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Abstract. In order to achieve a maximum space charge limit in the IPNS-II
synchrotron it is desirable to inject a Kapchinskij-Vladimirskij (KV) distribution (1).
We rederive the KV distribution, first starting from a smoothed Hamiltonian and then
for the full alternating gradient case. The microcanonical distribution can be
generalized slightly so as to allow one to alter the aspect ratio of the beam ellipse.

The KV distribution requires that the injected particles all have the same total
transverse oscillation energy, and also that they are distributed uniformly throughout
the entire energy shell. This requires painting the injected beam uniformly in the three
independent dimensions of the energy shell. We have devised two scenarios for doing
this, one involving a suitable variation of the x and y injected amplitudes during the
injection process, and the second involving introducing a small coupling between the x
and y motions.

We have written a program to simulate the injection process which includes the
turn-to-turn forces between the (500) injected turns. If we omit the turn-to-tum forces
then the resulting space charge density distributions are indeed very nearly uniform
within a circular beam cross section for either KV injection scenario, but are neither
uniform nor circular for other plausible scenarios. With turn-to-turn forces included,
the interturn scattering can be fairly important and the resulting density distributions
tend to develop lower density halos.

If we add a gradient bump to simulate magnetic quadrupole errors in the lattice,
then the effects of half-integral resonances can be clearly seen. When the space charge
forces between tums depress the tune to a resonance, beam growth keeps the tunes
constant at the edge of the stop band, unless the resonance is crossed quickly. The
resultant growth of the beam can be seen in the density distribution if resonant effects
are dominant, i.e. starting with tunes near the resonance. If we start farther from the
resonance, in which case we inject higher intensity beams, the turn-to-tumn forces
dominate the final density distribution. In that case the final distribution is nearly the
same whether the resonance is present or not, though the effect of the resonance on the
final tune can still be clearly seen. .
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I. INTRODUCTION

The Kapchinskij-Vladimirskij (KV) distribution (1) was originally of
mathematical interest as a many particle problem which could be solved analytically.
It gave an idea of the effects of space charge forces in high intensity accelerators,
but it was not expected that any real accelerator would contain a microcanonical
distribution.

Recently it has been suggested that the KV distribution may be of practical
interest for high intensity machines in that it may provide the maximum space
charge limit for such a machine. One can make a plausible argument that the
maximum beam intensity is obtained for a distribution for which all particles have
the same tune, at least when the resonance is approached. One should therefore
first reduce the chromaticity of the accelerator ring as much as possible, and
second, make the betatron frequencies independent of amplitude, i.e., make the
focussing forces linear. One way to make the focussing forces linear is to start with
external focussing forces which are linear, and then make the space charge forces
also linear by using a KV distribution.

Chapter II reviews the theory of the KV distribution, generalizing it slightly to
include an elliptical beam cross section. We give first a simplified treatment based
on treating the betatron oscillations as simple harmonic motions. We then treat the:
alternating gradient case. Finally two injection scenarios are described which
produce a KV distribution (if beam-beam interactions are neglected during the
injection process). In the first the injected x and y amplitudes follow a prescribed
schedule. In the second there is a coupling between the x and y motions.

We have written a simulation code for the injection process which includes the
space charge interactions between the injected turns. It also provides a gradient -
bump to simulate the effect of quadrupole errors which can drive a half-integral
resonance. The code was used to study the injection process for the proposed
IPNS upgrade (2), a 2 GeV rapidly cycling synchrotron designed to deliver a
1 MW proton beam. During the injection process 500 turns are injected. Chapter
III presents the results of simulating the injection process, without turn-to-turn
space charge forces, for a KV scenario and for a typical injection scenario which is
not specifically designed to produce a KV distribution. The KV scenario indeed
produces a circular beam cross section of uniform density. Non-KV scenarios
produce a beam cross section which is neither circular nor of uniform density. .

In describing the injection process we will use the following terminology. We
will specify a time by the number of turns (revolutions of the beam arcund the
accelerator) since injection started. The beam at any time consists of a number of
beamlets. By a beamlet we mean that part of the beam which was injected during a
particular previous turn. A beamlet will be specified by the number of the turn
during which it was injected. By a turn-to-turn force we mean the electric force
exerted by one beamlet on another.

