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Quantitative analysis of cost savings and occupants’ preferences in grid-interactive 

smart home operation 

Many utility companies in the United States have introduced Time-of-Use (TOU) rates for homeowners 

with the goal of regulating electricity consumption during peak hour. The electrical appliances in homes 

include various thermostatically controlled devices, such as Air Conditioners (AC) for thermal comfort, 

and non-thermostatically controlled devices such as clothes washers. As a result, homeowners face the 

complicated challenge of economically operating multiple electrical appliances in their homes while 

maintaining comfort and convenience. This is usually due to the lack of an explicit understanding of the 

correlation between cost saving and the users' comfort. To understand the correlation, this paper is designed 

to construct a framework by integrating three major components: a multi-objective optimization method 

accommodating multiple competing goals with different weights, a learning-based system modelling 

approach describing the dynamics and thermal coupling effects of appliances, and a novel comfort index 

method differentiating preferred and acceptable thermal comfort. Our proposed framework can allow the 

indoor air temperature to fall into the "preferred" range with a marginal cost increase. The simulation result 

shows an additional 8 hours for the preferred thermal comfort can be achieved with only a cost increase of 

1.77%. 

Nomenclature 

Parameters Variables 

α Lumped parameter represents the thermal 

properties of the water tank. 

𝐶! The tariff at the time slot 𝑘. 

𝑇"#$% , 𝑇"#$% Maximum and minimum indoor air 

temperatures inside the house. 

𝐷&' The number of time interval delay allowed 

for the appliance 𝑖 for each energy phase 𝑗. 

𝑇(", 𝑇(" Maximum and minimum hot water 

temperatures inside the water tank. 

𝑑&), 𝑑&* Deviation variable used for goal 

programming.  

𝜏+, 𝜏,, 𝜏- Parameter for the RC model of the HVAC 

system represents the thermal properties of the 

home envelop and the indoor air.  

𝑛& The total number of energy phase of the 

appliance 𝑖.  



𝐴, 𝑉 Surface area and the volume of the water tank. 𝑃&' The power consumption of the appliance 𝑖 

with energy phase 𝑗. 

𝑎+ Parameters associated with the solar irradiation 

for the RC model of the HVAC system. 

𝑆&'!  System variables. Auxiliary variable  

𝑚 The total number of time slots over the 

scheduling period. 

𝑇.! , 𝐺! Weather information used for RC model. 

Outdoor air temperature and solar irradiation 

at time slot 𝑘. 

𝑀+, 𝑀, Constant numbers used to indicate the distance 

between acceptable and preferred temperature.  

𝑡&' Operation time of the appliance 𝑖 with 

energy phase 𝑗.	 

𝑁/0 The total number of non-thermal appliances in 

the scheduling smart home. 

𝑇&1!  Interior wall surface temperature at time slot 

𝑘.	 

𝑃"#$% The power of the HVAC system. 𝑇&/!  Indoor air temperature at time slot 𝑘. 

𝑃2&3&0 Maximum power consumption at any given 

time over the scheduling period. 

𝑇4..3!  The air temperature of the room where the 

water heater is located.  

𝑃(" The power of the water heater. 𝑇("!  Inside water temperature of the water heater 

at time slot 𝑘. 

𝑞 Parameter associated with the HVAC system 

output for the RC model. 

𝑇𝑃&! Set of binary variables generated by user 

time preference intervals for the appliance 𝑖.	 

𝑇&51$2 Ideal indoor air temperature. 𝑢"#$%!  System variables. The on/off signal of the 

HVAC system at time slot 𝑘. 

𝑇&/210 Inlet water temperature, the water temperature 

of the city cold water.  

𝑢("!  System variables. The on/off signal of the 

water heater at time slot 𝑘. 

Index 𝑊%(,'
!  Water withdrawal from water tank due to the 

water usage of the energy phase 𝑗	of the 

clothes washer. 



𝑖 Index of non-thermal appliances/ index on 

deviation variables. 

𝑥&'!  System variables. The on/off signal of the 

appliance 𝑖 with energy phase 𝑗 at the time 

slot 𝑘. 

𝑗 Index of energy phase of the appliance 𝑖. 𝑧+, 𝑧, Variables related to the thermal comfort.  

𝑘 Index of time slots over the scheduling period.  Intervals 

  𝑈& Time preference interval for the appliance 𝑖 

given by the homeowner over the scheduling 

period. 

1 Introduction 

As renewable power generation brings in more variability to grid operation, utilities have begun to offer 

dynamic tariffs, such as time-of-use (TOU) rate, critical peak pricing (CPP), and real-time pricing (RTP) 

(Sharifi, Fathi, and Vahidinasab 2017), to avoid generator use (frequency) fluctuation. To utilize such tariffs and 

optimize the control and coordination of flexible loads in buildings, a few grid-interactive building (GIB) 

operational frameworks (Katipamula et al. 2006; Marzband et al. 2018; Wang et al. 2022) have been developed, 

although they are still in the laboratory or field-testing phases. With the increased use of the Internet of Things 

(IoT) devices and smart meter technology, Home Energy Management System (Home-EMS) has become 

popular as one of the operational frameworks in GIB. In Home-EMS, optimal operation of appliances can be 

automatically assigned under dynamic tariffs. Although some Home-EMS frameworks have been shown to be 

effective in reducing energy costs and maintaining an acceptable level of comfort in spaces, the trade-offs 

between electricity costs and user’s meaningful satisfaction are not well understood. For example, in (Joe 2022), 

(Wang et al. 2022), in order to achieve the maximum cost saving, the indoor air temperature was kept around 

the upper (or lower) limit of the comfort bound for a long period of time, which may not be preferred for users 

in practice. As a consequence, frustrated users may override their thermostats with more unnecessarily 



aggressive set points, or even shut down the controls permanently, missing cost-saving opportunities. Therefore, 

it becomes critical to understand the correlations between cost savings and occupant trade-offs in thermal 

comfort and convenience. 

For the analysis of comfort and cost correlations, three major components are required, including 1) a 

multi-objective optimization method capable of accommodating multiple competing goals, 2) an effective 

learning-based modelling approach capable of describing the operation dynamics of participating appliances, 

and 3) a meaningful comfort index which is capable of classifying user’s thermal compromise. The thermal 

compromise here refers to the total amount of time that the indoor air temperature is not within the user’s 

preferred temperature range, but within the acceptable range. The thermal appliances in this study are the 

appliances, such as the AC system and the electric water heater, whose thermal behaviour govern their outputs 

and run time. Non-thermal appliances have fixed power output and run time that can operate at different times 

of the day. The contribution of this study is an impact analysis of user’s electricity cost and thermal comfort 

using a new comfort index and integrated framework to facilitate the optimal operation of appliances. 

