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ABSTRACT

Natural and man-made degraded visual environments pose major threats to national security. The
random scattering and absorption of light by tiny particles suspended in the air reduces situational
awareness and causes unacceptable down-time for critical systems and operations. To improve the
situation, we have developed several approaches to interpret the information contained within
scattered light to enhance sensing and imaging in scattering media. These approaches were tested
at the Sandia National Laboratory Fog Chamber facility and with tabletop fog chambers.

» Computationally efficient light transport models were developed and leveraged for
computational sensing. The models are based on a weak angular dependence
approximation to the Boltzmann or radiative transfer equation that appears to be applicable
in both the moderate and highly scattering regimes. After the new model was
experimentally validated, statistical approaches for detection, localization, and imaging of
objects hidden in fog were developed and demonstrated. A binary hypothesis test and the
Neyman-Pearson lemma provided the highest theoretically possible probability of detection
for a specified false alarm rate and signal-to-noise ratio. Maximum likelihood estimation
allowed estimation of the fog optical properties as well as the position, size, and reflection
coefficient of an object in fog. A computational dehazing approach was implemented to
reduce the effects of scatter on images, making object features more readily discernible.

* We have developed, characterized, and deployed a new Tabletop Fog Chamber capable of
repeatably generating multiple unique fog-analogues for optical testing in degraded visual
environments. We characterized this chamber using both optical and microphysical
techniques. In doing so we have explored the ability of droplet nucleation theory to
describe the aerosols generated within the chamber, as well as Mie scattering theory to
describe the attenuation of light by said aerosols, and correlated the aerosol microphysics to
optical properties such as transmission and meteorological optical range (MOR). This
chamber has proved highly valuable and has supported multiple efforts inclusive to and
exclusive of this LDRD project to test optics in degraded visual environments.

* Circularly polarized light has been found to maintain its polarization state better than
linearly polarized light when propagating through fog. This was demonstrated
experimentally in both the visible and short-wave infrared (SWIR) by imaging targets made
of different commercially available retroreflective films. It was found that active circularly
polarized imaging can increase contrast and range compared to linearly polarized imaging.

* We have completed an initial investigation of the capability for machine learning methods
to reduce the effects of light scattering when imaging through fog. Previously acquired
experimental long-wave images were used to train an autoencoder denoising architecture.
Overfitting was found to be a problem because of lack of variability in the object type in
this data set. The lessons learned were used to collect a well labeled dataset with much
more variability using the Tabletop Fog Chamber that will be available for future studies.

* We have developed several new sensing methods using speckle intensity correlations. First,
the ability to image moving objects in fog was shown, establishing that our unique speckle
imaging method can be implemented in dynamic scattering media. Second, the speckle
decorrelation over time was found to be sensitive to fog composition, implying extensions



to fog characterization. Third, the ability to distinguish macroscopically identical objects
on a far-subwavelength scale was demonstrated, suggesting numerous applications ranging
from nanoscale defect detection to security. Fourth, we have shown the capability to
simultaneously image and localize hidden objects, allowing the speckle imaging method to
be effective without prior object positional information. Finally, an interferometric effect
was presented that illustrates a new approach for analyzing speckle intensity correlations
that may lead to more effective ways to localize and image moving objects. All of these
results represent significant developments that challenge the limits of the application of
speckle imaging and open important application spaces.

A theory was developed and simulations were performed to assess the potential transverse
resolution benefit of relative motion in structured illumination for radar systems. Results
for a simplified radar system model indicate that significant resolution benefits are possible
using data from scanning a structured beam over the target, with the use of appropriate
signal processing.
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1. BACKGROUND

Degraded visual environments (DVEs) pose a major challenge to security in both uncontrolled
and contested spaces. The aim of this project was to develop novel computational imaging and
sensing methods that utilize scattered light to extract information from DVEs and reduce
downtime of critical surveillance systems. A constraint of the development approach was that the
methods should utilize conventional and low-cost light sources and detectors, potentially allowing
rapid and low-cost integration into existing infrastructure through software modification. The
methods that were developed show potential to reduce the uncertainty that limits decision making
during high risk situations that threaten our national security. However, more work is required to
develop a field-able system.