The turn-to-turn forces are included in Chapter IV. They have a substantial
effect on the resulting distribution. The cross section still has a rough circular
symmetry, but the beam has a low density halo. The program provides a means of
calculating the betatron oscillation frequencies of any beamlet during any turn.
Plots of horizontal and vertical tunes versus time for selected beamlets, as well as
the average tunes for all beamlets present in the machine clearly show the
depression of tune due to the increasing space charge forces as injection proceeds.
The proposed KV scenario produces a more uniform beam density and smaller tune




shifts than the other injection scenario. When the gradient bump is added the effect
of the half-integral resonance is clearly seen in the tune plots. In cases where the
tunes would otherwise cross the resonance at v = 5.5 during injection, the gradient
bump causes the beam to expand when the resonance is reached and the tune levels
off at a value corresponding to the edge of the stop band. The optimum parameters
correspond to arranging that horizontal and vertical tunes both just reach the edge of
the stop band at the end of injection. This gives the maximum injected beam for a
given beam cross section without an expanded halo.

There appear to be two regimes when beams exceeding the space charge limit
are injected. If one or both tunes start at a value not too far from the resonance stop
band, then the resonance dominates the process and the beam has a halo which
expands to keep the tune at the edge of the stop band. If we start with tunes far
enough from the resonance, which requires injecting a more intense beam in order
to reach the stop band, then the fluctuating turn-to-turn forces dominate the process
and cause the beam to expand because of the resulting diffusion in betatron
amplitudes. The resulting beam density profiles do not depend very much on
whether the resonance driving bump is present or not, although even in this case the
effect of the bump can clearly be seen in-the plots of tunes versus time.

II. THEORY

In Section 1 we will derive the KV distributio’n for the smooth case when the

. betatron motion is a simple harmonic oscillator and the parameters are arranged to

produce a circular beam cross section. Section 2 treats the full alternating gradient
case and allows the beam cross section to be elliptical. Section 3 presents an

- injection scenario in which the x and y amplitudes during injection are programmed

to paint the energy shell uniformly and so produce a KV distribution. Section 4
discusses an alternative way of producing a KV distribution using a small xy
coupling.

1. A Simple KV Distribution.

We start from the simple Hamiltonian

1 1 1
H=—p, +2kxx +— py 2kyy , (1.1)
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~ where the independent variable is the azimuthal distance s. The moments are

px=— ’ py=_ - (1.2)

We are assuming that the focussing forces are linear. The space charge forces for
the KV distribution will also be linear, and are included in the constants ky, .
The solution of the equations of motion is a simple harmonic oscillation in both
dimensions of frequencies




=Rk'? , v,=REY? | (1.3)

in oscillations per revolution, where 2xR is the circumference.
Introduce angle-action varniables:

x=QRI I v)?siny, , p,=(2v.J. /R cosy, ,

V2 12 (14
y=QRJ,/v,) “siny, , p,= (2vyJy / R) cos7Y,
The Hamiltonian becomes
v Vv
H=-k§1x+—y1y (1.5)
The action variables
2 2 Rp.2 v.v?
7, =Ro” VX Jy=_l’y_+_yy_. (1.6)
2v, 2R 2vy 2R

are constants of the motion and are each equal to the area of the corresponding
phase ellipse divided by 2x. The angle variables are

Y«=Vis/R+Y, , 7,=Vs/IR+D, , . 1.7

where 9,0, are arbitrary constants. If we substitute from Egs.(1.7) into

Eqgs.(1.4), we get the general solution of the equations of motion.
Now write the distribution function for the beam in the form

D, T, Ye: ¥y) = ABQT, cos? { +2],sin? £~ ;) . (1.8)

This is a slight generalization of the standard microcanonical distribution, in that it
allows Jy and Jj, to appear with arbitrary factors in the total action Jp. It becomes a
standard mxcrocanomcal distribution if we set { ==/4. The advantage of
introducing the parameter  is that it allows us to adjust the shape of the beam in x,y
space; for example, we can change an ellipse into a circle, even when ky # ky.

