EEEEEEEEE
NNNNNNNN

LLNL-CONF-820342

Examining Failures and Repairs
on Supercomputerswith
Multi-GPU Compute Nodes

A. Taherin, T. Patel, D. Tiwari, G. Georgakoudis,
|. Laguna

March 10, 2021

IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN)

Taipei, Taiwan

June 21, 2021 through June 24, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Examining Failures and Repairs on Supercomputers
with Multi-GPU Compute Nodes

Amir Taherin*, Tirthak Patel*, Giorgis Georgakoudis', Ignacio Laguna', Devesh Tiwari*

T Lawrence Livermore National Laboratory

Abstract—Understanding the reliability characteristics of su-
percomputers has been a key focus of the HPC and dependability
communities. However, there is no current study that analyzes
both the failure and recovery characteristics over multiple gener-
ations of a GPU-based supercomputer with multiple GPUs on the
same node. This paper bridges that gap and reveals surprising
insights based on monitoring and analyzing the failures and
repairs on the Tsubame-2 and Tsubame-3 supercomputers.

I. INTRODUCTION

HPC system reliability has been a major area of research
for multiple decades. The primary driving factor has been
the need to provide sustained reliability for long-running
applications executing on multiple nodes. This line of re-
search has resulted in making CPUs more reliable over time,
and now GPUs too [1]-[6] — as they have become main-
stream for supercomputing. While there have been multiple
field studies about GPU and CPU errors [7]-[11], they are
largely focused on a single production-scale supercomputer.
There is no existing study that shares the experience and
lessons learned from GPU-accelerated supercomputers over
multiple generations. Furthermore, previous studies on GPU-
accelerated supercomputers have included only one GPU per
node and are limited to NVIDIA K80 or older GPUs [8]-
[11]. In this study, we study two generations of Tsubame
supercomputers (employing NVIDIA K20X and P100 GPUs);
and importantly, each node has multiple GPU cards, which
results in previously unobserved failure characteristics and
creates opportunities for further innovation [8]-[14].

Additionally, this study also highlights the need for opti-
mizing the time to recovery from failure — an aspect that has
not received sufficient discussion and attention from previous
field-studies. But, we show that the time to recovery is now
becoming an important concern and figure of metric for
system operations. Innovative solutions are needed to reduce
the time to recovery, and in turn minimize the impact of
failures on system operations. Overall, our major findings and
implications include:

o As expected, GPUs are one of the most critical
components in these GPU-accelerated supercomputers
from the reliability point of view. Contrary to other GPU
deployments [10], [11], [15], we find that the hardware
reliability of NVIDIA GPUs has improved remarkably
over the generations (up to 4x improvement in overall
system MTBF). But, GPU-related software and firmware
failures (e.g., GPU driver issues) are still a concern

*Northeastern University

and could benefit from further research investment
from outside the GPU vendor/chip manufacturer.
We also introduce a new term “performance-error-
proportionality” to encourage systems community to
jointly capture the effects of raw computing power and
failure rate for benchmarking: “useful work done per
failure-free period” (e.g., total FLOP per MTBF).

e We found that software failures are becoming the
dominant failure type on these supercomputers.
Alarmingly, the cause or type of a large fraction of these
software failures is not known and are difficult to be
reproduced.

e« As we move toward multi-accelerator-per-node
supercomputers, our analysis reveals that system
operators need to be wary of multiple GPUs failing
simultaneously, and the failure distribution within a node
being non-uniform and temporally correlated.

o While the mean time between two failures has improved
drastically over the generations, we find that the mean
time to recovery remains largely similar, i.e., the time to
quickly heal from a failure is not improving at all. Each
failure disrupts the system for roughly the same amount
of time. Our failure type and seasonal analysis shows
that the time to recovery trends vary across failure types
and are not necessarily strongly correlated by the failure
density in a particular time frame.

Our analysis tool and failure logs are available open-source
at: http://doi.org/10.5281/zenodo.4606221.

II. TSUBAME SUPERCOMPUTER BACKGROUND AND
ANALYSIS METHODOLOGY

Tsubame is a supercomputer-class series of large-scale
computing facilities housed at the Global Scientific Infor-
mation and Computing Center (GSIC) at Tokyo Institute of
Technology. Tsubame-1 was announced in 2006 as the then
most powerful supercomputer in Japan. Tsubame-1 leveraged
specific accelerators from ClearSpeed. Tsubame-2 was intro-
duced in 2010 with 1408 nodes reaching theoretical peak
(Rpeak) of 2.3 PFlop/s and power consumption of 1.4 MWatts.
In 2017, Tsubame-3 was announced for Artificial Intelligence
applications. It reached a theoretical peak (Rpeak) of 12.1
PFlop/s with power consumption of 792 kW. In terms of

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

under Contract DE-AC52-07NA27344.

CPUO HCPU 1

Tylersburg

JRL A
GPU 1 GPU 2
a0

4m==) QuickPath Interconnect
—> PCle

GPU OW — |
GPU 1 GPU 3
o9 o9

mmm) QuickPath Interconnect
=) NVLink —> PCle

(a) Tsubame-2 (b) Tsubame-3

Fig. 1. Tsubame-2 and Tsubame-3 node architecture.

