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where H,, and f,, are polynomials of order n in the variables
X = (z, Pr,y, Py, 6). We performed this factorization [3,5]
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I. INTRODUCTION
An achromat is a transport system that carries a beam and obtained
without distorting its transverse phase space distribution. thin quadrupole:
In this study, we apply the Lie algebraic technique [1-6] to 1l 2 2 _ 1 o g
a repetitive FODO array to make it either a second-order fo= 2F (=% 978, fa= 2F; (=% - 976
or a third-order achromat. (Achromats based on reflection thin sextupole:
symmetries [7,8] are not studied here.) We consider third- Sk Sk
order achromats whose unit FODO cell layout is shown fa= 3 (=* - 32y%), fa= 3 (= — 3zy%)8
in Fig. 1. The second-order achromat layout is the same, ) Ok, ,
except the octupoles are absent. thin octupole: f3=0, fi= -7 (z* — 62%9% + v*)
For the second-order achromats, correction terms (due to  gector dipole:
the finite bending of the dipoles) to the well-known formu- 1 sL 3 L 2
lae for the sextupole strengths are derived. For the third- f3 = Y7 sin® Y Ay sin = R ng P
order achromats, analytic expressions for the five octupole 1 L 2L .,
strengths are given. The quadrupole, sextupole and oc- ——Cos = zP; + — (1 )
. 4 R R R
tupole magnets are assumed to be thin-lens elements. The 1 I 22 6 L L
dipoles are assumed to be sector magnets filling the drift ~3 sin — b xP2 SR & R (cos R + sin? —ﬁ)
spaces. More details of the analysis have been reported T I
elsewhere.[9] We thank Y. Yan, H. Ye, J. Irwin and A. +Rsin? 3 P.P? - 2sin? ——ésm % a:Pzé
Dragt for their help. 2 2
R .2 L , 2L 2 . L 2
——2-5111 2R R P6 (L—RSIDE) Py6
II. ANALYSIS '
—icﬁ (sin® L + sm )+ (2 —cos -I-'-) sin? L P.§?
We first calculate the Lie maps of each of the magnet 2 R R™F
elements. The map for a magnet element of length L is £ 2Ly s,
gven by e~L*H: where H is the Hamiltonian of the element. ( —6L +2Rsin’ T SR sm ) §
For a particle with § = AP/P,, we use (we ignore the path- _ :1:2 o3 L zP, . L . 2L
length dynamics) fo=|-ggsi g~ g gty
. 1 ' R L R L
thin quadrupole: HL = —= (22 —y®)(1 - 6 + 62 22 2 24 p2?
nq p 2Fk( X ) ~5 °os RstP TErg y (P +F))
. Sk 3 ) 3
thin sextupole: HL = 3 (z° — 3zy*)(1 - &) +1-"72}§2 3L +( + cos = R) sin Q_LESIn% zP2§
. Corr _ Ok
thin octupole: HL—T( o2y? + o) +[% (3_‘_4005%_*_5005_21_5_) P35
P2 P2 2 P2 P2
sector dipole: H—-—+—y+—m——-£—+ﬁ—1—t—-ﬁ P36 2L R 2L 2c] .2 L
2 2R2 R 2R -+ Y sm-E + Z- (3 -+ cos _.—R-) PmPyé sin ﬁ
N 2 ) DL e 1,1
v 2R? R 8 2Rz 1B (sin® o sin ) z28% + Esin2 5 zP,6°
where R is the bending radius; F} is the focal length of 4 L
the k-th quadrupole; Si and Oy are the k-th integrated -= (1 +3cos —) sin? P262
sextupole and octupole strengths. Fringe fields are ignored. R I 2LR 1 "R
Given the Hamiltonian H of an element, we factorize the +[ sin —P2 + (cos = + ~ sin? —) 1:6] sin —62
element map as 2R7¥ R
e—L:H: = e:H2+H3+H4+«-: —_ e:_fg:e:fsze:f4:e:0(X5): , (2) -~—I§Sln2 % P 53 + i (6L Rsm % — 3RBRsin _)