The particle density in physical space is
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(vivy) A cos 9dV
2Rsm cos L
¢ C-:rfz[l—sinz o]z
172
=7r(vxvx) A (1.9)
Rsin2{
where we have put
w=21ysin2§
1
2 2.2 2.:.2,T5
Vv, [. v,x“cos*{ Vyy“sin“§ :
= Jg ——= - , 1.10)
Px1 R"2cosf| ™ R R ¢

Px = Px1 sin

The density is constant (within the beam), which implies that the space charge force
is linear, as we will see below. In evaluating the second line of Eq.(1.9), we have
assumed that there are values of py, py for which the argument of the 5-function in
Eq.(1.8) vanishes. This will be true prov1ded the point x,y lies within the ellipse

2.2
vx2cos?( + V,y“sin“{
R R

=J, . (1.11)

Outside this ellipse, the particle density is zero. The area of this ellipse is
27ZRJO
172 -
[ v, vy] sin2{

Since the density (1.9) inside the ellipse is uniform, it is just the number N of
particles per unit length divided by the area of the ellipse:

(1.12)

Ae=




N[ v, v),]u2 sin2{

X,Y)=pg = 1.13
P(x.y)=pg 2 7R, (1.13)
The electric field due to this particle density can be written
E=-V¢ , (1.14)
where the electric potential satisfies, inside the ellipse (1.11), the equation
9’¢ 3’ __ep
V=5 == (1.15)
T &
and variations in the azimuthal direction are neglected. A solution of Eq.(1.15) is
1
o(x,y)=¢, ——K x --z-x, y (1.16)

where the constants Kx and Ky must satisfy

k2+x2=L (1.17)
80

This condition can be satisfied by setting

K, =xcos§ , kK, =xsin , (1.18)
where & is arbitrary and

2_ePo _ Ne[vxvy]msinZ{ .

K (1.19)
& 2regR],

The general solution of Eq.(1.15) is obtained by adding to the solution (1.16)
the general solution of the homogeneous equation

2 2
J ¢ %y—;z =0 . (1.20)
which is well-behaved at the origin. This must then be matched to a solution of
Eq.(1.20) between the beam and the vacuum chamber. Since we are only looking

for some self-consistent solution of the problem, we simplify the problem by taking
a round beam:




an?¢ =% | (1.21)

Vy

which makes Eq.(1.11) the equation for a circle:

v, +V
x*+y?=a*=2—JRJ, , (1.22)

Ivy

where a is the radius of the beam. Note that we have made the beam round without
assuming that vy = vy. If they are equal then { = n/4. In any case, we set

€ = n/4, so that the potential has circular symmetry. Inside the beam, the
potential (1.16) is then

Bx3)=0) = by = K2 4 Y=y KT (1.23)
Outside, the potential is
o(r) = cm% ) (1.24)

where the additive constant is chosen to make the potential vanish at the vacuum
chamber radius b. The potential and its radial derivative have to be continuous
across the boundary. The potential is then :

2
M(1+21n-b—)—e—pi’—(x2+y2) inside the beam
£, a) 4e

px=y ° - (1.25)
~8PLopI guside |
2¢g,
where
P\, (1.26)
nRJy(v, +Vvy)

The space charge forces in the non-relativistic limit (i.e., neglecting magnetic .
self-forces) are

2
% 2° (1.27)
—_,99 _€D
F= I 2e°




The constants ky, ky in Eq.(1.1) can now be written in terms of the external
focussing force constants kex, key:

k = —___.ez._p.‘.’.__._
x ex 28 2 ch?.

oﬁzr (128)
k =k ep,

y °y~280ﬁzy2mcz

where P and v are the relativistic parameters, whose variation with s are neglected,

m is the mass, and an extra factor 7y is added to the denominators to include the
effects of the magnetic forces.

We now have a complete, self-consistent solution of the equations of motion for
a round beam, including the effects of space charge forces.

2. The KV Seolution for an AG Ring.

We will derive the general Kapchinskij-Vladimirskij solution for an elliptical
beam in an alternating gradient ring following the same steps as in the treatment of
the simpler problem above. Our treatment is a generalization of the KV paper (1),
since they eventually assume a round beam. We start with the Hamiltonian (1.1),
but we allow the force coefficients to depend (periodically) on s:

1 1 1 1
H(x,p,,y.py) = > P2 *5 Py’ +-2-kx(s)x2 +5ky(s)y2- . (2.1)

We will assume that the wavelengths for the variations of the functions kx(s), ky(s)
are much longer than the cross sectional dimensions of the beam, so that the fields -
can be calculated treating the beam as a uniform elliptical cylinder at each azimuth s.
The action variables are the Courant-Snyder invariants:

- (ﬂx(s)px + ax(s)x)2 + x2
B.(s)

I - (B,(s)py + Oty(s)y)2 +y°

Y B,(s)

Ix

]

(2.2)

’

where the parameters o(s) and f(s) are periodic functions of 5.

