
LLNL-CONF-820342

Examining Failures and Repairs
on Supercomputerswith
Multi-GPU Compute Nodes

A. Taherin, T. Patel, D. Tiwari, G. Georgakoudis,
I. Laguna

March 10, 2021

IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN)
Taipei, Taiwan
June 21, 2021 through June 24, 2021



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Examining Failures and Repairs on Supercomputers
with Multi-GPU Compute Nodes

Amir Taherin�, Tirthak Patel�, Giorgis Georgakoudis†, Ignacio Laguna†, Devesh Tiwari�

†Lawrence Livermore National Laboratory �Northeastern University

Abstract—Understanding the reliability characteristics of su-
percomputers has been a key focus of the HPC and dependability
communities. However, there is no current study that analyzes
both the failure and recovery characteristics over multiple gener-
ations of a GPU-based supercomputer with multiple GPUs on the
same node. This paper bridges that gap and reveals surprising
insights based on monitoring and analyzing the failures and
repairs on the Tsubame-2 and Tsubame-3 supercomputers.

I. INTRODUCTION

HPC system reliability has been a major area of research

for multiple decades. The primary driving factor has been

the need to provide sustained reliability for long-running

applications executing on multiple nodes. This line of re-

search has resulted in making CPUs more reliable over time,

and now GPUs too [1]–[6] – as they have become main-

stream for supercomputing. While there have been multiple

field studies about GPU and CPU errors [7]–[11], they are

largely focused on a single production-scale supercomputer.

There is no existing study that shares the experience and

lessons learned from GPU-accelerated supercomputers over

multiple generations. Furthermore, previous studies on GPU-

accelerated supercomputers have included only one GPU per

node and are limited to NVIDIA K80 or older GPUs [8]–

[11]. In this study, we study two generations of Tsubame

supercomputers (employing NVIDIA K20X and P100 GPUs);

and importantly, each node has multiple GPU cards, which

results in previously unobserved failure characteristics and

creates opportunities for further innovation [8]–[14].

Additionally, this study also highlights the need for opti-

mizing the time to recovery from failure – an aspect that has

not received sufficient discussion and attention from previous

field-studies. But, we show that the time to recovery is now

becoming an important concern and figure of metric for

system operations. Innovative solutions are needed to reduce

the time to recovery, and in turn minimize the impact of

failures on system operations. Overall, our major findings and

implications include:

• As expected, GPUs are one of the most critical

components in these GPU-accelerated supercomputers

from the reliability point of view. Contrary to other GPU

deployments [10], [11], [15], we find that the hardware

reliability of NVIDIA GPUs has improved remarkably

over the generations (up to 4× improvement in overall

system MTBF). But, GPU-related software and firmware

failures (e.g., GPU driver issues) are still a concern

and could benefit from further research investment

from outside the GPU vendor/chip manufacturer.

We also introduce a new term “performance-error-
proportionality” to encourage systems community to

jointly capture the effects of raw computing power and

failure rate for benchmarking: “useful work done per

failure-free period” (e.g., total FLOP per MTBF).

• We found that software failures are becoming the

dominant failure type on these supercomputers.

Alarmingly, the cause or type of a large fraction of these

software failures is not known and are difficult to be

reproduced.

• As we move toward multi-accelerator-per-node

supercomputers, our analysis reveals that system

operators need to be wary of multiple GPUs failing

simultaneously, and the failure distribution within a node

being non-uniform and temporally correlated.

• While the mean time between two failures has improved

drastically over the generations, we find that the mean

time to recovery remains largely similar, i.e., the time to

quickly heal from a failure is not improving at all. Each

failure disrupts the system for roughly the same amount

of time. Our failure type and seasonal analysis shows

that the time to recovery trends vary across failure types

and are not necessarily strongly correlated by the failure

density in a particular time frame.

Our analysis tool and failure logs are available open-source

at: http://doi.org/10.5281/zenodo.4606221.

II. TSUBAME SUPERCOMPUTER BACKGROUND AND

ANALYSIS METHODOLOGY

Tsubame is a supercomputer-class series of large-scale

computing facilities housed at the Global Scientific Infor-

mation and Computing Center (GSIC) at Tokyo Institute of

Technology. Tsubame-1 was announced in 2006 as the then

most powerful supercomputer in Japan. Tsubame-1 leveraged

specific accelerators from ClearSpeed. Tsubame-2 was intro-

duced in 2010 with 1408 nodes reaching theoretical peak

(Rpeak) of 2.3 PFlop/s and power consumption of 1.4 MWatts.