This is the final report of an LDRD project active from FY20-FY22. Several team members were
involved in previous related projects. In the SAIL LDRD project “Utilizing Highly Scattered
Light for Intelligence through Aerosols”, active in FY19, an initial investigation of light transport
in fog was completed that suggested improvements to sensing and imaging were possible using
computational methods [1]. In the LDRD project “Polarimetry for extended persistence and range
in fog for infrastructure protection”, active from FY15-FY17, it was demonstrated that
polarization can provide increased imaging performance in foggy conditions compared to
traditional intensity based techniques [2]. Taken together, these projects represent a significant
investment by Sandia into the development of methods for imaging through and characterizing
scattering media like aerosols. We believe the results of this body of work support that there is
great potential for improving situational awareness in DVEs.
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2. APPROXIMATE MODEL FOR LIGHT TRANSPORT FOR
COMPUTATIONAL DETECTION, LOCALIZATION, AND IMAGING OF
OBJECTS HIDDEN IN SCATTERING MEDIA

2.1. Introduction

Random scattering and absorption of light by tiny particles in aerosols reduce situational
awareness. Aerosols that are naturally occurring or man-made can create degraded optical
environments (DOESs) that are sufficiently severe to impact security, remote sensing,
transportation, aviation, astronomy, and more. For example, fog is particularly concerning
because it can occur in most regions and at certain locations with high frequency. Information is
scrambled by the random scattering and absorption of light by tiny particles suspended in the air,
leading to reductions in signal and image contrast [3, 4].

Methods have been developed to reduce the effects of scatter on imaging [4]. The methods often
discriminate between ballistic light that has traveled in a straight line from an object to a detector
or lens system and scattered light that has changed propagation direction many times on the way
to the detector [5, 6]. The ballistic light can be used to form a high resolution image if the
scattered light is rejected using, for example, polarizing filters [7, 8] or temporal or coherence
gating methods [9, 5, 10]. However, imaging is possible only in the moderately scattering regime
because the ballistic light is exponentially attenuated with distance according to the
Beer-Lambert-Bouguer law [11, 12, 13].

Imaging beyond the ballistic limit is possible by interpreting the scattered light instead of
rejecting it [14]. For example, coherent speckle patterns and their correlations can be exploited
for imaging [15, 16]. These methods are challenging to implement in aerosols because the
speckle decorrelation is sensitive to moving scatterers [17]. Alternatively, incoherent methods
that do not take advantage of the wave nature of light can be insensitive to particle motion. For
example, diffuse optical imaging (DOI) relies on computational imaging to invert a diffusion
model that approximates photon transport in tissue. Through optimization techniques [18, 19], it
is possible to detect objects [20], estimate the locations of objects [21] and recover the shapes of
objects [19, 18, 22, 23, 24].

A requirement of DOI is sufficient scatter for the diffusion approximation to hold, and image
formation is limited to the highly scattering regime and distances greater than a few transport
lengths or so from sources and boundaries. As the transport length, /;, can be tens of meters in
fog, an alternative transport model is desired for computational imaging that can operate closer to
sources and boundaries. Monte Carlo simulations are a possibility, but they require
high-performance computing (HPC) and significant computational time [25, 8, 26], limiting their
utility for solving optimization problems that must calculate solutions iteratively, especially in
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low size, weight, and power (SWaP) systems. Approximate solutions offer a faster alternative and
do not require HPC. The moderately scattering regime can be simulated using the small-angle
approximation (SAA), which assumes that only the light propagating in a direction close the
source direction is significant [3, 4]. The SAA has been used to great

effect [27, 28, 29, 30, 17, 31], however it is not applicable in the highly scattering regime or when
measurements are made at large angles with respect to the source direction. The highly scattering
regime can be simulated using the diffusion approximation, as in DOI. Higher order diffusion
approximations can better describe collimated light sources, but they are still not valid in the
moderately scattering regime [32].

Recently, we developed a model based on a weak angular dependence approximation [33]. The
model appears to be valid in both the moderate and highly scattering regimes, covering
applicability domain of both the SAA and the diffusion approximation [33], making it suitable for
scattering media like fog, dust, smoke, and tissue. Here, we derive a more general heterogeneous
time-dependent solution and explore it’s application for computational detection, localization, and
imaging of spherical objects hidden in the fog generated at the Sandia National Laboratory Fog
Chamber Facility (SNLFC) [33, 34, 8].