We again write the generalized microcanonical distribution in the form (1.8).
The calculation of the spatial density proceeds just as in the preceding section, and
we get




p(x,y)= Jdpxjdpy D(x, px.¥: Py)
i A , @.3)
[B.5B,0)] " sin2¢

within the ellipse
x?cos?¢  y?sin?¢

B.(s) By()

and zero outside. The density is again uniform within the ellipse, but varies
periodically in s, as does the area of the ellipse which is

=7y , 2.4)

1
_ 224[B. (9B, )]
- sin2{

(2.5)

We will neglect any variation in the azimuthal velocity so that the linear density N
(particles per unit length along s) is a constant of the motion. For a bunched beam,
N may vary along the bunch, but remains constant at the location of any given
particle at least for many revolutions, so its variation may be neglected in studying
the betatron oscillations. The spatial density is then

Nsin2
plxy.)=pols)=— 26
270 B ()B, ()2
We have to solve Eq.(1.15) which will be written in the form
) ) ~ .
iﬂ‘*__a_g:{ K’(s)' inside the beam @)
dy 0 outside ,

where x2(s) is given by Eq.(1.17), with pg(s) given by Eq.(2.6), and the beam
boundary is given by Eq.(2.4). We are assuming that the dependence on s is slow,
- so we neglect derivatives with respect to s.

In order to solve Eq.(2.7), one could write a solution in the form (1.16) or
(1.23) inside the beam and try to fit the boundary condition at the wall and at the
beam boundary by adding suitable solutions of the homogeneous equation inside
and outside. Instead, since the beam boundary is an ellipse, we will use confocal
elliptic coordinates (3, p.1195):

x=hcoshpcosd |,

2.8
y=hsinhusind , 28)




which gives ellipses of constant u and hyperbolas of constant A with foci at
x =h(s), y =0. The coordinate p runs from 0 to e. The coordinate A is an
angle from O to 2x and is roughly equal to the polar angle 6. The (positive,
negative) x-axis is given (outside the foci) by A = O,r; the y-axis is given by
A =*rf2. We choose as coordinate foci the foci of the ellipse (2.4):

1
B: () _By$)o |2
h(s)=|=2 - , 2.9
) [ 0032§ sin2§ 29)
so that the ellipse (2.4) is an ellipse of constant |t = [iy:
2 2 2

x Y X cos2¢  y%sin?¢
h?cosh®u, H’sinh’y,  B.Js B,Jo

=1, (2.10)

from which Eq.(2.9) follows. The elliptic coordinate of the beam ellipse is given by

tanh 1, (s) = [’ZZ;J cotl . (2.11)

We will usually omit explicit dependences on s, except when introducing a new
quantity. Note that the ellipse of constant yt approaches a circle as |1 becomes large
(so that sinh u =cosh ), and that the eccentricity approaches 1 for small p. For

it = 0 the ellipse shrinks to the line segment connecting the foci. The major axis of

the beam ellipse is taken to be horizontal.

- We will assume that the conducting vacuum chamber wall is also elhpucal and
confocal with the beam. The potential vanishes at the wall. In elliptic coordmates :
Eq.(2.7) becomes (3, p.504)

(2.12)

1 az¢ 9’¢)_[-x" inside the beam |,
h*(cosh? i —cos® A)\ du? Tz 0 outside .