In 2017, Tsubame-3 was announced for Artificial Intelligence

applications. It reached a theoretical peak (Rpeak) of 12.1

PFlop/s with power consumption of 792 kW. In terms of

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under Contract DE-AC52-07NA27344. 



(a) Tsubame-2 (b) Tsubame-3

Fig. 1. Tsubame-2 and Tsubame-3 node architecture.

TABLE I. Tsubame-2 and Tsubame-3 node configurations.

Tsubame-2 Tsubame-3

CPU Intel Xeon X5670
(Westmere-EP, 2.93GHz)

Intel Xeon E5-2680 V4
(Broadwell-EP, 2.4GHz)

Cores/Threads
per CPU

6 cores / 12 threads 14 cores / 28 threads

Num CPUs 2 2

Memory per
Node

58GB 256GB

GPU NVIDIA Tesla K20X
(GK110)

NVIDIA Tesla P100
(NVlink-Optimized)

Num GPUs 3 4

SSD 120 GB 2TB

Interconnect 4X QDR InfiniBand - 2
ports

Intel Omni-Path HFI
100Gbps - 4 ports

node structure, Tsubame-2 was designed with three GPUs

per node, while Tsubame-3 has four GPUs per node (refer

to Figure 1). Table I provides a high-level overview of the

node specification of Tsubame-2, and Tsubame-3 [16].

Dataset. In this paper, we focus on the failures that are

reported on Tsubame-2 and Tsubame-3. We used two failure

logs from the Tsubame supercomputers: (i) Tsubame-2 failure

log with 897 failures, and (ii) Tsubame-3 failure log with 338

failures. Tsubame-2 failure log includes the period between

1/7/2012, and 8/1/2013. The failure log on Tsubame-3 includes

the period between 05/09/2017, and 02/22/2020. For each

failure, the log includes the time of failure occurrence, the time

to recovery from failure, and the category of failure. Table II

lists the categories of failures reported in the logs. We focused

on Tsubame-2 and Tsubame-3 with the goal of comparing our

findings on two generations of supercomputers. In this work,

we define a failure as an error that crashes the application

(Table II provides a list of error types). These crashes can be

fixed by rebooting or replacing the hardware, or updating the

system software.

Limitations and Scope. We acknowledge that due to logging

capability and business sensitivity of the study, this work

has limitations. However, we ensure that these limitations are

taken into account when drawing conclusions. For example,

we do not focus on the root cause analysis for each failure

because often there is a combination of root causes responsible

for failures. Many times, not all of the contributing factors

TABLE II. Tsubame-2 and Tsubame-3 failure categories.

Tsubame-2 Tsubame-3

Boot, CPU, Disk, Down, FAN,
GPU, (Infiniband) IB, Memory,
Network, OtherHW, OtherSW,
Portable Batch System (PBS),
Power Supply Unit (PSU), Rack,
SSD, System Board, and Virtual
Machine (VM)

CPU, Cyclic Redundancy Check
(CRC), Disk, GPU, GPUDriver,
IP Motherboard (IP), Led Front
Panel, Lustre, Memory,
Omni-Path, Power-Board, Ribbon
Cable, Software, SXM2 Cable,
SXM2-Board, and Unknown

(a) Tsubame-2 Failure Categories

(b) Tsubame-3 Failure Categories

Fig. 2. GPU failures are the most frequent on Tsubame-2,

while software failures are the most common on Tsubame-3.

are observable or detectable. The root cause for hardware

failures (e.g., GPU, CPU, SSD) is often localized to the com-

ponent itself. However, accurate determination of root cause

for software-related failures is more challenging. The effects

of particular applications, and the impact of environmental

factors (e.g., temperature and humidity) is not discussed due to

business-sensitivity and limited availability of the information

(e.g., information not persisted for long-term due to storage

overhead). In general, we did not find any particular applica-

tion experiencing noticeably more failures than its proportional

share of computational resource usage.

III. INVESTIGATING FAILURE CHARACTERISTICS AND

THEIR IMPLICATIONS

We begin our analysis by performing a high-level examina-

tion of the characteristics of the failure categories and GPU

failures on Tsubame-2 and Tsubame-3. In particular, we ask

the following questions.

RQ1: What is the distribution of most frequently occurring
failure types? And, are they the same on both systems?