This study aims to develop a systematic framework that analyses the impact of user trade-off decision 

on electricity cost and comfort by integrating goal programming, learning-based RC network models, and a 

novel comfort index. Specifically, Section 2 provides the literature review. Section 3 discusses the formulations 

of the proposed framework. Section 4 contains detailed information and specifications about the appliances for 

a case study. It also illustrates data acquisition techniques. The results of the test cases are presented in Section 

5, along with an analysis of the cost savings and comfort sacrifices associated with weather and user 

preferences. Section 6 concludes the study.  

2 Literature Review 

The literature review and proposed approaches of the three major components in the framework design are 



introduced in this section. 

2.1 Multi-objective Optimization 
Multi-objective optimization (MOO) is a technique for resolving conflicts between competing 

objectives. Maintaining thermal comfort for a longer time means the cost of Heating, Ventilation, and Air 

Conditioning (HVAC) system operation will increase. Therefore, improving user thermal comfort and reducing 

electricity costs are two conflicting goals of Home-EMS, making it a perfect candidate for MOO. To solve 

MOO, we need to make a trade-off among a set of solutions rather than a single solution, because finding an 

optimal solution for one object may hurt the other if the objectives are conflict. A multi-objective optimization 

strategy should provide a set of solutions that can help users make decisions. Several works on multi-objective 

optimization for Home-EMS (Mostavi, Asadi, and Boussaa 2017; Izawa and Fripp 2018; Veras et al. 2018; 

Rocha et al. 2021; Yahia and Pradhan 2020; Chegari et al. 2021) have been conducted. Among these studies, 

(Mostavi, Asadi, and Boussaa 2017; Izawa and Fripp 2018; Veras et al. 2018; Rocha et al. 2021; Chegari et al. 

2021) addressed the optimization problem using the multi-objective evolution algorithm (MOEA). 

Nevertheless, the efficiency of the MOEA needs to be improved to handle large-scale MOO problems. In 

(Yahia and Pradhan 2020), the authors used a deterministic optimization called compromise programming to 

solve the optimal scheduling problem with three objectives. However, the study did not include the 

thermodynamic behaviour of the HVAC system and the water heater. Although the authors considered user 

convenience, peak load, and electrical cost objectives, they did not involve the occupant thermal comfort. In 

addition, indoor air temperature can drop by 2–4 ℉ in 10 minutes, depending on many factors, such as the 

capacity of the AC and the outside weather condition. Therefore, the time interval chosen in the optimization 

must be short enough to accommodate the thermodynamic behaviour, creating computational challenge. 

Moreover, the time-delayed cycling of each non-thermal appliances can lead to more cost-saving opportunities, 

but make the problem more difficult to solve, details discussed in Section 3. Therefore, if both 



thermodynamically controlled and non-thermodynamically controlled devices are included, the number of 

decision variables becomes significantly large. Goal programming demonstrates a unique benefit when dealing 

with many decision variables of a MOO problem with conflicting goals. That is, goal programming converts 

the problem into a single objective function that can be solved using linear programming techniques (Gen et al. 

1989; Jones and Tamiz 2016). Additionally, goal programming allows for different weight combinations on 

each group of deviation functions, which corresponds to each objective in its final single objective function. 

Hence, by using goal programming we can study the trade-off between different weighting factors and solve 

the MOO problem for cost and comfort analysis in this study. This study is the first attempt of using goal 

programming for achieving optimal control and coordination among a complete set of typical home appliances 

in smart Home-EMS operation.  

2.2 Thermal Model for Thermal Appliances 
The second component is the scheduling of thermal appliances, which necessitates an accurate 

prediction of their thermodynamic behaviors. The accurate prediction will enable wise and meaningful 

decisions to achieve the lowest operating costs while managing thermal comfort. Numerous studies have been 

conducted to model the thermodynamics behaviors in buildings, ranging from sophisticated physics-based 

models (Wang et al. 2022; Berthou et al. 2014; Ogunsola, Song, and Wang 2014) to pure data-driven black box 

models (Attoue, Shahrour, and Younes 2018; Mtibaa et al. 2020; Xu et al. 2021). Among all the models, an 

important subset of building thermal models comprises the thermal network models derived from the standard 

RC (resistance-capacitance) approach, which is capable of simulating the dynamics of indoor air and interior 

wall surface temperatures. Among all the available RC models in the literature, they range from simplified 

1R1C to complicated 6R2C used in (Berthou et al. 2014) or 5R4C models used in (Ogunsola, Song, and Wang 

2014). It is likely that the more temperature nodes considered, the more accurate the model, but this may require 

additional computational time and sensor installation for each node measurement. A 2R2C model previously 



used in (Wang et al. 2022) can sufficiently capture the thermal dynamics while remaining simple enough for 

parameter identification. Hence, the 2R2C model is selected to simulate the thermodynamic behaviors for the 

HVAC systems. Moreover, the RC network concept can be used in modelling the water heater. The 1R1C 

model is widely used in literature (Goh and Apt 2004; Shaad et al. 2012; Kepplinger, Huber, and Petrasch 2015) 

and is therefore adopted in this study. Importantly, the RC-based models can incorporate additional heat gains 

into the energy balance equation. This is a particularly useful feature for modelling thermal coupling effects 

between appliances, as heat transfer interactions are easy to establish. 

2.3 Thermal Comfort index 
Finally, the last major component, i.e., a comfort index method that is capable of classifying thermal 

compromise, is also necessary for this study. Multiple studies used upper and lower bounds on the constraint 

of indoor air temperature in typical single objective optimization problem (Kampelis et al. 2019; Zhang et al. 

2017; Perez, Baldea, and Edgar 2016), which is an intuitive way to avoid discomfort while minimizing cost. 