This equation is to be solved kecping ¢ and its normal derivative continuous across

the beam boundary, and with ¢ =0 at the wall which we take to be the ellipse

il = Hw. A particular solution inside can be found either by solving Eq.(2.12) by
separation of variables or by taking the solution (1.23) and substituting from
Eq.(2.8). The result is

\ |
P=- K:h (cosh2u +cos24) . (2.13)

10




To this we add a solution of the homogeneous equation inside, and another outside.
A set of solutions of the homogeneous equation periodic in A is

¢=1, ¢=p,

¢ =coshmpicosmi ,

¢ =sinhmusinml , (2.149)
¢ =sinhmucosma ,

¢ =coshmyusinmAa ,

where m is any positive integer. The second and the last two solutions are not well
behaved at the origin, due in part to the peculiar behavior of the coordinate system

near o =0. The rest are polynomials of order m in x and y. It is clear from
Eq.(2.13) that we need the solutions for m =0 (the first two) and m =2. We
therefore write

o(u,A)=

K2h?
4

x*h?
4

fcosh2pt +cos2A — A+ Beosh2pcos24] inside, ' (2.15)

[C (1 — M) — D(cosh 2 sinh 21, —sinh 24 cosh 241, )cos 24 ] outside,

where the coefficients are already adjusted to satisfy the boundary condition at the

wall. We have to require that ¢ and d¢/du be continuous at the beam ellipse; the
result is

A=2(4, -y, )sinh2y, +cosh2y,
cosh2u, cosh2u,, —sinh2u, sinh2u

B= =,
| cosh2u, 2.16)
C=2sinh2u, , )
D= sinh2p,
cosh2u,,

For comparison with the development in the previous section we would need the
circular limit of the above equations where h—0 and pt >> 1 almost everywhere.
In that limit cosh p and sinh p approach (eM)/2, the ellipses become circles, and A

becomes the polar angle 6. In that limit, p—In 27/.
The solution (2.15) inside the beam can be written

_ Kk
4

0= (A+B)+-21-x2(x2+ y2)+-:-zB-x‘2(x2— ) ., .17

11




from which the electric space charge forces follow:

=—ex’(1+B)x ,

2.18
=—ek?(1- B)y .18)

The coefficients in Eq.(2.1) can now be written in terms of the external focussing
coefficients and the space charge forces:

2
kx (S) = ke.x (S) - expf;);i’:cg(‘s‘))

20\1- B (2.19)
ky(s) = ey (5) - 25 [g))fz;czm )

We now have a complete, self-consistent solution of the general KV problem.
If the vacuum chamber wall is not an ellipse or is not confocal with the beam
boundary then matching boundary conditions becomes more difficult. It may be
necessary to add terms with m > 2 to the solution, in which case terms in x and y
of order higher than two will appear in the solution (2.17). There will then be
nonlinear terms in the forces (2.18) and our solution is no longer self-consistent.
However for a reasonable wall shape one would expect such terms to be small,
especially inside the beam. In any case, if beam and vacuum chamber are circular,
the distribution (2.4) will result in linear space charge forces. For a circular beam
in a concentric circular vacuum chamber, the KV distribution (2.4) always leads to
linear focussing forces.

3. The Péinting Scenario.

The KV distribution is essentially a microcanonical distribution with the beam
distributed uniformly over a three-dimensional energy shell corresponding to a
fixed total energy in the four-dimensional phase space of the x and y betatron
oscillations. We need to construct a scenario which allows us to paint the energy
shell uniformly. To simplify the treatment, our discussion will be based on the
treatment in Section 1 which starts from the smoothed Hamiltonian (1.1).

If we inject at a fixed point in the phase space, the betatron oscillations will

spread the beam over the Yx Yy phase plane. In order to spread it over the three-
dimensional surface defined by Eq.(1.8), we need to vary the action variables in an
appropriate way. To this end introduce the variables

=2cos’ {J +2sin* ), ,

(3.1
J, =2co0s? {J, ~2sin? (],
The Jacobian of this transfonnanon is constant. Therefore if area is conserved in
the J,J, phase plane then it is also conserved in the J,J, phase plane.
The total action J, is to be held constant and J,, is to be varied slowly. If the
variation of J,, is slow compared with the betatron frequenc1es, then near each value

12




of J,, the betatron motion will distribute the injected beam uniformly over the v, Y,
~ phase plane, provided there is no rational relation with small denominator between

Vi and vy. The J;shell must be painted uniformly, so we require that dJ/dt be
constant:

2t
J =-J (1-?) , (3.2)

where T is the total injection time. Note that we want to paint both positive and
negative values of J,,. Equation (3.2) is adjusted for the case in which J, =-J,
initially, i.e., the y amplitude is maximum and the x amplitude is zero. The injected
x,y actions are given by

1 t
L=<,
* 2c0sl°T

1 t
J, =y ==
» 2sin’*¢ °( T)

The painting scenario can be achieved in the IPNS upgrade by using H(-)
injection with a stripping foil, an internal horizontal orbit bump, and an external
vertical deflection of the injected beam.