Figure 2 shows the breakdown of failures for each reported

category on Tsubame-2 (2(a)), and Tsubame-3 (2(b)). These

results reveal several interesting trends. First, a few failure

types dominate on both the supercomputers (e.g., GPU, fan,

network, software), but the dominant failure types are different



on both the systems. Second, GPU failures are significantly

higher in number than CPU failures on both the systems.
As Figure 2(a) shows, 44.37% of the failures are incident

on the GPUs on Tsubame-2. In contrast, only 1.78% of the

failures are caused by or happen on CPUs. Figure 2(b) shows

that on Tsubame-3, ∼28% of the failures are categorized

as GPU failures, while only 3.25% of the failures are CPU

failures. Even though prior works have noted GPUs being

one of the major factors for failures [8], [15], the mag-

nitude of the difference in failure rate between GPUs and

CPUs is concerning. The higher rate of GPU failures is a

result of two phenomena: (1) Increasingly, applications are

spending a considerable amount of their runtimes on GPUs

compared to CPUs [17], [18], and (2) Unlike CPUs, GPUs

lack sophisticated error and failure mitigation and correction

techniques [19], [20]. There has been a lot of progress recently

in terms of both (a) making the GPUs more resilient from

an architecture and design point of view [3]–[5], and (b)

developing software solutions (e.g., checkpointing) to mitigate

the GPU errors [21]–[23]. However, there is a significant

opportunity for academia to continue investing more effort

in this area and develop better software failure mitigation

methodologies.
One significant difference between Figures 2(a) and 2(b)

is that on Tsubame-2, the GPU category of failures has the

highest occurrence rate (44.37%); however, on Tsubame-3, the

software category has the highest share of failure (50.59%),

and GPU comes second (27.81%). This increased rate of

software failures from Tsubame-2 to Tsubame-3 points to

these failures being potentially caused by the introduction of

new artificial intelligence (AI) and machine learning (ML) ap-

plications. We dig deeper to find out the cause of this behavior

by breaking down the software errors into the 171 reported

root loci. Figure 3 shows the top 16 causes of software failures.

We observed an interesting trend: ∼43% of software failures

are “GPU Driver-related Problems”. This is a result of frequent

GPU driver updates/upgrades, software-driver mismatch, and

applications being run with incorrect CUDA versions. For

example, on Tsubame-3, the OmniPath driver was associated

with GPU software failures. Also, because NVIDIA supported

InfiniBand before it added support for OmniPath, GPU Direct

also caused problems. Fortunately, these failures generally

occur at the beginning of an application run and do not result

in wasted runtime.

Summary. Our analysis shows that while GPU hardware

has matured over time, still ∼28% of failures are GPU

hardware failures. Furthermore, higher usage of GPUs

results in more software errors that are a result of the

GPU software stack being not well-developed. While

hardware improvements are on the rise and have been

effective, they are expensive and not needed for all

market sectors. There is an opportunity to develop more

resilient accelerator software stack for HPC applications.

Figure 3 reveals further interesting insights. First, we ob-

serve that a significant fraction of software failures (approx.

Fig. 3. Tsubame-3 software failures break down shows that

most failure are GPU-driver-related.

(a) Tsubame-2 (b) Tsubame-3

Fig. 4. On Tsubame-2, most nodes encounter only one failure.

This is not the case for Tsubame-3.

20%) have no known cause and cannot be classified. This

is an increasing problem and poses a significant challenge

for operations where software failures cannot be diagnosed

and the root-cause is not known. More academic effort is

needed to identify non-reproducible bugs and their root causes.

Second, this result also reveals that we need more effort in

developing better mitigation techniques for GPU driver-related

bugs. Finally, we note that, unlike previous works [9], [15],

kernel panics and lustre bugs are relatively low – this is a

testament to the years of efforts in making operating systems

and lustre file systems hardened. Given some failure types

being dominant, we ask whether certain nodes are affected

more than others (i.e., they encounter more failures than

others). More specifically:

RQ2: Are some nodes experiencing more failures than
others on the Tsubame systems? If so, are these faulty
nodes contributing to the majority of the failures on these
HPC systems?

To answer these questions, we quantified the failure counts

on each node to characterize how many failures an individual

node has experienced. Figure 4 shows the results for Tsubame-

2 (4(a)), and Tsubame-3 (4(b)). On Tsubame-2, ∼60% of

the nodes experienced only one failure. Comparatively, on

Tsubame-3, ∼60% of the nodes experienced more than one

failure. More nodes experienced two or more failures on

Tsubame-3 compared to Tsubame-2.

In terms of nodes with more than one failure, on both

Tsubame systems, ∼10% of nodes experienced two failures.

Nonetheless, the percentage of nodes that experienced three



(a) Tsubame-2 (b) Tsubame-3

Fig. 5. Different GPUs attached to a node experience different

number of failures on both Tsubame systems.

failures on Tsubame-3 is ∼50% more than Tsubame-2. This

is likely because each Tsubame-3 node has one additional

GPU compared to each Tsubame-2 node. This shows that by

increasing the number of GPUs per node in the system, the

probability that a node experiences recurrent failures increases.