2.2. Light Transport in Fog

2.2.1. Radiative Transfer

Light transport in scattering media can be described by the radiative transfer equation
(RTE) [3, 4]

1%z(r,t, Q)+ Q- VI(r,t,Q) + (ug+us)(r,1,Q) =

A

s [ dQ (@ - Q)ir,1,8)+0(r,1,Q), 2.1)
47

where r = (x,y,z) denotes a position, ¢ is the speed of light in the medium, / (r ,t7Q) (W/m?/sr) is
the radiance at time ¢ 1n direction Q Ug 1s the absorption coefficient (m™ b, Us 1s the scattermg

coefficient (m™!), (Q — Q) is the scattering phase function from incidence direction 8 to
scattering direction Q. and O(r,t, Q) (W/m3/sr) is the radiance source term. The RTE provides an
incoherent model that treats light as particles undergoing elastic collisions within a medium
where optical interference effects are assumed to average to zero and are neglected. Integrating
(2.1) over solid angle results in the continuity equation

1 o)+ V-3(0.0) + padlr.) = (), (2.2)

where 0(r,1) = [, dQI(r,1,Q) is the fluence rate (W/m?), J(r,1) = [, dQQI(r,,Q) is the flux
density (W/m?), and S(r,t) = Jux dQQ(r,t,Q) is the source (W/m?>).
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222 Diffusion Equation

We can assume the radiance is linearly anisotropic with weak angular dependence and expand to
first order in Q as [3, 35, 4]

A 1 3 A
I(r,t,Q) = —d(r,1) + —=J(r,1) Q. 2.3
(6,,8) = 0,1+ -3(r,1) @3
Furthermore, assuming an isotropic source and that the rate of time variation in J is much lower
than the collision frequency, it is possible to relate the flux density to the fluence rate, resulting in
Fick’s law [36]

J(I‘,I) = —DV(I)(I',Z), (24)

where the diffusion coefficient D = 1/[3(t, + ua)], i = us(1 — g) is the reduced scattering
coefficient, g is the average cosine of the scattering angle, or the anisotropy parameter, and
I, = 1/4, is the transport mean free path length. As g decreases from 1, the light becomes less
forward scattered, g = O implies isotropic scatter, and negative values imply predominantly
backwards scattering. Substituting (2.4) into (2.2), the result is the diffusion equation (DE)

10

Eatq)(r’t) — V- [D(r)Vo(r,1)] + . (r)d(r,1) = S(r,1). (2.5)

It has been found that the DE (2.5) can be invalid within a few /, of boundaries and sources, and
when y, is large relative to g [35]. The time-dependent homogeneous Green’s function solution
to the DE in (2.5) is [37, 38]

Soc Ir—rg|?
O(r,1) = WGXP (— ADet —uaCt> ; (2.6)

where r; is the location of a point isotropic source with energy S, (J). Solving for J using (2.4)
gives

r—r —|r —ry?
t) = — Mgct ) . 2.7
Y1) = 6 mpeyrzsa &P ( 4Dt M€ ) @.7)
2.2.3. Approximate Integral Equation Solution
Equation (2.1) can be written as
10 A A A A A
Egl(r,t, Q)+ Q-VI(r,t,Q) + (ug +us)I(r,1,Q) = Qs(r,1,Q), (2.8)
where the source is now the in-scattered light
0,(r,t,0) =, | aQ F( & — Q)1(x,1, D), (2.9)
47
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Figure 2-1. Coordinate systems for calculating the radiance incident on a pixel at r; due to a source at r;. (a) In-
scattered light at positions r; — RQ directed towards the pixel along its line of sight is attenuated and integrated
according to (2.15). The optical depth is computed by integrating across positions r; — Yo according to (2.11).
(b) An object at position r, blocks the Q directed light behind the object, (2.18), and reflects the —Q directed
light incident on the object, (2.19). (c) Pinhole camera model used to compute the voxel positions r = (x,y,z)
along pixel line of sights using the pixel positions (x',y’), the distance from the camera lens to the pixel array,
dj, and the uniformly discretized z-axis.