This approach is illustrated in green dashed line (1) in Fig.1, where the x-axis represents temperature and y-

axis represents the comfort reward, i.e., the summation of the comfort index that the model receives when the 

temperature varies. Thermal compromise cannot be evaluated in this case, and temperatures that fall within 

different comfort ranges are not distinguished as long as they stay within constraints. Moreover, two additional 

methods from the literature that address thermal comfort while minimizing energy costs are demonstrated in 

the figure. The brown dashed line (2) which denotes one type of thermal comfort reward strategy, is the negation 

of the sum of temperature differences squared, i.e., ∑ −$𝑇!"#$% − 𝑇&'(#)&
*+

,-.  (Izawa and Fripp 2018). The 

major drawback of this method is that it penalizes for any deviation from the ideal set point in the indoor air 

temperature. In other words, the only preferred level of comfort is a single temperature, not a range of 

temperatures. As a result, this method is not desirable because the on/off operation of home HVAC systems is 



not intended to maintain a constant temperature set point. Otherwise, frequent HVAC system cycling may 

occur, which is not desired for safe operation. The blue dashed line (3) in Fig.1 represents the thermal comfort 

strategy used in (Nagpal, Staino, and Basu 2020). The authors used the non-negative real-valued slack variable 

𝑈	to penalize over-achievement of the upper bound and under-achievement of the lower bounds of indoor 

temperature, respectively. Similar to the first method, this method does not penalize as long as the temperature 

remains within the bounds. However, the authors’ purpose of using the slack variable is to avoid infeasible 

cases in optimal search by using penalties to allow temperature to exceed the bounds instead of terminating the 

optimal search as is the case in the first method. 

Unlike the comfort reward method used in the literature, e.g., the methods listed in line (1)–(3) in Figure 

1, our proposed comfort index provides different rewards for temperatures in the preferred range versus the 

acceptable range, as shown by the solid red line (4). The proposed approach allows the optimization algorithm 

to be tolerant of temperatures outside the preferred range when temperature exceed the user’s preferred comfort 

level but remain within an acceptable range. The preferred temperature range for each time slot can be given 

by the user or derived from a meaningful comfort standard such as a Predicted Mean Vote scale (Fanger 1972) 

or an adaptive comfort model using machine learning algorithm (Aparicio-Ruiz et al. 2021). Sequences of two 

binary variables are introduced in this paper to obtain this purpose, as detailed in Section 3.  



 

Figure 1 Schematic of comfort reward objective. 

3 Methodology 

This section introduces the mathematics formulation of the proposed framework used in the smart Home-EMS. 

We first describe the notation and decision variables used in this study in Section 3.1. We then describe each 

device and its associated constraints in the 3.1.1, 3.1.2, and 3.1.3 subsections below. Section 3.2 discusses two 

conflicting objective functions, followed by the Section 3.3, which describes a goal programming approach for 

solving multi-objective problems. Finally, Section 3.4 contains a summary of the mathematical formulation for 

the problem. 

3.1 Smart Home Appliances 

To model the operation of each appliance, we use a series of binary variables to represent their on/off control 

signals throughout the scheduling period. Before discussing each model of appliance, we introduce the notation 

first. Let 𝑖 ∈ {𝐼 = 1,2, …𝑁/0}  denotes the number of all non-thermal appliances in a smart home, 𝑗 ∈ 𝐽 =

{1,2, …𝑛&} denote sequential energy phase of each appliance 𝑖, and 𝑘	 ∈ 	𝐾	 = 	 {1, 2, . . . 𝑚} denotes each time 

slots of scheduling period, of which 𝑁/0 , 𝑛& ,	and 𝑚 are the number of non-thermal appliances, the energy phase 



of non-thermal appliance	𝑖, and the total time slots, respectively. 

3.1.1 Non-thermal Appliances 

Non-thermal appliances are a group of appliances that can be turned on at any time of the day. However, 

once they are turned on, the output and run time depend on their energy phase, which is a subtask in the 

operation of a non-thermal appliance that runs for a period and consumes a specified amount of energy. For 

instance, washing clothes is typically divided into three phases: washing, rinsing, and extraction. Hence, the 

clothes washer has three energy phases. Different energy phases of the same appliance may consume a different 

amount of power and complete operation at a different period (a more detailed discussion of energy phases can 

be found in (Sou et al. 2011)). 

The decision variable which represents the on/off signal for energy phase 𝑗 for appliance 𝑖 at each time 

slot 𝑘 is 𝑥&1% . Besides, we use the auxiliary variables 𝑠&1%  to aid the construction of constraints to regulate the 

on/off state of non-thermal appliances. Constraint (1) is used to regulate the operation time for each energy 

phase 𝑗  of appliance 𝑖 , where 𝑡&1  operation time for the energy phase, which depends on the appliance's 

specification (Jiang and Song 2022). 

>𝑥&'!
3

!7+

= 𝑡&' 			∀𝑖, 𝑗, (1) 

	 To further regulate the operation of energy phases, the following constraints, which utilize the binary 

nature of 𝑥&1%  and its auxiliary variable 𝑠&1% , are used.  

𝑥𝑖𝑗𝑘 + 𝑠𝑖𝑗𝑘 ≤ 1			∀𝑖, 𝑗, 𝑘, (2) 

𝑥&'!*+ − 𝑥&'! ≤ 𝑠&'! 			∀𝑖, 𝑗, 𝑘 = 2,… ,𝑚, (3) 

 

𝑠&'!*+ ≤ 𝑠&'! 			∀𝑖, 𝑗, 𝑘 = 2,… ,𝑚, (4)	



𝑥&'! ≤ 𝑠&'*+! 			∀𝑖, 𝑗 = 2,…𝑛& , 𝑘 = 1,… ,𝑚, (5)	

0 ≤>I𝑠&'*+! − J𝑥&'! + 𝑠&'! KL
3

!7+

≤ 𝐷&' 			∀𝑖, 𝑗 = 2,… ,𝑚, (6) 

𝑥3'!
! ≤ 𝑠/'"#

! 			∀𝑘. (7)	

where constraints (2) and (3) force the auxiliary variable 𝑠&1% 	to be 1 once energy phase 𝑗 of appliance 𝑖 turns 

off (i.e., 𝑥&1%  to be 0 and 𝑥&1%2. to be 1). Based on constraints (2) and (3), constraint (4) ensures each energy 

phase of the appliance only executed once. The combination of these three constraints along with the 

constraint (1) ensures the energy phase 𝑗 is uninterruptable. Similarly, constraint (5) ensures energy phase 𝑗 

turns on only after the previous energy phase turns off. Constraint (6) regulates the time delay between 

energy phase 𝑗	and 𝑗 − 1 should be no less than time slots 𝐷&1. Moreover, constraint (7)ensures that the first 

energy phase 𝑗3 of appliance 𝑚 turns on only after the last energy phase 𝑗2. of appliance 𝑛, which aims to 

mimic real-life scenarios such that the clothes washer not running after the dryer. Finally, by using a series of 

binary sequences 𝑇𝑃&%, the user time preference constraint on each appliance 𝑖 is shown in (8). In this study, 

the user time preference, which specifies the time interval (referred as 𝑈) within which appliance 𝑖 should be 

operated, is assumed to be provided by the user. given by:  

x45, ≤ TP4,   ∀i, j, k. (8) 

 

3.1.2 HVAC System 

For an HVAC system in the smart home, the on/off signal for each time slot  𝑢!"#$%  is a binary variable whose 

output depends on the home thermal dynamics. To accurately capture the home thermal dynamics, a simplified 

second-order thermal network model (i.e., a 2R2C model (Wang et al. 2022)) is adopted, as expressed by  



𝑇&1!)+ − 𝑇&1!