TABLE 1. Tsubame-2 and Tsubame-3 node configurations.

Tsubame-2 Tsubame-3
CPU Intel Xeon X5670 Intel Xeon E5-2680 V4
(Westmere-EP, 2.93GHz) (Broadwell-EP, 2.4GHz)
Cores/Threads 6 cores / 12 threads 14 cores / 28 threads
per CPU
Num CPUs 2 2
Memory per 58GB 256GB
Node
GPU NVIDIA Tesla K20X NVIDIA Tesla P100
(GK110) (NVlink-Optimized)
Num GPUs 3 4
SSD 120 GB 2TB
Interconnect 4X QDR InfiniBand - 2 Intel Omni-Path HFI
ports 100Gbps - 4 ports

node structure, Tsubame-2 was designed with three GPUs
per node, while Tsubame-3 has four GPUs per node (refer
to Figure 1). Table I provides a high-level overview of the
node specification of Tsubame-2, and Tsubame-3 [16].

Dataset. In this paper, we focus on the failures that are
reported on Tsubame-2 and Tsubame-3. We used two failure
logs from the Tsubame supercomputers: (i) Tsubame-2 failure
log with 897 failures, and (ii) Tsubame-3 failure log with 338
failures. Tsubame-2 failure log includes the period between
1/7/2012, and 8/1/2013. The failure log on Tsubame-3 includes
the period between 05/09/2017, and 02/22/2020. For each
failure, the log includes the time of failure occurrence, the time
to recovery from failure, and the category of failure. Table II
lists the categories of failures reported in the logs. We focused
on Tsubame-2 and Tsubame-3 with the goal of comparing our
findings on two generations of supercomputers. In this work,
we define a failure as an error that crashes the application
(Table II provides a list of error types). These crashes can be
fixed by rebooting or replacing the hardware, or updating the

system software.

Limitations and Scope. We acknowledge that due to logging
capability and business sensitivity of the study, this work
has limitations. However, we ensure that these limitations are
taken into account when drawing conclusions. For example,
we do not focus on the root cause analysis for each failure
because often there is a combination of root causes responsible
for failures. Many times, not all of the contributing factors

TABLE II. Tsubame-2 and Tsubame-3 failure categories.

Tsubame-3

CPU, Cyclic Redundancy Check
(CRC), Disk, GPU, GPUDriver,
IP Motherboard (IP), Led Front
Panel, Lustre, Memory,
Omni-Path, Power-Board, Ribbon
Cable, Software, SXM2_Cable,
SXM2-Board, and Unknown

Tsubame-2

Boot, CPU, Disk, Down, FAN,
GPU, (Infiniband) 1B, Memory,
Network, OtherHW, OtherSW,
Portable Batch System (PBS),
Power Supply Unit (PSU), Rack,
SSD, System Board, and Virtual
Machine (VM)

Frequency
11.1%

GPU

FAN

VM

Boot

SSD

PSU
Down
PBS
Rack

OtherSW{ 30,

Memory

System Board

(a) Tsubame-2 Failure Categories

Frequency
N w
o o
o o
50.6%
27.8%

100 R ¥R 3 S < o o 3 o
& 5 &5 R 33 H 5 58 5 5 5 3
m o) ™ N ~ ~N — IS o <) o o o o
o —
[> ey kel o = ° X~ [[o Q
2 22 £ ¢ = 5 ¥ ¢ % & 2@ ¢ o2
2 £ O (-9 o o = [=3 [} w © (9] © ©
£ 7} z @ < =} @ 3 o b e
° = £ & c 2 5 o' € 5
@ £ s ER-Y E = s 2
[SI~3 © 3 X fra
% & & o =
2
4
(b) Tsubame-3 Failure Categories
Tsubame-2,

Fig. 2. GPU failures are the most frequent on
while software failures are the most common on Tsubame-3.

are observable or detectable. The root cause for hardware
failures (e.g., GPU, CPU, SSD) is often localized to the com-
ponent itself. However, accurate determination of root cause
for software-related failures is more challenging. The effects
of particular applications, and the impact of environmental
factors (e.g., temperature and humidity) is not discussed due to
business-sensitivity and limited availability of the information
(e.g., information not persisted for long-term due to storage
overhead). In general, we did not find any particular applica-
tion experiencing noticeably more failures than its proportional
share of computational resource usage.

III. INVESTIGATING FAILURE CHARACTERISTICS AND
THEIR IMPLICATIONS

We begin our analysis by performing a high-level examina-
tion of the characteristics of the failure categories and GPU
failures on Tsubame-2 and Tsubame-3. In particular, we ask

the following questions.

RQ1: What is the distribution of most frequently occurring
failure types? And, are they the same on both systems?
Figure 2 shows the breakdown of failures for each reported
category on Tsubame-2 (2(a)), and Tsubame-3 (2(b)). These
results reveal several interesting trends. First, a few failure
types dominate on both the supercomputers (e.g., GPU, fan,
network, software), but the dominant failure types are different

on both the systems. Second, GPU failures are significantly
higher in number than CPU failures on both the systems.