or the light that is scattered from incident directions, f)/, into the direction of interest, QA
solution to (2.8) can be found using the line of sight defined by the path length distance R for the
pixel or detector in the scattering media (fog) at position ry in Fig. 2-1(a). We see then that

Q. V=29 /AR [35]. Using the method of characteristics, integrating results in [39]

I(rg,1,0) = / R ps(rg — RQ) exp [ (v, 1a — RO)R|
0
Al Al A A R A/
x [ dQ f(Q %Q)I(r—RQ,t——,Q), (2.10)
4m Cc
where o is the optical thickness accounting for spatial variations in y, and ug and given by

A R A A
a(ry,ry — RO =/ dS g <rd—SQ> g (rd—SQ>, @.11)
0
where § also represents a distance along the line of sight as shown in Fig. 2-1(a).

We can consider  as being directed towards a detector or pixel in fog, and we can assume a

small detector area such that the measured photocurrent is proportional to /. Then,
deciphering (2.10), in-scattered light at positions r — RQ and times r — & directed towards the

c
detector along the line of sight is attenuated and integrated at the detector. Assuming isotropic

scatter (f (fll — Q) = 1/4m), we arrive at

A °  puy(rg—RQ)
1 Q :/ dR————=
(rd7tv ) 0 ATt

Alternatively, we can use the weak angular dependence approximation (2.3). First, with sufficient

~ ~ R A
exp [—oc(rd,rd —RQ)R} 0 (r—RQ,t - Z,Q/) @12

scatter such that f (ﬂ/ — f)) depends only on the scattering angle, we have that

dQ r(9 — &) =1, (2.13)
4
Al Al

dQQ f(Q
47

/ N

—Q)=48Q. (2.14)
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Figure 2-2. Computed solutions to (2.15), labeled RTE approximation, and the DE, labeled diffusion approxima-
tion. (a) Simulation geometry, where r; = (0,0,0), ry = (0,0,13.5) m, S, = 1 mJ, y, = 0, and g = 0.8, represen-
tative of visible light in fog. The scattering coefficient is u; = 0.25 m~! in (b), us =0.7 m~!in (€), s =1.5 m~!
in (d), and u; = 5 m~! in (e). A transition from the moderate to the highly scattering regime [33] occurs at
equal to about 0.7, corresponding to T = 10.

Then, by substituting (2.3) into (2.10) and using (2.13) and (2.14), we find that

I(rg,1,Q) = /0 dR Wexp [—oc(rd,rd—RQ)R]
. R . R\ A
X [q) (rd—RQ,t—Z)+3gJ (rd—RQ,t—z)-Q} , (2.15)

Equation (2.15) is an approximate integral equation solution to the RTE that can be solved using
the DE. It is the heterogeneous, time-dependent version of the solution presented previously [33].
It contains an additional anisotropic term compared to (2.12), and for the case of isotropic scatter
(g =0), reduces to (2.12), as expected. Combining (2.15) with (2.6) and (2.7) provides an
analytic time-dependent solution for the light incident on a detector within a homogeneous
scattering media.

Equation (2.15) is simulated in Fig. 2-2 with optical properties (u;, t,, and g) representative of
visible light in fog, and compared to the DE solution computed using (2.3), (2.6), and (2.7). The
geometry is shown in Fig. 2-2(a), where a detector is located at r; = (0,0,0) and an isotropic
source is located at ry = (0,0,13.5) m. The radiance, I(ry,t,), is computed for increasing
values of ug corresponding to optical depths, T = 13.5 X u;, of 3.375, 9.45, 20.25, and 67.5. We
see that a transition from the moderate to the highly scattering regime occurs at about T = 10 [33].
For the highly scattering regime, the approximate integral equation solution, (2.15), matches the
DE solution, as expected. Considering the moderate scattering regime, the DE solution is known
to be non-causal and not valid.
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2.24. Forward Model of Light Transport in Fog with Objects

Next we incorporate the effects of objects to develop a forward model that and allows
computational sensing of objects. For simplicity, we consider only the homogeneous
time-independent solution to (2.15), as was done in [40]. The object can have optical properties
that are different than the background, resulting in an interface that reflects, scatters, and transmits
light. We consider a spherical object with diameter d, reflection weight I', and opacity weight K
located at r, = (X,,Y0,20), as shown in Fig. 2-1(b). A forward model can then be written as