Furthermore, considering nodes with more than 1 failure, on

Tsubame-2, we observed 352 hardware failures and 1 software

failure, and on Tsubame-3, we observed 104 hardware and 95

software failures. Thus, both hardware and software failures

can occur multiple times on a node.

To investigate further, we inquire how the failures are
spatially distributed within a node. Recall that each node

has multiple GPUs and CPUs with different topologies on both

supercomputers. Since GPU failures are more dominant, we

focus on the GPU failures distribution within a single node

(nomenclature of GPU 0, GPU 1, GPU 2, and GPU 3 is the

same as shown in Fig. 1).

Figure 5 shows the failure distribution on GPUs. Based on

Figure 5(a), GPU 1 has experienced ∼20% more failures than

GPU 0 and GPU 2 per node on average. On Tsubame-3, GPU

0 and GPU 3 have experienced considerably more failures

than GPU 1 and GPU 2 (Figure 5(b)). Therefore, we can

conclude that the failure distributions among different GPUs

are non-identical. While it has been difficult to pinpoint the

exact reason for this behavior, several factors can be at play,

including higher utilization of some GPUs as compared to

others, manufacturing variability, and different distribution of

hardware faults. An important implication of this finding is

that HPC centers should inform and help end-users to take

advantage of all the GPUs in a node in a load-balanced

manner. Second, the operations staff could also mitigate this

by rearranging the GPUs periodically during maintenance.

While different GPUs on the same node can have a different

number of failures, can a GPU failure affect multiple GPUs

on the same node? In particular, we ask:

RQ3: Can multiple GPUs within a node fail simulta-
neously? If so, what is the probability, and does that
probability change across the two supercomputers? Table

III shows that on Tsubame-2, in ∼30% of the failures, only

one GPU was involved; however, in ∼70% of the failures

more than one GPU was affected at the same time and needed

action (Table III). On Tsubame-3 however, more than 92%

of the failures only affected one GPU. In fact, no failure

affected all four GPUs attached to a node. This is surprising

TABLE III. Number of GPUs involved in node failures.

#GPUs Tsubame-3 Tsubame-2

1 75 (92.6%) 112 (30.44%)
2 4 (4.95%) 128 (34.78%)
3 2 (2.45%) 128 (34.78%)
4 0 (0%) N/A

Total 81 (100%) 368 (100%)

Fig. 6. Cumulative distribution of time between two failures.

The mean time between failures (MTBF) is much higher on

Tsubame-3 than Tsubame-2.

considering that more GPUs per node should lead to more

multi-GPU failures. However, the counter-intuitive trend is a

result of Tsubame-3 operational practices learned from the

Tsubame-2 experience: more health-tests for multi-GPU cards

on the same node and proactive replacements. Users have

also become more informed and ensure that their multi-GPU

jobs are debugged more rigorously to avoid the possibility

of multiple GPUs failing simultaneously. This finding has

an important implication for system administrators since the

number of GPUs per node is likely to increase [24], [25]. The

primary mode for simultaneous multi-GPU failures has been

“fallen off the bus” errors, temperature-related failures, and

simultaneous correlated reboots.

Summary. Our results reveal two novel insights: (1)

the spatial distribution of GPU failures within a node

is non-uniform for both the systems, and (2) each fail-

ure may affect multiple GPUs simultaneously on the

same node. We recommend that HPC systems facilitate

data collection on different failures involving GPUs for

further investigation. An important implication is that

HPC centers should inform and help end-users take

advantage of all the GPUs in a node in a load-balanced

manner, change the scheduler design when co-locating

multiple jobs on the same node for increased utilization,

and develop better testing for simultaneous multi-GPU

failure mode.

Next, we analyze the temporal characteristics of failures. In

particular, we investigate two key metrics: time between two
failures (TBF), and time to recovery (TTR). Time between two

failures simply refers to the elapsed wall clock time between

two failure instances on the system. Time to recovery refers

to the time taken to completely repair the failure and come

back to the normal operational status (e.g., time taken to

replace/restart a failed GPU).



(a) Tsubame-2

(b) Tsubame-3

Fig. 7. Distribution of the time between two failures for

different failure types (sorted by mean time between two

failures).

(a) Tsubame-2

(b) Tsubame-3

Fig. 8. Temporal distribution of GPU failures within node.

RQ4: How do the characteristics of the “time between two
failures” change from one system to another and across
different types of failures?

