies ac-
cording to the driving performance. Specifically, the internal
coordinator intelligently schedules the tasks according to the
driving performance. The external coordinator dynamically
adjusts the rates of tasks according to the schedulability of the
system. The experiment results show that HCPerf effectively
improves the driving performance by 7.69%-45.94%.
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