Δt =
1
τ+
J𝑇.! − 𝑇&1!K +

1
τ,
J𝑇&/! − 𝑇&1!K, (9) 

𝑇&/!)+ − 𝑇&/!

Δt =
1
𝜏-
J𝑇&1! − 𝑇&/! K +

1
𝜏-
(𝑎+𝐺!) +

1
𝜏-
𝑞𝑢"#$%! , (10) 

where 𝑇&/, 𝑇&( ,  and 𝑇6  represent the temperatures of the indoor air, interior wall surface, and outdoor air, 

respectively; 𝐺	represents the solar irradiation; 𝜏. represents the time constant of the virtual building envelope; 

𝜏7 represents the time constant of the air inside the building; 𝜏*represents the effect of the virtual envelope 

combined with the air; 𝑎.	represents the effect of the solar irradiation on the building; and 𝑞 represents the 

HVAC system’s scaled cooling capacity.  

The indoor air temperature is regulated by the following constraint during the scheduling period, as 

expressed by  

𝑇;<=> ≤ 𝑇&/! +
Δ0
?$
J𝑇&1! − 𝑇&/! K +

Δ0
?$
(𝑎+𝐺!) +

Δ0
?$
J𝑞𝑢"#$%! K ≤ 𝑇"#$%			for	𝑘 = 1,2, … ,𝑚 − 1, (11) 

where 𝑇!"#$ and 𝑇!"#$ are the acceptable lower and upper temperature bounds on indoor air temperature 𝑇&/. 

Additionally, to quantify thermal comfort and account for temperature changes, the following constraints are 

used. 

𝑇"#$% − 𝑇&/! ≤ −𝑀+𝑧+!			∀𝑘, (12) 

−𝑇"#$% + 𝑇&/! ≤ −𝑀,𝑧,!			∀𝑘, (13) 

𝑧+! , 𝑧,! ∈ {0,1}			∀𝑘, (14) 

where 	𝑀.	(	𝑀*)  is a constant number that indicates the distance between the acceptable lower (upper) 

temperature bound and the preferred lower (upper) temperature bound; 𝑧.% and 𝑧*% are two sets of binary decision 

variables to distinguish between preferred and acceptable temperature ranges. To better understand how 𝑧.%and 𝑧*% 

work, the concept of reward 𝑧.% + 𝑧*% is considered. Three examples with different rewards are shown in Figure 

2, where the x-axis represents different time slot, and the y-axis is the indoor air temperature. As illustrated in 



the figure, 𝑧.% and 𝑧*% will change their values based on where the indoor air temperature drops over the 

different temperature ranges of time slot 𝑘. If indoor air temperature is between 𝑇!"#$ and  𝑇!"#$ +𝑀., but 

not within the preferred range, the agent will get normal reward, i.e., 𝑧.% = 0, 𝑧*% = 1 in this scenario, as shown 

in Example 1. Similarly, if indoor air temperature is between 𝑇hvac and 𝑇hvac −𝑀*, the reward is still the same, 

and 𝑧.% = 1, 𝑧*% = 0	 as shown in Example 2. Once the temperature falls within the preferred range, the agent 

gets the highest reward, i.e., 𝑧.% + 𝑧*% = 2, as shown in Example 3. In this study, we assumed that both the 

acceptable and preferred lower and upper temperature bounds are given (i.e.,	𝑇;<=>  , 𝑇"#$% , 𝑀., and 𝑀*  are 

given). 

 

Figure 2 Comfort reward examples. 

3.1.3 Electric Water Heater and the Coupling Effects 

Hot water is used in many other appliances: for example, clothes washer withdraws hot water from the hot water 

tank. The water tank releases heat to the indoor air space, the temperature of which is determined by the HVAC 



system. Therefore, accurate prediction of water heater behavior taking into account the above thermal coupling 

effects is important for the operation of all appliances. The RC network concept introduced in Section 2 is also 

widely used in the water heater modelling. In addition, the physical model can be easily modified to model the 

coupling effects between the water heater and other appliances. In this study, the modelling method in (Shaad 

et al. 2012) is adopted and modified to capture the dynamics of the hot water inside the tank. For the electric 

water heater, the on/off signal at each time slot 𝑢<!%  is a binary decision variable whose output is depending on 

its thermodynamic behavior. In this study, once the clothes washer is in the washing or rinsing phase, i.e., 

𝑥$<	1% = 1 for 𝑗	 = washing or rinsing, the hot water is withdrawn from the tank, and the tank is replenished with the 

same amount of city cold water. Additionally, we assume the water heater is exposed to the indoor air 

temperature, and the changing indoor air temperature 𝑇&/  influences the thermal leakage of the tank. The 

modified model is discretized as follow:  

𝑇("!)+ − 𝑇("!

Δ𝑡 =
1
αX
𝐴
𝑅 J𝑇4..3

! − 𝑇("! KZ +
1
𝑉[>𝑥%('! 𝑊%('

/%&

%('

\J𝑇&/210 − 𝑇("! K +
1
α J𝑃("𝑢("

! K	 for	𝑘 = 1,2, … ,𝑚 − 1. (15) 

where	𝑇<!%  is the temperature of the water inside the tank at time slot 𝑘; 𝛼 is the lumped parameter equal to 

𝜌𝐶>𝑉; 𝜌, 𝐶>, 𝑉, 𝐴, and 𝑅 are the density of water, the specific heat of water, the tank volume, surface area, and 

its thermal resistance, respectively; In this study, we assume that once the hot water is withdrawn, cold water 

with temperature 𝑇&/)(0	will enter the tank, and 𝑇?66@%  represents the indoor air temperature at time slot 𝑘, which 

also equals 𝑇&/%  for the HVAC system. In addition, like the HVAC system, the water temperature is also 

regulated within a thermal comfort temperature range, 𝑇AB and 𝑇<! which are assumed to be given.   

3.2 Cost and Comfort Objectives 

There are two objectives in this study. The first is the cost of electricity, and the second is thermal comfort 



mentioned in Section 3.1.2. The electricity cost is inclusive of all non-thermal appliance operating costs 

∑ 𝑐%[∑ ∑ 𝑥&1%𝑃&1%
/@
1-.