Figure 6 shows the distribution of the time between two fail-

ures for Tsubame-2 and Tsubame-3. We make two important

observations. First, the distribution is significantly different for

the two systems. Tsubame-2 has a steeper curve and Tsubame-

3 has a longer tail. This indicates that there are longer failure-

free periods on Tsubame-3. Such long failure-free periods are

relatively fewer on Tsubame-2. In fact, 75% of the failures on

Tsubame-2 occur within 20 hours of each other. In contrast,

on Tsubame-3, 75% of the failures occur within 93 hours.

Second, the mean time between failures (MTBF) is much

higher for Tsubame-3 than Tsubame-2. The MTBF on

Tsubame-2 is ∼15 hours, but it is more than 70 hours on

Tsubame-3 (more than 4× improvement). However, it is im-

portant to understand that the MTBF across two systems can-

not be compared trivially. A meaningful comparison involves

taking two factors into account: (1) the system’s computing

capability, and (2) its size.

Tsubame-3 has ∼8× more computing power than Tsubame-

2. The MTBF, however, is ∼4× better. This shows that

more useful work is done on Tsubame-3 than on Tsubame-2

even when interrupted by failures. As the performance of the

systems increases, useful work done per failure should be used

as a benchmarking metric for systems to account for reliability.

We term this as performance-error-proportionality which can

be expressed as maximum useful computation during failure-

free period (e.g., total FLOP per MTBF).

With respect to the system size, Tsubame-3 has fewer

number of nodes and hence, it could be argued that it is

not surprising that Tsubame-3 has higher MTBF. The total

number of CPU and GPU components in the system are:

7040 for Tsubame-2 and 3240 for Tsubame-3 (less than 2.5×
difference). So the improvement in MTBF is not simply a side-

effect of the reduced number of components. Furthermore, we

calculated the MTBF for GPU and CPU related failures.

We estimated that the MTBF for GPU failures is 226.48

hours for Tsubame-3, but 21.94 hours for Tsubame-2. This

relative increase in MTBF is ∼10×, which is interesting

because the number of GPUs has decreased by only 2×.

Similarly, the MTBF for CPU failures is 1593.6 hours for

Tsubame-3, but 537.6 hours for Tsubame-2. CPU reliability

has also increased (∼3×), but note that the number of CPUs

also has decreased by ∼3×.

Next, we dig deeper to understand the time between failures

characteristics for different failure types. Figure 7 plots the

distribution of time between two failures for different failure

types. We make a few observations. First, as expected, not all

failures have similar distribution of failure inter-arrival times

on both the systems. Some failures have a lower median and

spread (difference between the 75th percentile and 25th per-

centile) than others – and this is true for both the systems. For

example, GPU-related hardware failures and software failures

have the least median time between two failures. Second,

memory- and CPU-related failures have a much higher median

time between failures on both the systems and their relative

spread is also higher compared to GPU failures.

Finally, Figure 8 shows the temporal distribution of GPU

failures. This results reveals that failures that involved multiple

GPUs failing within the same node often tend to happen close-

by in time. That is, a failure where multiple GPUs within

a node failed at the same time is likely to be followed by

another such failure in close-by time. This is suspected due to

interaction between application, GPU hardware, and operating

conditions (e.g., temperature). An implication of this trend is

how one can proactively schedule GPU nodes and provision

for spare resources.

Summary. Our results reveal GPU hardware has be-

come significantly more reliable over generations, and

the corresponding increase in MTBF is more than the



Fig. 9. Cumulative distribution of the time to recovery. The

mean time to recovery (MTTR) is roughly the same for

Tsubame-3 and Tsubame-2.

(a) Tsubame-2

(b) Tsubame-3

Fig. 10. Distribution of time to recovery for different failure

types (sorted by mean time to recovery)

decrease in the number of components. However, we

also observed that the resilience-proportionality does not

scale at the same speed as the raw computing power.

Hence, resilience-proportionality should be considered as

a design factor to allow for the reliability of the system

to increase at the same rate as the computing power.

RQ5: How do the “time to recovery” characteristics change
between two systems and across different failute types?

Figure 9 shows the distribution of the time to recovery

from failures for both the systems: Tsubame-2 and Tsubame-

3. Interestingly, the mean time to recovery (MTTR) is very

similar (approx. 55 hours) for both systems. In fact, the

distribution shape is very similar for both the systems. This

is particularly interesting in the context that the MTBF and

distribution of the time between failures is quite different for

both the systems, as we observed earlier (Figure 6). When

analyzed together, these trends have a number of important

implications.