(3)
Having factorized the maps of all magnets, the total map

Meen of a cell is obtained by multiplying and concatenating
the maps of the component elements [3,9):

Presented at the 16th IEEE Particle Accelerator Conference (PAC 95)
and International Conference on High-Energy Accelerators, Dallas, Tezas, May 1-5, 19

ISTRIBUTION OF THIS DOCUMENT IS UNLIMITED d,n/




N
Meen = H(e:f{;:e:fs":e:f::) = e:hg:e:haze:h4:e:O(X5): , (4)
i=1
where
N . N a
R = ehat = He:f.}: , hy = Zf;
S =1 i=1
h4—-2f4+ Z I3, A . ()
i=1 J>1—1

In Eq.(5), fi means fi(X) = f{(Rn—:X) with Ry the
linear map from the last element to the i-th element. The
map of the N-cell achromat is M = MZ;. The number of
cells NV is so that y. ., (the total phase advances in « are
y) are both multiples of 27, but avoid resonances.

We now make a canonical coordinate transforma-
tion from (z,Pry,Py) to (¢z,Az,by, Ay) by z =

V248 sinde + 16, Pr = 4 /%(coscﬁz — agsing;) 4+ 16,
and similarly for y and Py without the 7 and % terms,
where 8, ,,0,4 and 5,7 are the Courant-Snyder and the
dispersion functions [10]. The linear map generator k2 be-
comes hy = —pg Az — tiyAy — 38.6° where and & is the
momentum compaction factor. We then decompose b, in
terms of the eigenmodes of :hy: as [5]

hp = Z C:bcd,e!ade’ e),
a+-btct+d+e=n
I aécd, e) = . A£a+b)/2 A§c+d)/2 pila—b)dz gilc~d)¢= ge (6)

To reduce a nonlinear map to its normal form, it can be
shown [11] that (in the absence of resonances) {2} all the
non-secular terms can be transformed away via a symplec-
tic similarity transformation leaving only terms witha = b
and ¢ = d; i.e., terms depending on Az, A, and § only. In
particular, we have

h3 = Ci100,1426 + Coo11,1449 + Clooo,30°

ha = Cro0,043 + Cooz,045 + Clin1,04z4y

+Ct100,2426% + Clor1,2448° + Choo a6 - (7)

ITI. SECOND-ORDER ACHROMATS

For a second-order achromat, we follow Eqgs. (6-7) and
find the normal form of the unit cell is given by ks of Eq. (7)
where

quads
0?100,1 = E [2;, AIcﬂ(k)] Be(k) + we ,
=12
quads
A D P ) TG R
k=1,2
and dipol
ipoles |
Wy = k;2 2(R){ﬁtc(k) [ R-{-cot%
n( ) &

L L
R — 7' (k) cos ﬁ] + 20, (k) {1 —cos 5

n(k) ) L L
+—§-cos§+77(s)cos-1-_2-ootR
(k)

+'y¢(k)R[—cos£tan L_ —=*~ ¢0s = cot =

L
R 2R R R R

+(cos TI;- + %-sec2 -2%)77’0::)] } ,

dipoles 1 L L
Wy = ;2 §1y(k)R[sm R B n(k) sin o

(- cos 3] ©

The lattice functions are evaluated at the two quadrupoles
in Eq. (8) and at the ends of the two dipoles in Eq. (9). In
the limit of weak bending with €; = -ﬁ < 1, we have

D
we 1Y a5 (5) + 37 () 3L () — 20(5))

D
wy = e 3 29I (s) ~ 2n(s)) - (10)

To form a second-order achromat, we set the two C-
coefficients to zero, and obtain

S = 1 By(2wz + B=(2)wy
)F T n(D)[B(1)8y(2) — B=(2)8,(1)] ’

S, = 1 _ ﬂy(l)wx + ﬂz(l)wy . (11)
M2)F2  1(2)[B2(1)8y(2) — B=(2)5y(1)]

The first terms usually dominate and give the well known
results. The correction terms with w, and w, are normally,
but not always, small.