(3.3)

4. The Coupling Scenario.

Yanglai Cho (4) has pointed out that coupling the x and y betatron motions may
allow us to achieve a KV distribution. He proposes to make the x and y betatron
tunes equal and provide a small coupling between them. Then inject with zero y
amplitude and a large fixed x amplitude. The coupling causes the y oscillation
energy to increase at the expense of the x energy. This has two effects. First, it
causes the previously injected beamlet to move away from the inflector and remain
away for one beat period, thus facilitating multi-tumn injection. Second, it results in
a distribution in which all particles have the same total oscillation energy.

Unfortunately this procedure does not result in a microcanonical distribution,
since it does not fill the energy shell uniformly. It fills only a two-dimensional
torus scanned by the phases of the two coupled normal modes. Filling the three-
dimensional energy shell requires also sweeping a suitably chosen variable
analogous to J,; in Eq.(3.1). We have carried out the analysis [(5), Section 4] and
have carried out corresponding simulations for this scenario. The results are similar
to those presented later for the painting scenario. Since the coupling scenario seems
to have no advantages over the painting scenario, we omit further discussion in this

paper.
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III. DOES IT WORK? — SIMULATION

5. Injecting with Painting Scenario.

We have written a program to simulate the scenario (3.3) as applied to the IPNS
Upgrade (2). The injection time T corresponds to 500 injected turns. The
maximum injected x-amplitude is 50 mm  Figure (5.1) shows the x and y
amplitudes of each beamlet as it is injected. The points lie on a circle beginning
with zero x amplitude and maximum y amplitude at turn 1 and ending with zero y
amplitude and maximum x amplitude at turn 500.

Figure (5.2) shows the resulting density in xy space at the end of injection.
Each of the small circles represents one injected beamlet. The spatial density is
fairly uniform within a circle. Figure (5.3) shows the final space charge shifted
horizontal tunes of the 500 beamlets. The vertical tunes are similar. In these
calculations, the space charge forces between beamlets are omitted, except at the
end of the injection process when we turn on the interaction forces for one turn in
order to calculate the space charge shifted tunes resulting from the density shown in
Fig.(5.2).

6. Injecting with Non-KV Scenarios.

Figure (6.1) shows the injected amplitudes for a non-KV scenario. It differs
from that shown in Fig.(5.1) in that the sum of the amplitudes is held constant
instead of the sum of the actions (proportional to amplitudes squared). Although
Figs.(5.1) and (6.1) are not much different, the resulting density distribution
shown in Fig.(6.2), in contrast to that in Fig.(5.2), is neither circular nor uniform.
Likewise the space-charge shifted tunes after injection, shown in Fig.(6.3) are not
all equal as in Fig.(5.3). ‘

IV. DOES IT REALLY WORK? — SIMULATION WITH
SPACE CHARGE FORCES.

7. Simulation and Tune Measurement.

In order to include the effect of space charge forces, we calculate at each
integration step the total force on each beamlet due to each of the other beamlets. In
this way we include not just the Vlasov term, containing the smoothed out space
charge force, but also the fluctuating beamlet-beamlet forces. In addition the
equations of motion include for each beamlet terms like that on the right side of
Eq.(7.2) below, to drive the resonance v =5.5 for both x and y motions. The
force between two beamlets is inversely proportional to the distance between them
unless they overlap, in which case, the force drops linearly to zero as their centers
approach one another.

In order to find the tune of a simulated beamlet, we find the average space
charge force over one turn in the following way. We assume that we may

14
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beamlet during one turn.

approximate the average space charge force on any beamlet by a linear function of

the displacement x (horizontal or vertical). The integration time step is As. Ateach = -

integration step, we calculate the total momentum increment Ap of any given
beamlet due to the forces from all other beamlets. Figure (7.1) shows a plot of
R Apy vs x for a typical beamlet at each integration step during one turn. The least
squares linear fit to the data is also shown in the figure and is written in the form