As Figure 2(a) shows, 44.37% of the failures are incident
on the GPUs on Tsubame-2. In contrast, only 1.78% of the
failures are caused by or happen on CPUs. Figure 2(b) shows
that on Tsubame-3, ~28% of the failures are categorized
as GPU failures, while only 3.25% of the failures are CPU
failures. Even though prior works have noted GPUs being
one of the major factors for failures [8], [15], the mag-
nitude of the difference in failure rate between GPUs and
CPUs is concerning. The higher rate of GPU failures is a
result of two phenomena: (1) Increasingly, applications are
spending a considerable amount of their runtimes on GPUs
compared to CPUs [17], [18], and (2) Unlike CPUs, GPUs
lack sophisticated error and failure mitigation and correction
techniques [19], [20]. There has been a lot of progress recently
in terms of both (a) making the GPUs more resilient from
an architecture and design point of view [3]-[5], and (b)
developing software solutions (e.g., checkpointing) to mitigate
the GPU errors [21]-[23]. However, there is a significant
opportunity for academia to continue investing more effort
in this area and develop better software failure mitigation
methodologies.

One significant difference between Figures 2(a) and 2(b)
is that on Tsubame-2, the GPU category of failures has the
highest occurrence rate (44.37%); however, on Tsubame-3, the
software category has the highest share of failure (50.59%),
and GPU comes second (27.81%). This increased rate of
software failures from Tsubame-2 to Tsubame-3 points to
these failures being potentially caused by the introduction of
new artificial intelligence (AI) and machine learning (ML) ap-
plications. We dig deeper to find out the cause of this behavior
by breaking down the software errors into the 171 reported
root loci. Figure 3 shows the top 16 causes of software failures.
We observed an interesting trend: ~43% of software failures
are “GPU Driver-related Problems”. This is a result of frequent
GPU driver updates/upgrades, software-driver mismatch, and
applications being run with incorrect CUDA versions. For
example, on Tsubame-3, the OmniPath driver was associated
with GPU software failures. Also, because NVIDIA supported
InfiniBand before it added support for OmniPath, GPU Direct
also caused problems. Fortunately, these failures generally
occur at the beginning of an application run and do not result
in wasted runtime.

Summary. Our analysis shows that while GPU hardware
has matured over time, still ~28% of failures are GPU
hardware failures. Furthermore, higher usage of GPUs
results in more software errors that are a result of the
GPU software stack being not well-developed. While
hardware improvements are on the rise and have been
effective, they are expensive and not needed for all
market sectors. There is an opportunity to develop more
resilient accelerator software stack for HPC applications.

Figure 3 reveals further interesting insights. First, we ob-
serve that a significant fraction of software failures (approx.

GPU Driver-related problems] 42.7%
unknown

Hang by the kernel panic

XFS software bug

Lustre Client problems

ext4 software bug

SGE of OOM

SGE service abnormal termination
OOM

Kernel bug

Kernel panic

Hang by the kernel bug
Memory swap

Node hang

hfi related errors
Lustre client problems

0 20 40 60 80
Frequency

Fig. 3. Tsubame-3 software failures break down shows that
most failure are GPU-driver-related.

~
=3
S

-
G
S

Frequency
»
S
S
Frequency
=
o
S

~
°
S

o

S

0

12 3 4 5
Failure Count

(b) Tsubame-3

7
ni

(a) Tsubame-2

Fig. 4. On Tsubame-2, most nodes encounter only one failure.
This is not the case for Tsubame-3.

20%) have no known cause and cannot be classified. This
is an increasing problem and poses a significant challenge
for operations where software failures cannot be diagnosed
and the root-cause is not known. More academic effort is
needed to identify non-reproducible bugs and their root causes.
Second, this result also reveals that we need more effort in
developing better mitigation techniques for GPU driver-related
bugs. Finally, we note that, unlike previous works [9], [15],
kernel panics and lustre bugs are relatively low — this is a
testament to the years of efforts in making operating systems
and lustre file systems hardened. Given some failure types
being dominant, we ask whether certain nodes are affected
more than others (i.e., they encounter more failures than
others). More specifically:

RQ2: Are some nodes experiencing more failures than
others on the Tsubame systems? If so, are these faulty
nodes contributing to the majority of the failures on these
HPC systems?

To answer these questions, we quantified the failure counts
on each node to characterize how many failures an individual
node has experienced. Figure 4 shows the results for Tsubame-
2 (4(a)), and Tsubame-3 (4(b)). On Tsubame-2, ~60% of
the nodes experienced only one failure. Comparatively, on
Tsubame-3, ~60% of the nodes experienced more than one
failure. More nodes experienced two or more failures on
Tsubame-3 compared to Tsubame-2.

In terms of nodes with more than one failure, on both
Tsubame systems, ~10% of nodes experienced two failures.
Nonetheless, the percentage of nodes that experienced three

N
=3
S

>
2
@ 150
3
=
o1
s

o
=)

50

0GPUO GPU1l GPU2 GPU3

(b) Tsubame-3

0 GPUO GPU1l GPU2

(a) Tsubame-2

Fig. 5. Different GPUs attached to a node experience different
number of failures on both Tsubame systems.

failures on Tsubame-3 is ~50% more than Tsubame-2. This
is likely because each Tsubame-3 node has one additional
GPU compared to each Tsubame-2 node. This shows that by
increasing the number of GPUs per node in the system, the
probability that a node experiences recurrent failures increases.
Furthermore, considering nodes with more than 1 failure, on
Tsubame-2, we observed 352 hardware failures and 1 software
failure, and on Tsubame-3, we observed 104 hardware and 95
software failures. Thus, both hardware and software failures
can occur multiple times on a node.