While the MTBF has improved significantly over the gen-

(a) Tsubame-2

(b) Tsubame-3

Fig. 11. Time to recovery distribution of Tsubame-2 and

Tsubame-3 for different months.

erations, the time to recovery has not. MTTR remains around

55 hours for both the system. An improvement in the time

to recovery can be concluded if the distribution was much

steeper for Tsubame-3. But, we observe that the distribution

shape remains roughly the same. That means the strategies to

improve repair time have not been as prevalent and effective

as much as one would like.

In general, the time to recovery has not received as much

attention in the academic literature as the MTBF and the

efforts to reduce MTTR have not been as intense as reducing

the MTBF [7], [9], [26]. However, our results show that the

MTTR should receive similar attention for two reasons: (1) the

MTTR is very comparable to MTBF and hence, it is likely that

multiple concurrent failures might impact the handling/repair

of previous failures. (2) the time to recovery directly quantifies

the impact of the failure on the operations of the system -

amount of time that a component is unavailable to the jobs.

Next, we investigate the time to recovery distribution for

different failure types (Figure 10). We make a few important

observations. As expected, the time to recovery distribution

varies significantly across failure types and this is true for

both systems. However, in general, hardware-related failures

(GPUs, system board, power delivery failures) tend to have

a higher spread in the recovery time compared to software

failures. This is because hardware components have multiple

failure modes, and diagnosing each failure type takes sig-

nificant time. On the other hand, software failures typically

require restarting, patching the software, etc. which have lesser

time spread. Second, we observe that failure types with a

lower average time to recovery do not necessarily have a

lower spread. Some failure types which might be relatively

infrequent can have a high time to recovery and a higher

spread too. This finding implies that as system operators and

designers, we should not look to focus only on highly frequent

failures, but instead assess their impact on the system too.

Less frequent failure types with high recovery costs can affect

the system more negatively. For example, on Tsubame-3, the



(a) Tsubame-2 (b) Tsubame-3

Fig. 12. Distribution of failures based on month of occurrence.

“power board” category contributes to roughly 1% of the

failures, however, its recovery can take up to 230 hours (i.e.,

∼10 days). Similarly, on Tsubame-2, the “SSD” category is

∼4% of all failures, while recovering from some SSD failures

requires ∼290 hours (i.e., 12 days). The longer recovery times

highlight the need for appropriate spare provisioning of parts.

Finally, we inquire if the time to recovery has seasonal

effects? That is, does the time to recovery become significantly

worse during certain months (e.g., during the holiday season),

or is increased when there is increased number of failures? To

answer these questions, we plotted monthly time to recovery

and number of failures (Fig. 11 and 12). We make two major

observations. First, the time to recovery does not appear to

have any clear seasonal impact. Although in the second half

of the year, time to recovery seems to be higher – this is only

true for Tsubame-2. For Tsubame-3, this trend is not true. In

fact, there is significant variance in time to recovery during

each month. We observed similar trends for different failure

types as well, but results are not shown for brevity.

Second, one could hypothesize that the trends in time to re-

covery could be simply correlated with the failure density. That

it, months with higher failure density are likely to see higher

time to recovery. However, when Fig. 11 and 12 are analyzed

together, we find that such a correlation does not exist. This

is because, the cost of fixing each failure is different. Some

failures may simply require rebooting and certain other failures

require replacing the hardware. Hence, the cost of recovery is

different and is not linear function of the number of failures.

Also, these results highlight that the strategies to improve

the time to recovery cannot be simply guided or triggered

by seasonal impacts or failure density. Instead, lowering the

time to recovery requires designing strategies that are specific

to different types of failures and leveraging failure prediction

to initiate recovery proactively where possible. Although not

currently practiced, we believe design and deployment of such

strategies would be operationally beneficial.

Summary. In summary, we need better strategies for

reducing the time to recovery. These strategies need to

be specific to each failure type and should be adaptive.

Maintaining balance is the key. One can significantly

reduce the MTTR by overly proactive measures such

as keeping an excessive number of spare components

on-site or more staff devoted to failure monitoring, but

this comes at an increased operational cost. There is

a need for innovative strategies that can initiate low-

cost recovery actions based on failure prediction without

much overhead.

IV. RELATED WORK

In earlier sections, we discussed how our findings improve

our current understanding compared to existing works. In this

section, we discuss additional related work.
Failure Characterization and Analysis. Many of the prior

works have focused on characterizing the fault tolerance and

resiliency characteristics of data centers and supercomputers

from the perspective of CPUs, GPUs, memory, interconnect

network, and storage system [1], [8]–[15], [27]–[29]. For

example, Gupta et al. [9] have characterized multiple HPC

systems with different components, targeting their reliability.