-E‘£=Ax+B . ' .1
As

We then assume we may approximate the equation of motion by the linear equation

x"+R*vix—Ax=B+ax6(s—nR) , (7.2)

where R-2vg2x is the mean focussing from the lattice structure and the last term

represents a quadrupole error term which is introduced to drive a possible half-

integral resonance. The delta function is periodic with period 2xR. The quadrupole

bump is placed half way around the ring so that the reference point s =01is a
symmetry point for the bumped lattice. Since the equilibrium orbit x=x, must
satisfy Eq.(7.2), the deviation from the equilibrium orbit satisfies the homogeneous
i equation

(x=x) + RV} =~ S)(x~x)=alx—x,)5(s—7R) , (1.3)

where
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S =AR® (7.4)

is the space charge defocussing coefficient. For algebraic convenience we will
henceforth take x to be the deviation from the bumped equilibrium orbit and replace
x-xe by x.

The phase vector is carried from s=0 to s=rR, (from the reference point to just
before the bump), via a matrix A:

(L)

The matrix A is given by
cos%l sin;1
a=| 2 21, (7.6)
—sin— cos—~
2 2
where

)1/2

oy =27(ve* -8 (1.7)

is the phase advance for the normal lattice plus space charge but without the-

gradient bump. We will call the quantity (v,2 — $)/2 the (horizontal or vertical) -

tune parameter. It is the space charge shifted tune in the absence of any resonance
driving term. The matrix which carries the phase vector across the bump at s=rR is

n:( ! 0) . (7.8)

-a 1

The matrix which carries the phase vector once around the ring is then

a.. . a
cos oy — Esm o sin g} —3(1 —C0s0y)

M=ABA= (1.9)

. a a..
—sin oy — -5(1 +cosoy) COs Oy —-2-sm oy

The trace of M gives the phase advance ¢ around the ring:

COS 0 = COS O; —ﬂ;—ﬁ . (7.10)

If we consider ¢ as a function of 1 (or of the tune parameter) there will be
unstable stop bands at integer and half integer resonances, i.e. at o=2nx, where n is
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an integer or half-integer. Let us assume that g is small and neglect all but the
lowest order terms in a. If a=0, a solution of Eq.(7.10) is o=cj. For small a
Eq.(7.10) may be written in the form

(O""' 0'1)2
2

)—((}'—t)’l)sino'1 =cos<)'1—a$§o-1 , (7.11)

cos 01(1 -

where we have kept terms of order (6-61)2 since near the stop bands sin o is
small of order a and all terms in Eq.(7.11) are second order. The solution of

Eq.(7.11) is

2
0=0;—tano, li[l+m:a} . (1.12)
1

Away from the resonance (i.e., tan 61>>a) the solution (7.12) is, to lowest order
ina,

'a=al+§ : (1.13)

This solution is valid away from the integer and half-integer resonances. Thereis a

second solution but it is not valid since it corresponds to 6—61>>a. The edges of

the stop bands occur where the solution of Eq.(7.10) is cos c =%1. One edge
will be at o1 = 2nn. The other edge, to first order in a, occurs where the square
root in Eq.(7.12) vanishes, at

0, =2nm—-a . (7.14)
In the stop band the solution of the equation of motion has the form -
x= etreﬂﬁm’lk , (7'15)

with a growth rate approximately

I =[~(0;-2n7)(0, - 2nn+a)] > 2al2 (7.16)

where the last member is the growth rate at the center of the stop band. Since the
growth rate has a vertical slope as a function of o1 at the edges of the stop band, it
is roughly equal to a/2 throughout most of the stop band.

In Fig.(7.2) v=0/2n is plotted as a function of the tune paramcter

v1=01/2n=(vo2-5)1/2. Note that according to Eq.(7.10) o is a periodic function of
o;. Figure (7 3) is a typical plot of the calculated shifted tune vy of a beamlet as a
function of time. In this case a number of the calculated values lie in the stop band
and are plotted at the top of the figure. In order to include values which lie in the
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stop band, we will generally plot the tune parameter vi = (vo2-S)1/2 as in
- Fig.(7.4), which also shows the edges of the stop band. Outside the stop band the
tune parameter is nearly equal to the actual tune. Inside the stop band the motion is
unstable with a growth rate given by Eq.(7.16). Note that there are substantial
fluctuations of the calculated tunes. These are due to the fluctuating character of the

turn-to-turn space charge forces. In the tune calculation the actual space charge
forces are replaced with mean linear approximations which are also subject to
fluctuations from turn to turn.