To investigate further, we inquire how the failures are
spatially distributed within a node. Recall that each node
has multiple GPUs and CPUs with different topologies on both
supercomputers. Since GPU failures are more dominant, we
focus on the GPU failures distribution within a single node
(nomenclature of GPU 0, GPU 1, GPU 2, and GPU 3 is the
same as shown in Fig. 1).

Figure 5 shows the failure distribution on GPUs. Based on
Figure 5(a), GPU 1 has experienced ~20% more failures than
GPU 0 and GPU 2 per node on average. On Tsubame-3, GPU
0 and GPU 3 have experienced considerably more failures
than GPU 1 and GPU 2 (Figure 5(b)). Therefore, we can
conclude that the failure distributions among different GPUs
are non-identical. While it has been difficult to pinpoint the
exact reason for this behavior, several factors can be at play,
including higher utilization of some GPUs as compared to
others, manufacturing variability, and different distribution of
hardware faults. An important implication of this finding is
that HPC centers should inform and help end-users to take
advantage of all the GPUs in a node in a load-balanced
manner. Second, the operations staff could also mitigate this
by rearranging the GPUs periodically during maintenance.

While different GPUs on the same node can have a different
number of failures, can a GPU failure affect multiple GPUs
on the same node? In particular, we ask:

RQ3: Can multiple GPUs within a node fail simulta-
neously? If so, what is the probability, and does that
probability change across the two supercomputers? Table
[1I shows that on Tsubame-2, in ~30% of the failures, only
one GPU was involved; however, in ~70% of the failures
more than one GPU was affected at the same time and needed
action (Table III). On Tsubame-3 however, more than 92%
of the failures only affected one GPU. In fact, no failure
affected all four GPUs attached to a node. This is surprising

TABLE III. Number of GPUs involved in node failures.

#GPUs

1 75 (92.6%)
2 4 (4.95%)
3 2 (2.45%)

Tsubame-2

112 (30.44%)
128 (34.78%)
128 (34.78%)

Tsubame-3

4 0 (0%) N/A
Total 81 (100%) 368 (100%)
e
k)
210
a
T3
23 Mean: 15.29
g2 0.5 Mean: 72.5
w g —— Tsubame-2
2 —— Tsubame-3
€
5 0.0
O 0 100 200 300 400 500 600

Hours

Fig. 6. Cumulative distribution of time between two failures.
The mean time between failures (MTBF) is much higher on
Tsubame-3 than Tsubame-2.

considering that more GPUs per node should lead to more
multi-GPU failures. However, the counter-intuitive trend is a
result of Tsubame-3 operational practices learned from the
Tsubame-2 experience: more health-tests for multi-GPU cards
on the same node and proactive replacements. Users have
also become more informed and ensure that their multi-GPU
jobs are debugged more rigorously to avoid the possibility
of multiple GPUs failing simultaneously. This finding has
an important implication for system administrators since the
number of GPUs per node is likely to increase [24], [25]. The
primary mode for simultaneous multi-GPU failures has been
“fallen off the bus” errors, temperature-related failures, and
simultaneous correlated reboots.

Summary. Our results reveal two novel insights: (1)
the spatial distribution of GPU failures within a node
is non-uniform for both the systems, and (2) each fail-
ure may affect multiple GPUs simultaneously on the
same node. We recommend that HPC systems facilitate
data collection on different failures involving GPUs for
further investigation. An important implication is that
HPC centers should inform and help end-users take
advantage of all the GPUs in a node in a load-balanced
manner, change the scheduler design when co-locating
multiple jobs on the same node for increased utilization,
and develop better testing for simultaneous multi-GPU
failure mode.

Next, we analyze the temporal characteristics of failures. In
particular, we investigate two key metrics: time between two
failures (TBF), and time to recovery (TTR). Time between two
failures simply refers to the elapsed wall clock time between
two failure instances on the system. Time to recovery refers
to the time taken to completely repair the failure and come
back to the normal operational status (e.g., time taken to
replace/restart a failed GPU).

2000

Hours

1000

I8 {ih
ry 1 HEIE—
S

Vm b
rq

Racy | HEm——

DoWn o

Melh 0

Othg,

3
Cryy

i]
HB
PBs { Hil——

Boog { @+
Disic {4+

Psy {mB—

Othey Hyy | I

SSp {im—

FAN 1B

Gry b
NetWOrk L

Syste,77 8o,

(a) Tsubame-2

6000

wn
£ 4000 !
T 2000 !
>
o
g
()
=

Gry {H

(o]
o
ve, | N
L
Disi | il

Cry
P

<
5 ;
O

softwa re |.|

Of77n,'_ Pa th

o
(]
2
g
3
Q
G

S.
XMQ_BOard

o
N~
%

(b) Tsubame-3

Fig. 7. Distribution of the time between two failures for
different failure types (sorted by mean time between two

failures).
v
283
(DZ 2
)
23| [[{h bbb
£, | TN |
¥ w@ ’L\;\/ 5 S '500) 'bso '56\
& & & & N &
(a) Tsubame-2
2o
233
(DZ 2
T o
]
28] [N RTINS
Q \Z N A Q 2) A Q \Z
é\/\/ wq’p «3’9 «?’D «3’” «?’Q \9"0 @9 x‘*\/ "99
M S S S A S M

(b) Tsubame-3

Fig. 8. Temporal distribution of GPU failures within node.