Most recently, Kumar et al. [7] analyzed the failures on

multiple academic supercomputing clusters and used machine

learning to predict resource usage.
Overview of Operational Practices. On the other hand,

state-of-practice works have highlighted the high-level meth-

ods and approaches employed by large-scale systems to reduce

failure rates and/or mitigate their effects [7], [30]–[33]. As an

instance, faults can propagate and result in different failures

across sub-systems. Pecchia et al. [30] propose a method to

accurately classify different error entries in a failure log based

on their causality relation to a known fault.
Generalizability and Usability to Other Systems. The

findings of this study will become increasingly relevant as

newer supercomputers are employing multiple GPUs on the

same node (e.g., Summit, Sierra, and Juwels) and host multi-

generational HPC systems (e.g., NASA supercomputing cen-

ter, TACC, and Ohio State HPC center). We found that similar

to single-GPU-per-node systems, the non-uniform distribution

of failures among racks is also present in multi-GPU-per-node

systems and can become particularly challenging. Our spatial

and temporal distribution insights could be used to design

proactive mitigation strategies (such as spare-provisioning,

checkpointing, and scheduling [34]–[41]).

V. CONCLUDING REMARKS

We performed the characterization of system failures over

two generations of GPU-dominated HPC systems, with a new

focus on the time it takes to recover from a failure. Some

of our novel findings include that software and GPU failures

are the most frequent out of all failure types, the failure rates

vary for different GPUs, and that the recovery time is not only

failure-dependent but also varies monthly.
Acknowledgment We are thankful to GSIC, Tokyo Institute of

Technology for providing the dataset. We would like to thank Adwait
Jog (our shepherd) and anonymous reviewers for their construc-
tive feedback. This work is supported by NSF Award 1910601
and 1753840, and prepared by LLNL under Contract DE-AC52-
07NA27344 (LLNL-CONF-820342).The views and opinions of the
authors do not necessarily reflect those of the U.S. government
or Lawrence Livermore National Security, LLC neither of whom
nor any of their employees make any endorsements, express or
implied warranties or representations or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of the
information contained herein.



REFERENCES

[1] K. Lee, M. B. Sullivan, S. K. S. Hari, T. Tsai, S. W. Keckler,
and M. Erez, “On the trend of resilience for gpu-dense systems,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks–Supplemental Volume (DSN-S). IEEE, 2019,
pp. 29–34.

[2] P. Rech, L. Carro, N. Wang, T. Tsai, S. K. S. Hari, and S. W. Keckler,
“Measuring the radiation reliability of sram structures in gpus designed
for hpc,” in IEEE 10th Workshop on Silicon Errors in Logic-System
Effects (SELSE), 2014.

[3] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keck-
ler, “Optimizing software-directed instruction replication for gpu error
detection,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 842–
853.

[4] K. Lee, “Resilient heterogeneous systems with containment domains,”
Ph.D. dissertation, 2020.

[5] L. Yang, B. Nie, A. Jog, and E. Smirni, “Practical resilience analysis of
gpgpu applications in the presence of single-and multi-bit faults,” IEEE
Transactions on Computers, 2020.

[6] B. Nie, A. Jog, and E. Smirni, “Characterizing accuracy-aware resilience
of gpgpu applications,” in 2020 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGRID). IEEE,
2020, pp. 111–120.

[7] R. Kumar, S. Jha, A. Mahgoub, R. Kalyanam, S. Harrell, X. C. Song,
Z. Kalbarczyk, W. Kramer, R. Iyer, and S. Bagchi, “The mystery of
the failing jobs: Insights from operational data from two university-
wide computing systems,” in 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2020,
pp. 158–171.

[8] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 331–342.

[9] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: long-term measurement, analysis, and implications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–12.

[10] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliability
lessons learned from gpu experience with the titan supercomputer at
oak ridge leadership computing facility,” in SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2015, pp. 1–12.

[11] G. Ostrouchov, D. Maxwell, R. Ashraf, C. Engelmann, M. Shankar,
and J. Rogers, “Gpu lifetimes on titan supercomputer: Survival analysis
and reliability,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC) 2020,
2020, pp. 15–20.

[12] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari, “Machine learning models for gpu error prediction in a
large scale hpc system,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2018,
pp. 95–106.

[13] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-
scale study of soft-errors on gpus in the field,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 519–530.

[14] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, “Gpgpus:
How to combine high computational power with high reliability,” in
2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2014, pp. 1–9.

[15] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 610–621.

[16] Tokyo Institute of Technology. Tsubame hardware-software specifica-
tion. [Online]. Available: https://www.gsic.titech.ac.jp/en/node/420

[17] N. Onodera and Y. Idomura, “Acceleration of wind simulation using
locally mesh-refined lattice boltzmann method on gpu-rich supercom-

puters,” in Asian Conference on Supercomputing Frontiers. Springer,
2018, pp. 128–145.