CAB
&-. \@

%-. , the water heater costs ∑ 𝑢<!@
%-. 𝑃<! , and the HVAC system costs 

∑ 𝑢!"#$@
%-. 𝑃!"#$. 

Besides the electricity cost, we want to maximize the total comfort index ∑ 𝑧.%@
%-. + 𝑧*%. As discussed 

in Section 3.1, the total comfort index ranges between 𝑚 and 2𝑚 since the total number of time slots is 𝑚. For 

example, the optimization agent will earn 𝑚 points if all temperatures exceed the preferred temperature range, 

or it may earn 2𝑚 points if all temperatures remain within the preferred temperature range. Maximizing this 

objective function can be interpreted as maximizing thermal comfort or maximizing the reward that the agent 

can obtain over the scheduling period. The proposed comfort reward method is compared to other three methods 

in Section 5. Moreover, cost and comfort objectives are measured and quantified in different scales. The 

following section discusses the goal programming technique for resolving the uneven weight problem. 

3.3 Goal Programming Formulation 

In goal programming, two pairs of deviation variables 𝑑. and 𝑑* are introduced. Instead of using either cost or 

comfort as objective function, with goal programming, the objective function becomes:  

min 𝑧 =>𝑤&(𝑑&) + 𝑑&*)
,

&7+

, (16) 

where 𝑤. and 𝑤* are the weights correspondence with electricity cost and thermal comfort, respectively. To 

strike a balance between cost and comfort, we add the following constraints in the optimization problem:  

>𝑤&

,

&7+

= 1, (17) 

 



𝑓>CDE
target	cost − 𝑑+

) + 𝑑+* = 1, (18) 

𝑓>CFGCHE
target	comfort − 𝑑,

) + 𝑑,* = 1, (19) 

𝑑&) × 𝑑&* = 0			 ∀𝑖, (20) 

𝑑&), 𝑑&* ≥ 0			∀𝑖. (21) 

To ensure the effective control over the weights of each objective, constraint (17) regulates the sum of weights 

to be 1. To make sure that the distance between the objective on cost (comfort) and the target cost (target 

comfort) is normalized, constraint (18) (constraint (19)) is included. The target cost (target comfort) is the 

objective by solving the single objective optimization problem. Finally, constraint (20) and (21) indicate that 

𝑑D(𝑑2) will be zero if the other one is non-negative. By combining (16)–(21), the weights in the objective 

function represent the user’s intension on cost and comfort because the two objectives are normalized and sum 

of weights is constrained.  

3.4 Summary  

Based on the above discussion, we have the following formulation of the Home-EMS. The objective function 

is to minimize the deviation functions.  

min 𝑧 =>𝑤&(𝑑&) + 𝑑&*)
,

&7+

, (22) 

 

subject to the constraints of deviation functions in goal programming 

>𝑤&

,

&7+

= 1, (23) 

∑ 𝑐!I∑ ∑ J𝑥&'!𝑃&'K
/'
'7+

I()
&7+ + 𝑢("! 𝑃(" + 𝑢"#$%! 𝑃"#$%L3

!7+

target	cost − 𝑑+) + 𝑑+* = 1, (24) 



∑ (𝑧+! + 𝑧,!)3
!7+

target	comfort − 𝑑,
) + 𝑑,* = 1, (25) 

𝑑&) × 𝑑&* = 0			 ∀𝑖, (26) 

𝑑&), 𝑑&* ≥ 0			∀𝑖, (27) 

the constraints of time operation of non-thermal appliances 

>𝑥&'!
3

!7+

= 𝑡&' 			∀𝑖, 𝑗, (28) 

the constraints of sequential operation, uninterrupted, and non-restart properties of the energy phases, 

𝑥&'! + 𝑠&'! ≤ 1			∀𝑖, 𝑗, 𝑘,	 (29) 

𝑥&'!*+ − 𝑥&'! ≤ 𝑠&'! 			∀𝑖, 𝑗, 𝑘 = 2,… ,𝑚,	 (30) 

𝑠&'!*+ ≤ 𝑠&'! 			∀𝑖, 𝑗, 𝑘 = 2,… ,𝑚, (31) 

𝑥&'! ≤ 𝑠&'*+! 			∀𝑖, 𝑗 = 2,…𝑛& , 𝑘 = 1,… ,𝑚, (32) 

𝑥3'!
! ≤ 𝑠/'"#

! 			∀𝑘, (33) 

 the constraint of time delay for the energy phases, 

0 ≤>I𝑠&'*+! − J𝑥&'! + 𝑠&'!KL
3

!7+

≤ 𝐷&' 			∀𝑖, 𝑗 = 2,… ,𝑚, (34) 

the constraint of user preferences,  

𝑥&'! ≤ 𝑇𝑃&!			∀𝑖, 𝑗, 𝑘, (35) 

the constraint of the indoor air temperature controlled by the HVAC system to satisfy the user's thermal 

comfort,  

𝑇"#$% ≤ 𝑇&/! ≤ 𝑇"#$%			∀𝑘, (36) 

𝑇"#$% − 𝑇&/! ≤ −𝑀+𝑧+!			∀𝑘, (37) 

−𝑇"#$% + 𝑇&/! ≤ −𝑀,𝑧,!			∀𝑘, (38) 

the constraint of the water temperature controlled by the electric water heater, 



𝑇(" ≤ 𝑇("! ≤ 𝑇("			∀𝑘, (39) 

the constraints of power usage limitation, 

>>J𝑥&'!𝑃&'K
/'

'7+

I()

&7+

+ 𝑢("! 𝑃(" + 𝑢"#$%! 𝑃"#$% ≤ 𝑃2&3&0			∀𝑘, (40) 

the constraints of the decision variables of the thermal and non-thermal appliances, 

𝑥&'! ∈ {0,1}			∀𝑖, 𝑗, 𝑘, (41) 

𝑠&'! ∈ {0,1}			∀𝑖, 𝑗, 𝑘, (42) 

𝑢("! ∈ {0,1}			∀𝑘, (43) 

𝑢"#$%! ∈ {0,1}			∀𝑘, (44) 

𝑧+! , 𝑧,! ∈ {0,1}			∀𝑘. (45) 

4 Simulation Setup 

This section provides information and specification in the simulation study. In the simulation, we want to 

schedule each appliance for 24-hour operation with a 10-minute time interval. Hence, if 𝑘 ∈ 𝐾	 = 	 {1, 2, . . . 𝑚} 

denotes each time slot of scheduling period, then 𝑚	 = 	144. Three non-thermal appliances, namely a clothes 

washer, a clothes dryer, and a dishwasher, and two thermal appliances, an HVAC system and an electric hot 

water heater, are considered in the test problem. The water heater and the HVAC system have behaviors that 

are determined by the governing equations discussed in Section 3. The specifications for the water heater are 

adopted from (Shaad et al. 2012) and listed in Appendix along with the three non-thermal appliances. More 

detailed discussion of system specifications can be found in our previous published conference paper (Jiang 

and Song 2022), which serves as foundation of this extension work.  