RQ4: How do the characteristics of the “time between two
failures” change from one system to another and across
different types of failures?

Figure 6 shows the distribution of the time between two fail-
ures for Tsubame-2 and Tsubame-3. We make two important
observations. First, the distribution is significantly different for
the two systems. Tsubame-2 has a steeper curve and Tsubame-
3 has a longer tail. This indicates that there are longer failure-
free periods on Tsubame-3. Such long failure-free periods are
relatively fewer on Tsubame-2. In fact, 75% of the failures on
Tsubame-2 occur within 20 hours of each other. In contrast,
on Tsubame-3, 75% of the failures occur within 93 hours.

Second, the mean time between failures (MTBF) is much
higher for Tsubame-3 than Tsubame-2. The MTBF on
Tsubame-2 is ~15 hours, but it is more than 70 hours on
Tsubame-3 (more than 4x improvement). However, it is im-

portant to understand that the MTBF across two systems can-
not be compared trivially. A meaningful comparison involves
taking two factors into account: (1) the system’s computing
capability, and (2) its size.

Tsubame-3 has ~8x more computing power than Tsubame-
2. The MTBF, however, is ~4x better. This shows that
more useful work is done on Tsubame-3 than on Tsubame-2
even when interrupted by failures. As the performance of the
systems increases, useful work done per failure should be used
as a benchmarking metric for systems to account for reliability.
We term this as performance-error-proportionality which can
be expressed as maximum useful computation during failure-
free period (e.g., total FLOP per MTBF).

With respect to the system size, Tsubame-3 has fewer
number of nodes and hence, it could be argued that it is
not surprising that Tsubame-3 has higher MTBF. The total
number of CPU and GPU components in the system are:
7040 for Tsubame-2 and 3240 for Tsubame-3 (less than 2.5 x
difference). So the improvement in MTBF is not simply a side-
effect of the reduced number of components. Furthermore, we
calculated the MTBF for GPU and CPU related failures.

We estimated that the MTBF for GPU failures is 226.48
hours for Tsubame-3, but 21.94 hours for Tsubame-2. This
relative increase in MTBF is ~10x, which is interesting
because the number of GPUs has decreased by only 2x.
Similarly, the MTBF for CPU failures is 1593.6 hours for
Tsubame-3, but 537.6 hours for Tsubame-2. CPU reliability
has also increased (~3x), but note that the number of CPUs
also has decreased by ~3x.

Next, we dig deeper to understand the time between failures
characteristics for different failure types. Figure 7 plots the
distribution of time between two failures for different failure
types. We make a few observations. First, as expected, not all
failures have similar distribution of failure inter-arrival times
on both the systems. Some failures have a lower median and
spread (difference between the 75" percentile and 25" per-
centile) than others — and this is true for both the systems. For
example, GPU-related hardware failures and software failures
have the least median time between two failures. Second,
memory- and CPU-related failures have a much higher median
time between failures on both the systems and their relative
spread is also higher compared to GPU failures.

Finally, Figure 8 shows the temporal distribution of GPU
failures. This results reveals that failures that involved multiple
GPUs failing within the same node often tend to happen close-
by in time. That is, a failure where multiple GPUs within
a node failed at the same time is likely to be followed by
another such failure in close-by time. This is suspected due to
interaction between application, GPU hardware, and operating
conditions (e.g., temperature). An implication of this trend is
how one can proactively schedule GPU nodes and provision
for spare resources.

Summary. Our results reveal GPU hardware has be-
come significantly more reliable over generations, and
the corresponding increase in MTBF is more than the

c
o
5 1.0
2
TR
28 Mean: 57.31
g‘_qz’ 0.5 Mean: 56.35
Ww —— Tsubame-2
2 —— Tsubame-3
€
5 0.0
(@] 0 200 400 600 800
Hours

Fig. 9. Cumulative distribution of the time to recovery. The
mean time to recovery (MTTR) is roughly the same for
Tsubame-3 and Tsubame-2.

0 200 i
>
o
Oiﬁi B_B@ i
SOLED ST X¥XD0 § >¥ 29D S
Sm Y& 5= 8 §2 5504
QO‘L;?“- :‘775500 ,ggg §$U§>
< 7] < <
§ 2 s 5 &
&5
>
(a) Tsubame-2
200 :
2
=}
:%100;i Py i—
- s
0 8-
v & T¥x £ a D Fed
§88 5§55 X 5% 555
s £V ®© O H~Q O o © O
£ Qg sf g 27 2 @ O @
S 2 st ¢ § oo §
G o S L5 S S =
) o X X o
& a 0 6
4

(b) Tsubame-3

Fig. 10. Distribution of time to recovery for different failure
types (sorted by mean time to recovery)

decrease in the number of components. However, we
also observed that the resilience-proportionality does not
scale at the same speed as the raw computing power.
Hence, resilience-proportionality should be considered as
a design factor to allow for the reliability of the system
to increase at the same rate as the computing power.