8. Effect of Beamlet-Beamlet Forces.

The beam density for the KV scenario [Fig.(5.1)] with the space charge forces
included is shown in Fig.(8.1). The beam is still roughly circular, butis not as -
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FIGURE 8.1 Final density for KV scenario FIGURE 8.2 Final x tunes for KV scenario .
with space charge. with space charge. o
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uniform as in Fig.(5.2). As a result, the final tunes shown in Fig.(8.2) are not
as constant as in Fig.(5.3). During injection, the beam does not yet have a KV
distribution, so there are nonlinear space charge forces. There are also coupling
forces between beamlets whose effects can be seen in Figs.(8.3) and (8.4) which -
- show the x and y coordinates of the first injected beamlet as it passes the reference.
point during injection. Either the nonlinear space charge forces or diffusion due to
beamlet-beamlet forces may be responsible for the non-uniformity of the beam in
Fig.(8.1).

Figures (8.5) and (8.6) show the average x and y tunes, averaged over all
injected beamlets, vs. turn number during the injection process. The two outer
curves in these figures are the rms deviations from the average tunes. The
increasing depression of the tunes due to the increasing space charge forces is
evident. The tunes are depressed below the resonance at v = 5.5 because there is
as yet no term in the simulation to drive the resonance.
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9. Effect of an Imperfection Resonance.

Using the same injection scenario with a gradient bump included to drive the
resonance v=>5.5, the final density distribution is shown in Fig.(9.1) The x tunes
during injection are shown in Fig.(9.2). The effect of the resonance on the tune
history can be clearly seen. The resonance causes the beam density to expand to
keep the tunes out of the stop band. The total injected current for this case is 27 A,
with a bunching factor of 0.75. This is greater than required to depress the tune to
the resonance and hence exceeds the conventionally defined space charge limit. We-
have also seen cases with large injected beam currents where the tune changes so
rapidly that it can cross the resonance before the beam has time to expand.

10. The Space Charge Limited Case.

In a realistic case where we wish to inject the maximum possible beam without
seriously increasing the beam size, we would choose an initial tune as far from the
half-integral resonance as possible, and inject just enough beam to reduce the tunes
to the edges of the stop bands. This corresponds to the conventional definition of -
the space charge limit. Figures (10.1), (10.2) and (10.3) show the final density
and the tune history for this case, following the KV scenario (5.1). The total
injected current is 54 A. The simulated tune shifts in Figs.(10.2) and (10.3) are
equal to those calculated from the Laslett formula, as they should be if the
simulation is done correctly.

Figures (10.4) and (10.5) show the same case for injection with the non-KV
scenario. The final density is not much different, although the approach to
resonance is more rapid in this case. For this case which starts far from the
resonance and with a large injected beam, it would appear that the final density
distribution is not dominated by the resonance, but instead is dominated by either
the beamlet-beamlet collisions or the nonlinearities in the space charge forces or
both. To illustrate this, we show in Fig.(10.6) the final density for the same case
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but with the bump that drives the resonance turned off. There is little difference in
the final density in Figs.(10.4) and (10.6).

V. CONCLUSIONS.

We have presented the theory of the KV distribution, including alternating
gradient effects, and including the case of an elliptical beam. We have presented
practical injection scenarios which lead to KV distributions if space charge forces
are neglected during injection. The resulting distributions are uniform and circular
(or elliptical), and result in uniform space charge shifted tunes for all particles.

When the effects of space charge and of beamlet-beamlet forces are included,
injection with a KV scenario may have some advantage, but the resulting
distribution is not exactly a KV distribution and the density is not exactly uniform.
Two regimes may be distinguished. If the initial tunes are close to the resonance,
the final density distribution is dominated by the amplitude growth of particles in
the resonance stop band. This growth limits the space charge detuning so that the
final tunes lie just above the stop band. If the initial tunes are far from resonance,
and ‘the injected beam intensity is large, the final density distribution is dominated
by space charge effects — nonlinear forces and/or beamlet-beamlet collisions. This
may mean that the effective space charge limit may sometimes occur at a beam
intensity where the beam blow-up reaches the maximum acceptable value before the
- maximum acceptable tune shift is reached.
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