The HVAC system, as mentioned in (46) in Section 3, is the appliance that depends on outdoor weather 

conditions. The outdoor air temperature 𝑇6 and the solar irradiation	𝐺 were obtained from the local weather 

station (Brock et al. 1995), (McPherson et al. 2007); The indoor air temperature and the interior wall surface 

temperature were collected in a one-story laboratory house located in Norman, Oklahoma. The house was 

constructed in the 1940s and had a total floor area of 1658 ft*. The value for each parameter associated with the 

𝑇6 , 𝑇&/, 𝑇&( , 𝐺 and the HVAC output 𝑞 were identified by using parameter identification techniques mentioned 

in (Wang et al. 2022), where the model training and validation using the HVAC operational data collected in 

different seasons in the laboratory house were also demonstrated. In this study, for the simplified model, we 

chose τ. = 3000 as the time constant for the house envelope, τ* = 50 as the time constant for the indoor air, τ7= 

200, 𝑎.	= 0.03, and 𝑞 = −2 determined using the average value of training results tested in the same laboratory 

house. Note that the parameters should be retrained for applications in different houses. The HVAC system's 

power consumption was fixed in the model, i.e., 𝑃!"#$ = 2500	𝑊.  

Non-thermal appliances were programmed to run according to the generous user time preference in the 

simulation, i.e., that the dishwasher was set to start its first energy phase after 7:00 p.m., while other appliances 

were set to start after 10:00 a.m. All non-thermal appliances were limited to complete their final energy phase 

prior to 10:00 p.m. to avoid disturbing the homeowner during the late-night hours. The homeowner was allowed 

to give the temperature range of the thermal appliances according to their acceptance and preference. The upper 

bound 𝑇<! and lower bound 𝑇<! of the water inside the water heater were 167 °F (75 °C) and 140 °F (60 °C), 

respectively. The acceptable upper bound 𝑇!"#$ and lower bound 𝑇!"#$ of the HVAC system were 75 °F (23.9 

°C) and 70 °F (21.1 °C), respectively. For the preferred temperature, the temperature range was between 72 °F 

(22.2 °C) and 74 °F (23.3 °C). 



To perform goal programming and solve a multi-objective problem, the target cost and target comfort are 

required. We started with solving single objective optimization problem, which aimed to minimize electricity 

costs and maximize thermal comfort, respectively. These two values were used as the target cost and target 

comfort indices in the goal programming problem. All baseline cases were simulated using weather data on 

August 1st 2020, corresponding to a neutral summer day, which was neither excessively hot nor excessively cold. 

The TOU rate used in the test problem was 0.03 $/kWh from 0:00 a.m. to 8:10 a.m. (off-peak hour), 0.05 

$/kWh from 8:20 a.m. to 1:10 p.m. (mid-peak hour), 0.18 $/kWh from 1:20 p.m. to 6:50 p.m. (on-peak hour), 

and 0.03 $/kWh from 7:00 p.m. to the end of the day (Jiang and Song 2022). 

All results in this study were obtained by using a desktop computer equipped with an AMD 12core CPU 

and 32GB RAM. We used Pyomo to create the integer programming framework (Hart et al. 2012),  (Hart et al. 

2017) and Gurobi (Gurobi Optimization 2021) was chosen as the solver. 

5 Results  

In this section, the scheduling results for the three baseline cases using single-objective optimization are first 

discussed and compared them with the result from the goal programming. We then show detailed goal 

programming results for all appliances with equal weights on both objectives. Finally, we perform impact 

analyses and discuss the factors that affect the scheduling results. 

5.1 HVAC System Results 

In this subsection, we focus on the trade-off between cost and thermal comfort. The scheduling result and the 

HVAC system operations are compared first. Subplots (a)–(d) in Figure 3 include 24-hour scheduling results 

for three baseline cases using the single-objective optimization and the one for goal programming with equal 

weights. The light purple bars in all subplots represent the HVAC on/off signal. The red curve in Figure 3 is the 



indoor air temperature and the green shaded area represents the preferred temperature range. Note that such 

preferred temperature range can be given by the user or derived from some comfort standards such as PMV 

index. Here we assume that users prefer a uniform temperature range, 72 °F (22.2 °C)–74 °F (23.3°C) and accept 

a uniform temperature range 70 °F (21.1 °C)–75 °F (23.9 °C) throughout the scheduling period. The three vertical 

dashed lines divide the scheduling time into four segments, with "shoulder" or the mid-peak hours starting in the 

morning and on-peak hour starting in the afternoon. In all cases, the initial indoor air temperature, the outside 

weather condition, and the specifications for all appliances were kept the same and the generous user time 

preference is used for all non-thermal appliances. 

Baseline Case 1 (BS1) can be found in Figure 3(a). In this case, we solved the optimization problem 

with only a cost-saving objective, i.e., minimizing ƒcost only. The total time that the indoor air temperature fell 

within the preferred temperature range is considered as the comfort time. The BS1 comfort time was 5.67 hours. 

The indoor temperature exceeded the preferred range at 1:00 p.m. and continuously remained within the 

accepted range after 1:00 p.m. The total cost of the appliances was $0.8512, which was the target cost for the 

Figure 3 Home-EMS simulation results for August 1st : HVAC system on/off signal and indoor air 

temperature profile. 



goal programming model. Appliance operation during off-peak hours accounted for 87.55% of the electricity 

cost, effective in avoiding operation during the mid-peak and on-peak hours.   

Figure 3(b) shows Baseline Case 2 (BS2). In this case, we solved the single optimization problem with 

a thermal comfort objective, i.e., maximizing ƒcomfort only. In this case, the HVAC system attempted to maintain 

indoor air temperature inside the green shaded area. Indoor air temperature fell between 72 °F (22.2 °C)–74 °F 

(23.3 °C) except for the first 80 minutes of the entire 24 hours. The total electricity cost for all appliances was 

$1.7028, with 45.03% from off-peak operation. The BS2 comfort time was 22.83 hours which was equivalent 

to 282 time slots, i.e., ∑ 𝑧.%@
%-. + 𝑧*% = 282. Compared with BS1, the comfort time of BS2 increased by 17.16 

hours and the electricity cost increased by $0.8516, twice that of BS1. 