RQS: How do the ‘““time to recovery” characteristics change
between two systems and across different failute types?

Figure 9 shows the distribution of the time to recovery
from failures for both the systems: Tsubame-2 and Tsubame-
3. Interestingly, the mean time to recovery (MTTR) is very
similar (approx. 55 hours) for both systems. In fact, the
distribution shape is very similar for both the systems. This
is particularly interesting in the context that the MTBF and
distribution of the time between failures is quite different for
both the systems, as we observed earlier (Figure 6). When
analyzed together, these trends have a number of important
implications.

While the MTBF has improved significantly over the gen-

Hours
=
o
o o
Jan, {IH—

(b) Tsubame-3

Fig. 11. Time to recovery distribution of Tsubame-2 and
Tsubame-3 for different months.

erations, the time to recovery has not. MTTR remains around
55 hours for both the system. An improvement in the time
to recovery can be concluded if the distribution was much
steeper for Tsubame-3. But, we observe that the distribution
shape remains roughly the same. That means the strategies to
improve repair time have not been as prevalent and effective
as much as one would like.

In general, the time to recovery has not received as much
attention in the academic literature as the MTBF and the
efforts to reduce MTTR have not been as intense as reducing
the MTBF [7], [9], [26]. However, our results show that the
MTTR should receive similar attention for two reasons: (1) the
MTTR is very comparable to MTBF and hence, it is likely that
multiple concurrent failures might impact the handling/repair
of previous failures. (2) the time to recovery directly quantifies
the impact of the failure on the operations of the system -
amount of time that a component is unavailable to the jobs.

Next, we investigate the time to recovery distribution for
different failure types (Figure 10). We make a few important
observations. As expected, the time to recovery distribution
varies significantly across failure types and this is true for
both systems. However, in general, hardware-related failures
(GPUs, system board, power delivery failures) tend to have
a higher spread in the recovery time compared to software
failures. This is because hardware components have multiple
failure modes, and diagnosing each failure type takes sig-
nificant time. On the other hand, software failures typically
require restarting, patching the software, etc. which have lesser
time spread. Second, we observe that failure types with a
lower average time to recovery do not necessarily have a
lower spread. Some failure types which might be relatively
infrequent can have a high time to recovery and a higher
spread too. This finding implies that as system operators and
designers, we should not look to focus only on highly frequent
failures, but instead assess their impact on the system too.
Less frequent failure types with high recovery costs can affect
the system more negatively. For example, on Tsubame-3, the

-
o
S
EN
=]

Frequency
NowN
o v o w
I
I
I
-,
—
I
I
I
I
Frequency
N ow
o o o o

IS S o
§s4a¢
{ds<s3

(b) Tsubame-3

e
9]
o

Apr. —
July, —
Noy, —

Dec |

Sept

2
<

(a) Tsubame-2

Fig. 12. Distribution of failures based on month of occurrence.

“power board” category contributes to roughly 1% of the
failures, however, its recovery can take up to 230 hours (i.e.,
~10 days). Similarly, on Tsubame-2, the “SSD” category is
~4% of all failures, while recovering from some SSD failures
requires ~290 hours (i.e., 12 days). The longer recovery times
highlight the need for appropriate spare provisioning of parts.

Finally, we inquire if the time to recovery has seasonal
effects? That is, does the time to recovery become significantly
worse during certain months (e.g., during the holiday season),
or is increased when there is increased number of failures? To
answer these questions, we plotted monthly time to recovery
and number of failures (Fig. 11 and 12). We make two major
observations. First, the time to recovery does not appear to
have any clear seasonal impact. Although in the second half
of the year, time to recovery seems to be higher — this is only
true for Tsubame-2. For Tsubame-3, this trend is not true. In
fact, there is significant variance in time to recovery during
each month. We observed similar trends for different failure
types as well, but results are not shown for brevity.

Second, one could hypothesize that the trends in time to re-
covery could be simply correlated with the failure density. That
it, months with higher failure density are likely to see higher
time to recovery. However, when Fig. 11 and 12 are analyzed
together, we find that such a correlation does not exist. This
is because, the cost of fixing each failure is different. Some
failures may simply require rebooting and certain other failures
require replacing the hardware. Hence, the cost of recovery is
different and is not linear function of the number of failures.
Also, these results highlight that the strategies to improve
the time to recovery cannot be simply guided or triggered
by seasonal impacts or failure density. Instead, lowering the
time to recovery requires designing strategies that are specific
to different types of failures and leveraging failure prediction
to initiate recovery proactively where possible. Although not
currently practiced, we believe design and deployment of such
strategies would be operationally beneficial.