[18] A. Nukada, K. Sato, and S. Matsuoka, “Scalable multi-gpu 3-d fft for
tsubame 2.0 supercomputer,” in SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 2012, pp. 1–10.

[19] K. Lee, M. B. Sullivan, S. K. S. Hari, T. Tsai, S. W. Keckler, and
M. Erez, “Gpu snapshot: checkpoint offloading for gpu-dense systems,”
in Proceedings of the ACM International Conference on Supercomput-
ing, 2019, pp. 171–183.

[20] B. Pourghassemi and A. Chandramowlishwaran, “cudacr: An in-kernel
application-level checkpoint/restart scheme for cuda-enabled gpus,” in
2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2017, pp. 725–732.

[21] A. R. Anwer, G. Li, K. Pattabiraman, M. Sullivan, T. Tsai, and S. Hari,
“Gpu-trident: efficient modeling of error propagation in gpu programs,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020, pp. 1–15.

[22] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “Crum:
Checkpoint-restart support for cuda’s unified memory,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2018, pp. 302–313.

[23] R. Garg, G. Price, and G. Cooperman, “Mana for mpi: Mpi-agnostic
network-agnostic transparent checkpointing,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 49–60.

[24] J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen, T. Maier,
M. Ashfaq, B. Messer, and S. Parete-Koon, “Announcing supercomputer
summit,” Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
States), Tech. Rep., 2016.

[25] J. A. Kahle, J. Moreno, and D. Dreps, “2.1 summit and sierra: Designing
ai/hpc supercomputers,” in 2019 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2019, pp. 42–43.

[26] D. Das, M. Schiewe, E. Brighton, M. Fuller, T. Cerny, M. Bures,
K. Frajtak, D. Shin, and P. Tisnovsky, “Failure prediction by utilizing
log analysis: A systematic mapping study,” in Proceedings of the Inter-
national Conference on Research in Adaptive and Convergent Systems,
2020, pp. 188–195.

[27] M. Kumar, S. Gupta, T. Patel, M. Wilder, W. Shi, S. Fu, C. Engelmann,
and D. Tiwari, “Understanding and analyzing interconnect errors and
network congestion on a large scale hpc system,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2018, pp. 107–114.

[28] G. Wang, L. Zhang, and W. Xu, “What can we learn from four years
of data center hardware failures?” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 25–36.

[29] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing and
understanding hpc job failures over the 2k-day life of ibm bluegene/q
system,” in 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2019, pp. 473–484.

[30] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving log-
based field failure data analysis of multi-node computing systems,” in
2011 IEEE/IFIP 41st International Conference on Dependable Systems
& Networks (DSN). IEEE, 2011, pp. 97–108.

[31] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 27–38.

[32] E. Tremel, S. Jha, W. Song, D. Chu, and K. Birman, “Reliable, efficient
recovery for complex services with replicated subsystems,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2020, pp. 172–183.

[33] V. Fratin, D. Oliveira, C. Lunardi, F. Santos, G. Rodrigues, and P. Rech,
“Code-dependent and architecture-dependent reliability behaviors,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2018, pp. 13–26.

[34] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 2014, pp.
25–36.

[35] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale



hpc systems,” in 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2015, pp. 37–44.

[36] L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. En-
gelmann, F. Cappello, and M. Snir, “Reducing waste in extreme scale
systems through introspective analysis,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2016,
pp. 212–221.

[37] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed lightweight
checkpointing for fine-grained guaranteed soft error recovery,” in SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2016, pp. 228–
239.

[38] K. Tang, D. Tiwari, S. Gupta, P. Huang, Q. Lu, C. Engelmann, and
X. He, “Power-capping aware checkpointing: On the interplay among
power-capping, temperature, reliability, performance, and energy,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2016, pp. 311–322.

[39] R. Garg, T. Patel, G. Cooperman, and D. Tiwari, “Shiraz: Exploiting sys-
tem reliability and application resilience characteristics to improve large
scale system throughput,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2018,
pp. 83–94.

[40] R. Basu Roy, T. Patel, R. Kettimuthu, P. Richa, A. Scovel, B. Allcock,
and D. Tiwari, “Operating liquid-cooled large-scale systems: Long-term
monitoring, reliability analysis, and efficiency measures,” in 2021 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2021.

[41] L. Wan, F. Wang, S. Oral, D. Tiwari, S. S. Vazhkudai, and Q. Cao, “A
practical approach to reconciling availability, performance, and capacity
in provisioning extreme-scale storage systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–12.