Another way to satisfy thermal comfort while considering temperature constraint is to incorporate the 

reference temperature into the objective function. The single objective in Baseline Case 3 (BS3) is to minimize 

−∑ 	%-.
@ $𝑇&/% − 𝑇&'(#)&

*  only. As shown in Figure 3(c), the HVAC system made every effort to maintain 

temperature around 72 °F (22.2 °C). In BS3, the electricity cost was $2.9695, which was 3.49 times the cost in 

BS1. Maintaining a constant temperature and ignoring the dead band of the HVAC are not preferred operations 

of HVAC system because the frequent on/off signals are not safe for the HVAC system.  

Figure 3(d) is the optimal HVAC operation by using the proposed multi-objective optimization with equal 

weights on cost and comfort. Compared to BS1, the comfort time in this case was much longer, and resulted in 

higher electricity cost. The comfort time was shorter compared to the operation of BS2. In this case, longer 

HVAC operation in the morning and right before mid-peak hours made the indoor air reduced to 72.87 °F (22.7 

°C), which helped avoid running the HVAC during the mid-peak and the on-peak hours. 

Figure 4 summarizes the electricity costs and comfort times for all the scenarios discussed. The result 

of goal programming was not the most comfort strategy nor the lowest cost strategy, but a trade-off between 



the two. Compared with BS1, the electricity cost was slightly increased by 1.77% ($0.0151), but comfort time 

was extended to 8.16 hours. Compared with BS2 in Figure 3, the electricity cost was reduced by nearly half, 

49.12% ($0.8365), and the comfort time was reduced by 9 hours. 

 

Figure 4 Cost and comfort simulation results in different scenarios for August 1st. 

5.2 Detailed Operation Analysis for Goal Programming Optimization 

The 24-hour scheduling results for all appliances on August 1st  were obtained by using goal programming and 

shown in Figure 5, with equal weights assigned to cost and comfort, i.e., 𝑤. = 0.5 and 𝑤* = 0.5. Dishwasher, 

clothes washer, and dryer operations are listed in the top three subplots on the left. The water heater and the 

HVAC system operations are listed in the top two subplots on the right. The solid bars in the left three subplots 

represent the different energy phases for each appliance, while the solid bars in two subplots on the right 

represent the energy uses of water heater and HVAC. The red lines in the right two subplots represent the hot 

water temperature and indoor air temperature, respectively. Light blue shaded areas are the time slot associated 

with the mid-peak hour, and dark blue shaded areas correspond to the on-peak hour.  
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Figure 5 Detailed results for August 1st using goal programming with 𝑤+ = 0.5, 𝑤, = 0.5 

 

The operations of all three non-thermal appliance followed the generous user time preference, i.e. their 

operations were postponed until the evening to allow the other two thermal appliances to start in the morning. 

The water heater was connected to the clothes washer and had the pre-heating behavior—heated the water when 

electricity prices were low in the morning and then allowed the water temperature dropped slowly during the 

mid-peak and on-peak hours. When the clothes washer started in the evening, the water temperature decreased 

rapidly due to the hot water withdrawal but remained above the lower bound. Because the initial indoor air 

temperature was as high as 74.9904 °F (22.8 °C), the HVAC system ran for a longer period in the morning to 

bring the indoor air temperature within the preferred range and also ran right before the mid-peak hour to cool 

the space before price went higher. It is noted that the HVAC system scarified thermal comfort when the 

temperature exceeded 74 °F (23.3 °C) at 3:00 p.m. The solid bars in the last subplot stack up the total power usage 

of all appliances at each time slot, and the red step plot is the TOU rate. Most appliances avoided operating 

during on-peak hours. There was overlapping operation between appliances, and the peak load was 6000 W. 



The total electricity cost was $0.8663, of which the water heater, the HVAC system and other appliances 

consumed 31.17 % ($0.2700), 27.42 % ($0.2375), 41.41% ($0.3588), respectively. 

5.3 Impact Analysis of Weather Conditions and User Preferences 

In this section, we discuss the impact of weather conditions and user preferences on the simulation results 

obtained when using goal programming in Home-EMS. Through the discussion, suggestions are summarized 

to help homeowners with decision making based on their preferences. 

5.3.1 Impact of Different Weights and Weather Conditions 

A series of the two goal programming results, the electricity cost and comfort time, are calculated by 

varying the weights in three distinct summer days: a hot summer day in July, a neutral summer day in August, 

and a cool day in June. To ensure that the only factor affecting the results was the weather condition, we fixed 

the initial indoor air temperature and interior wall surface temperature for all simulations in this subsection, i.e., 

𝑇&/3 = 74 °F (23.3 °C) and 𝑇&(3  = 75.5 °F (23.9 °C). Because the changing interval of the weight was 0.1, there 

were a total of 27 results from 𝑤. = 0.1 to 𝑤. = 0.9.  

Figure 6 shows details for three different weather conditions, including outdoor air temperature, solar 

irradiation and the wind speed. Note that the cool day started with a relatively high temperature but ended with 

rapid temperature drop at around noon due to the impact of a cold front. 

 

Figure 6 Weather information including outdoor air temperature, solar irradiation, and wind speed in a hot 

day, a neutral day and a cool day. 
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 The solid and dashed curves in Figure 7 demonstrate the percentage increase in electricity cost savings 

and corresponding percentage declines in comfort time associated with the weight 𝑤. change, respectively, for 

three different weather conditions. Each weather condition had a unique switch point where the greatest cost 

savings improvement and comfort time loss occurred: 0.4 (𝑤. = 0.4) for a hot day, 0.5 for a neutral day, and 0.7 

for a cool day and the switch point got smaller as weather got hotter. Other weight changes only had moderate 

impacts on cost and comfort changes. This observation suggests that for users to achieve significant cost savings, 

a more aggressive weight on cost (𝑤.) needs to be assigned in neutral summer days than in hot summer days. For 

example, in our simulation results, choosing 𝑤. = 0.4 instead of 𝑤. = 0.3 could save 16.04% electricity cost on 

the hot summer days. However, making the same choice on the neutral summer day would only save 0.24% on 

cost. For temperature-sensitive users who care about thermal comfort more than the electricity cost, i.e., do not 

like to sacrifice preferred comfort time for too long period of time, a small weight on cost (𝑤.) should be assigned 

to hot summer days than on neutral summer days. On a hot summer day, for example, if the user chooses the 

weight 𝑤., which happens to be the switching point (for example, 𝑤. = 0.4 in this case), the comfort loss may 

be large compared to its adjacent smaller weight. 