Summary. In summary, we need better strategies for
reducing the time to recovery. These strategies need to
be specific to each failure type and should be adaptive.
Maintaining balance is the key. One can significantly
reduce the MTTR by overly proactive measures such
as keeping an excessive number of spare components
on-site or more staff devoted to failure monitoring, but
this comes at an increased operational cost. There is
a need for innovative strategies that can initiate low-

cost recovery actions based on failure prediction without
much overhead.

IV. RELATED WORK

In earlier sections, we discussed how our findings improve
our current understanding compared to existing works. In this
section, we discuss additional related work.

Failure Characterization and Analysis. Many of the prior
works have focused on characterizing the fault tolerance and
resiliency characteristics of data centers and supercomputers
from the perspective of CPUs, GPUs, memory, interconnect
network, and storage system [1], [8]-[15], [27]-[29]. For
example, Gupta et al. [9] have characterized multiple HPC
systems with different components, targeting their reliability.
Most recently, Kumar et al. [7] analyzed the failures on
multiple academic supercomputing clusters and used machine
learning to predict resource usage.

Overview of Operational Practices. On the other hand,

state-of-practice works have highlighted the high-level meth-
ods and approaches employed by large-scale systems to reduce
failure rates and/or mitigate their effects [7], [30]-[33]. As an
instance, faults can propagate and result in different failures
across sub-systems. Pecchia et al. [30] propose a method to
accurately classify different error entries in a failure log based
on their causality relation to a known fault.
Generalizability and Usability to Other Systems. The
findings of this study will become increasingly relevant as
newer supercomputers are employing multiple GPUs on the
same node (e.g., Summit, Sierra, and Juwels) and host multi-
generational HPC systems (e.g., NASA supercomputing cen-
ter, TACC, and Ohio State HPC center). We found that similar
to single-GPU-per-node systems, the non-uniform distribution
of failures among racks is also present in multi-GPU-per-node
systems and can become particularly challenging. Our spatial
and temporal distribution insights could be used to design
proactive mitigation strategies (such as spare-provisioning,
checkpointing, and scheduling [34]-[41]).

V. CONCLUDING REMARKS

We performed the characterization of system failures over
two generations of GPU-dominated HPC systems, with a new
focus on the time it takes to recover from a failure. Some
of our novel findings include that software and GPU failures
are the most frequent out of all failure types, the failure rates
vary for different GPUs, and that the recovery time is not only
failure-dependent but also varies monthly.

Acknowledgment We are thankful to GSIC, Tokyo Institute of
Technology for providing the dataset. We would like to thank Adwait
Jog (our shepherd) and anonymous reviewers for their construc-
tive feedback. This work is supported by NSF Award 1910601
and 1753840, and prepared by LLNL under Contract DE-AC52-
07NA27344 (LLNL-CONF-820342).The views and opinions of the
authors do not necessarily reflect those of the U.S. government
or Lawrence Livermore National Security, LLC neither of whom
nor any of their employees make any endorsements, express or
implied warranties or representations or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of the
information contained herein.

[1]

[2]

[3]

[4]
[51

[6]

[7

[8]

[9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

REFERENCES

K. Lee, M. B. Sullivan, S. K. S. Hari, T. Tsai, S. W. Keckler,
and M. Erez, “On the trend of resilience for gpu-dense systems,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks—Supplemental Volume (DSN-S). 1EEE, 2019,
pp. 29-34.

P. Rech, L. Carro, N. Wang, T. Tsai, S. K. S. Hari, and S. W. Keckler,
“Measuring the radiation reliability of sram structures in gpus designed
for hpe,” in IEEE 10th Workshop on Silicon Errors in Logic-System
Effects (SELSE), 2014.

A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keck-
ler, “Optimizing software-directed instruction replication for gpu error
detection,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2018, pp. 842—
853.

K. Lee, “Resilient heterogeneous systems with containment domains,”
Ph.D. dissertation, 2020.

L. Yang, B. Nie, A. Jog, and E. Smirni, “Practical resilience analysis of
gpgpu applications in the presence of single-and multi-bit faults,” /JEEE
Transactions on Computers, 2020.

B. Nie, A. Jog, and E. Smirni, “Characterizing accuracy-aware resilience
of gpgpu applications,” in 2020 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGRID). 1EEE,
2020, pp. 111-120.

R. Kumar, S. Jha, A. Mahgoub, R. Kalyanam, S. Harrell, X. C. Song,
Z. Kalbarczyk, W. Kramer, R. Iyer, and S. Bagchi, “The mystery of
the failing jobs: Insights from operational data from two university-
wide computing systems,” in 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 1EEE, 2020,
pp. 158-171.

D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 331-342.

S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: long-term measurement, analysis, and implications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1-12.

D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliability
lessons learned from gpu experience with the titan supercomputer at
oak ridge leadership computing facility,” in SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2015, pp. 1-12.

G. Ostrouchov, D. Maxwell, R. Ashraf, C. Engelmann, M. Shankar,
and J. Rogers, “Gpu lifetimes on titan supercomputer: Survival analysis
and reliability,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC) 2020,
2020, pp. 15-20.

B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari, “Machine learning models for gpu error prediction in a
large scale hpc system,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 1EEE, 2018,
pp. 95-106.

B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-
scale study of soft-errors on gpus in the field,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 519-530.

L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, “Gpgpus:
How to combine high computational power with high reliability,” in
2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2014, pp. 1-9.