IV. THIRD-ORDER ACHROMATS

We also studied the case of a third-order achromat. An
algebraic program using Mathematica was developed to do
the analysis. Here, we only report our results. The normal
form of the third-order generator for a unit cell is given by
Eq.(9) with

Claop0 = —3 Z Bz(k)?Ok + wss
k—

3
Ciimo = 35 Z Bz (k)By(K)Ok + way ,
k=1
35
Coozz,0 = ~3 > By(k)?Ox + wyy
k=1 -
35
Cliso2 = ~5 >~ B (k)n(k) Ok + wza
k=1

335
03011,2 =3 Eﬂy(k)ﬂ(k)ok + Wyd , (12)
k=1

and (when ; = § < 1)

wz:—csc'—(2+3c°SI‘2)H 4ﬁx() -

D
g > a(s)




1 3pz
+ '8' csc 2

_Hfi

S
3
5 +2cos —g‘i)Zsfﬁz(sW ,

(3cos

Wey = '—"Z'Yz(s)’)"y(s) - —OOt—_Z‘Saﬂm(s) ﬁy(s)

—csc( + py) csc( —uy)smz;zy}_:.—iﬁ,c(s)ﬁy(ee)2

+ [CSC( + py) — csc(-— — ) —esc £2 Z gzg;]

S
x5 [ISVEGBS) ,

3L~ , 1S, 2
wyy =~ Zvy(s) + ﬁxssﬁz(s)ﬁy(s)
[4cot-2—+s1n,u,_.csc( +,upy)csc(—-—,uy)}

+8 [4csc—2-+csc( +ﬂy)+csc(— ‘l‘y)]

S
X H Ssv/Bz(8)By(s) ,

3L 2 7 2 2 1 g
Waa 2 =7 3 %a()1' ()% = D Ba() g7 — Seba(s))

S 2
Fpotie 3 [0k — 5.0
S
+csc g Hﬂz(S)(g%: = S5:B2(s))

S

+eso 223" 226, @0n()(S1n(1) - 1) VEDED

1,2

+ cot B2 Z Sn(s)(Ssn(s) — —)ﬂz(s)

Wya X —7 z:'yy(s)n'(s)2 + Eﬂy(s)(ﬂ;ﬁ: = SsP:(s))

s 2
+% cotp,y ; [ﬁy(s)(é-;;—; - Ssﬁz(s))]

s
+€SC fty H ﬁy(S)(E%r — 8sP=(s))

—escka Z 2 g, @ma)(Sin(1) - —)\/‘ﬁ,mb 0

__1_ cot L2 Z San(s)(Sen(s) — 7 )ﬁx(s)ﬁy(s)
(13)

Exact expressions of the w-coefficients are too lengthy to
be included here.
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Figure. 1. Unit cell of an achromat layout.

The required octupole strengths are such that the five C-
coefficients in Eq. (12) are equal to zero. For the case when
two of the octupoles are located next to the two sextupoles
and the other three are at the 1 3 3, and the 1 locations of
the two bending magnets, we find

o a+b 2~81(c+d) 03~81(c—d)

1= 863D’ =T 2fD ° = T 27D
a—b 128e

04_6f3D’ 05‘3(2f2—1)D’

a = 2f(1360 — 22846 % — 74476 f* + 695809 f°

—1438146 % + 1200096 f1° — 326592f1?)
= —352 — 33602 + 233290 — 1070910

+1917603f% — 1364850 1° + 36158412 |

c=6f(—42 + 10762 — 7400 f* + 16306f° — 14368 5%
+4032£1%) ,

— 446411

e = —368 + 10536 f2 — 92342 f* + 307222f% — 470547 %
+33064212° — 81648112 |

D = (4f% — 1)2(37% — 4)(10 — 17372 — 261f* + 324f°)[32 .
(14)
We have defined the dimensionless parameter f = "’—? and

have assumed that €; = § < 1 and |B322| « 1.
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