 

Figure 7 Percentage of cost savings increase (solid line) and percentage of comfort time decline (dashed line) 

with respect to weight on cost, 𝑤.in hot, neutral, and cold summer days. 



5.3.2 Impact of User Preferences 

In addition to the generous time limit, used in the previous sections, two other scenarios, namely no limit and 

aggressive time limit, were also created and simulated to determine the impact of user preferences on the non-

thermal appliance usage. The no limit scenario refers as no limit on starting or stopping operation of non-thermal 

appliances, while the aggressive time limit scenario regulates all appliances must operate between 1:00 p.m. and 

7:00 p.m. Each of the three scenarios was simulated using preferred temperature settings, namely 72 °F (22.2 

°C)–74 °F (23.3 °C) for 24 hours. Equal weights in goal programming were also used to make the trade-off 

between cost and thermal comfort. For comparison, all simulation results used weather data on August 1st, 

2020 (a neutral summer day). 

 

Figure 8 Total electricity cost for different user time preferences. 

 

The simulation results are summarized in Figure 8. The bar plot in the figure demonstrates significant 

difference in electricity cost-saving. The cost in the aggressive time limit scenario is three times higher than the 

ones in the other two scenarios. The large cost difference between the aggressive time limit and the other two 

indicates that the time preference given by the users is one of the most significant factors affecting the cost of 

appliances.  



The total power consumption of all appliances at TOU rate for the three user time preference scenarios 

are shown in Figure 9. The total power consumption for each scenario varied with the user time preferences. 

Because the aggressive time limit forced more non-thermal appliances to operate between 1:00 p.m. and 7:00 

p.m., the appliances in this scenario consumed more energy during on-peak hours and less during off-peak 

hours, resulting in electricity cost that was in nearly three times higher than in the generous scenarios, as also 

shown in Figure 8. The no limit scenario avoided the mid-peak and on-peak hours, costing $0.2913 for non-

thermal appliances. In the generous time limit scenario, all appliances completed their energy phases before 

10:00 p.m., and long delays between energy phases were not allowed. Therefore, the first energy phase of the 

clothes washer began in the last 10 minutes of the on-peak hours, resulting in a slightly higher cost compared 

with no limit scenario. The operation of the clothes washer also affected the water heater, but the effect was 

marginal. Thus, compared to the scenario with no limit on user preferences, a generous time limit cost slightly 

more. It is clear that consumers’ energy awareness is a critical factor in achieving energy-efficient and grid-

connected homes. 

 



Figure 9 Total power usage under the same preferred temperature range when different user time preference 

𝑤. = 0.5, 𝑤* = 0.5 was used in the goal programming simulation. 

6 Conclusion 

In this study, by using a multi-objective optimization technique, a second-order thermal model, and a novel 

comfort reward strategy, an optimization framework for Home-EMS is developed, simulated, and analyzed. 

Different from previous studies that rely on either a single temperature range or an ideal temperature setpoint, 

by providing the homeowner acceptable and preferred temperature ranges, the framework enables a user-

defined trade-off between electricity cost and thermal comfort. The proposed framework results in an 8.16-

hour extension on comfort time with only a 1.77% electricity cost increment compared with minimizing-cost 

only strategy, and it provides 49.12% cost reduction with a 9-hour comfort time loss compared with 

maximizing-comfort only strategy. We also observe that in each weather condition, there exists a unique 

weights combination (𝑤. and 𝑤*) which associates with the greatest cost reduction and comfort decline. This 

suggests a cost-sensitive user might choose more aggressive weight 𝑤. in colder days to achieve higher cost-

saving, while a comfort-sensitive user might choose a smaller 𝑤. on a hotter day to avoid large comfort loss. 

Finally, an aggressive user time preferences on non-thermal appliances generates three times higher electricity 

cost than the case that user do not provide time limits.  

As with simulation studies, the results reported in this study have limitations. The 2R2C model, which 

is used to regulate the HVAC system operation, did not consider the internal heat gain. In our case study, 

because the HVAC system model is built upon the data collected from an unoccupied laboratory house and 

because the internal heat gain generated by the appliances are relatively small, ignoring the internal heat gain 

is deemed acceptable. Therefore, the impact of user occupancy, which is associated with the internal heat gain, 

is not discussed in this study. In addition, it is assumed that the user acceptable and preferred temperature ranges 



on the HVAC system and user time preference are given. Although the proposed framework can integrate with 

the given preference easily, deriving user thermal preference and time preference based on historical data is a 

focus area for next phase study.  
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Appendices  

Water Heater Thermal Properties  

Table 1 lists the water heater thermal properties used in our case study. Note that the 

thermal properties of the water heater tank (i.e., 𝛼 and E
F
	)	is adopted from (Shaad et al. 

2012), which also includes the parameter identification and model validation based on 

laboratory tests.   

Table 1 Water Heater Thermal Properties 

Name Value Unit Name Value Unit 
ρ 997.77 kg/m! 𝑇room = 𝑇%& 	∘𝐶 
𝐶( 4182 𝑘𝐽/𝑘𝑔∘𝐶 𝑇inlet 15 	∘𝐶 

𝐶 = 𝜌𝐶(𝑉 1.46 ∗ 10. 𝐽/∘𝐶 𝑇/01  60.1 	∘𝐶 

𝐺 =
𝐴
𝑅

 4.28 𝑊/∘𝐶 𝑃/0 30000 𝑊 

 

Non-thermal Appliances Specs 

The three non-thermal appliances we considered in this study. Each appliance has its own 

energy phase, and each energy phase has a specific operation time 𝑡&,1actual and power usage. 

When formulating the operation constraints, the operation time equals to h
0@,J
actual

time	interval
i. 

Note that not all energy phases of the washing machine draw hot water. Therefore, only 

the first two rows of the water consumption column have numbers. 

Table 2 Non-thermal Appliances Specification 

Type Phase Power [W] Operation [min] Water [𝒎^𝟑/𝒔] 



 

 

washer 
Wash 2700 19.5 0.000035 
Rinse 3000 25.0 0.000018 

Extraction 1800 7.5 - 

dishwasher 

fill-sense 250 9.5 - 
preheat-wash 1300 27.5 - 

wash 250 24.5 - 
partial fill 250 8 - 

heated rinse 1300 28.5 - 
final rinse 250 10 - 

dryer drying 2500 120 - 
 

 