C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 1EEE,
2014, pp. 610-621.

Tokyo Institute of Technology. Tsubame hardware-software specifica-
tion. [Online]. Available: https://www.gsic.titech.ac.jp/en/node/420

N. Onodera and Y. Idomura, “Acceleration of wind simulation using
locally mesh-refined lattice boltzmann method on gpu-rich supercom-

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33

[34]

[35]

puters,” in Asian Conference on Supercomputing Frontiers.
2018, pp. 128-145.

A. Nukada, K. Sato, and S. Matsuoka, “Scalable multi-gpu 3-d fft for
tsubame 2.0 supercomputer,” in SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. 1EEE, 2012, pp. 1-10.

K. Lee, M. B. Sullivan, S. K. S. Hari, T. Tsai, S. W. Keckler, and
M. Erez, “Gpu snapshot: checkpoint offloading for gpu-dense systems,”
in Proceedings of the ACM International Conference on Supercomput-
ing, 2019, pp. 171-183.

B. Pourghassemi and A. Chandramowlishwaran, “cudacr: An in-kernel
application-level checkpoint/restart scheme for cuda-enabled gpus,” in
2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2017, pp. 725-732.

A. R. Anwer, G. Li, K. Pattabiraman, M. Sullivan, T. Tsai, and S. Hari,
“Gpu-trident: efficient modeling of error propagation in gpu programs,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020, pp. 1-15.

R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “Crum:
Checkpoint-restart support for cuda’s unified memory,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER). 1EEE,
2018, pp. 302-313.

R. Garg, G. Price, and G. Cooperman, “Mana for mpi: Mpi-agnostic
network-agnostic transparent checkpointing,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 49-60.

J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen, T. Maier,
M. Ashfaq, B. Messer, and S. Parete-Koon, “Announcing supercomputer
summit,” Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
States), Tech. Rep., 2016.

J. A. Kahle, J. Moreno, and D. Dreps, “2.1 summit and sierra: Designing
ai/hpc supercomputers,” in 2019 IEEE International Solid-State Circuits
Conference-(ISSCC). 1EEE, 2019, pp. 42-43.

D. Das, M. Schiewe, E. Brighton, M. Fuller, T. Cerny, M. Bures,
K. Frajtak, D. Shin, and P. Tisnovsky, “Failure prediction by utilizing
log analysis: A systematic mapping study,” in Proceedings of the Inter-
national Conference on Research in Adaptive and Convergent Systems,
2020, pp. 188-195.

M. Kumar, S. Gupta, T. Patel, M. Wilder, W. Shi, S. Fu, C. Engelmann,
and D. Tiwari, “Understanding and analyzing interconnect errors and
network congestion on a large scale hpc system,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2018, pp. 107-114.

G. Wang, L. Zhang, and W. Xu, “What can we learn from four years
of data center hardware failures?” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 25-36.

S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing and
understanding hpc job failures over the 2k-day life of ibm bluegene/q
system,” in 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 1EEE, 2019, pp. 473-484.
A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving log-
based field failure data analysis of multi-node computing systems,” in
2011 IEEE/IFIP 41st International Conference on Dependable Systems
& Networks (DSN). 1EEE, 2011, pp. 97-108.

G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 27-38.

E. Tremel, S. Jha, W. Song, D. Chu, and K. Birman, “Reliable, efficient
recovery for complex services with replicated subsystems,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2020, pp. 172-183.

V. Fratin, D. Oliveira, C. Lunardi, F. Santos, G. Rodrigues, and P. Rech,
“Code-dependent and architecture-dependent reliability behaviors,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 1EEE, 2018, pp. 13-26.

D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 1EEE, 2014, pp.
25-36.

S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale

Springer,

[36]

[37]

[38]

[39]

[40]

[41]

hpc systems,” in 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. 1EEE, 2015, pp. 37-44.

L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. En-
gelmann, F. Cappello, and M. Snir, “Reducing waste in extreme scale
systems through introspective analysis,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2016,
pp. 212-221.

Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed lightweight
checkpointing for fine-grained guaranteed soft error recovery,” in SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2016, pp. 228-
239.

K. Tang, D. Tiwari, S. Gupta, P. Huang, Q. Lu, C. Engelmann, and
X. He, “Power-capping aware checkpointing: On the interplay among
power-capping, temperature, reliability, performance, and energy,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 1EEE, 2016, pp. 311-322.

R. Garg, T. Patel, G. Cooperman, and D. Tiwari, “Shiraz: Exploiting sys-
tem reliability and application resilience characteristics to improve large
scale system throughput,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 1EEE, 2018,
pp. 83-94.

R. Basu Roy, T. Patel, R. Kettimuthu, P. Richa, A. Scovel, B. Allcock,
and D. Tiwari, “Operating liquid-cooled large-scale systems: Long-term
monitoring, reliability analysis, and efficiency measures,” in 202/ IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 1IEEE, 2021.

L. Wan, F. Wang, S. Oral, D. Tiwari, S. S. Vazhkudai, and Q. Cao, “A
practical approach to reconciling availability, performance, and capacity
in provisioning extreme-scale storage systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1-12.