£(x) =y, +KS(r,,d) + TR(r,,d), (2.16)

where x = [r,,,d,T", k] are the object parameters, f(x) is a vector of length P, where P is the
number of pixels in the camera array, y,, is the expected measurement in absence of an object,
S(r,,d) is the light blocked by the object, and R(r,,d) is the light reflected by the object. The
vector components of yp, S(r,,d), and R(r,,d) are given, respectively, by

Vb, = f—; /O dR;exp [~ (us + ta)Ri]

X [(D(I‘d - Riﬁi) + 3gJ(I‘d - R,‘Ql‘) Ql:| , 2.17)
R AT .
si=-2f dRiexp[~ (s + )Ry

X [(D(I‘d — Riﬁi) + 3gJ(I‘d — Riﬁl‘) . fll:| , (218)

R; = I(r,, — ;) exp[— (us + ta)Ro), (2.19)

where i is an index from 1 to P, R; and &, define the line of sight for the ith pixel, /(r,, —fz,-) is
computed using (2.15), and R, is the distance from the pixel or camera to the object. To
approximate the effects of specular and diffuse reflection at the object surface, the reflection
weight I' is used to relate the radiance in direction —Q, towards the object (I(r,, —Qi) in (2.19)),
to the radiance reflected into direction , towards the detector (see Fig. 2-1(b)). Comparing to our
experimental data, we previously found I" within the range of 0 to 1 [40], so we limit it to this
range, however we expect it could be greater than 1 for other geometries and objects we haven’t
considered, such as when there are multiple sources closer to the object. For the results presented
in this manuscript, we consider only opaque objects with kK = 1. We also assume ¢ and J are
perturbationally affected by the object and that the reflected radiance is attenuated according to
the Beer-Lambert law [3, 4].

2.3. Simulated Camera Measurements

For simulated camera measurements, we use the optical parameters of a fog generated at the
SNLFC with density 10° cm ™ and the “SNLFC2” particle size distribution from [33], giving
us=0.5m™", yu, =108 m~!, and g = 0.8 for 450 nm light, corresponding to a meteorological
optical range (MOR) of 6 m. We also use S, =4 J and a pixel array at r; corresponding to the

2 W 450 nm LED (Thorlabs M450LP1) and the CMOS camera (Basler acA2440) with 2 second
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integration time used in the experiments described in [33]. The pinhole camera model in
Fig. 2-1(c) allows determination of positions r along each pixel’s line of sight using the pixel
positions within the 8.4 mm by 7.1 mm camera sensor and d; = 5 cm [33].

Figure 2-3 shows simulated forward model solutions for both a transmission and reflection
geometry. More detail can be seen in [40]. The total computation time for each was 4 seconds
using MATLAB on a “low-performance computer” (Intel(R) Xeon(R) CPU E5-1630 v4 at 3.7
GHz). To achieve this speed, no loops were used in the MATLAB code implementation. Note the
use of both (x,y,z) and (x,y’) coordinates corresponding to the pinhole camera model in

Fig. 2-1(c). For visualization purposes, the images are rotated 180° such that, effectively,

x = (z/d;)x' and y = (z/d)y’. The number of voxels equals the number of camera pixels

(2464 % 2056) times the chosen number of discretized points on the z-axis (500), giving about
2.5 x 10” voxels. The voxel positions r relevant to computing S(r,,d) and R(r,,d) were found
using the conditions r-r, > |r||r,|cos(0), corresponding to a right circular cone with

0 = arctan(d/2/R,), and either z > z, +d /2 or z < z,+d /2, respectively. Therefore, the
spherical object is being approximated as a conical frustum.

Comparing f(x) in Fig. 2-3 for the transmission and reflection cases, the contrast between the

object and the background is much greater in the transmission geometry, suggesting the object is
easier to detect. Figure 2-4 shows simulated forward model solutions for the reflection geometry
and different object positions and diameters. We see that when the object is close to the detector
there is high contrast between the object and the background light, and when the object is moved

13.5m ¢ Source 12
' } 2 673
6¢m + oobject E 145
EO0 12 E,
'>2 1 E
camera : 08
03m X
(a) (b)
5 18.5/;
g 0 18 5
> 5 175 &

© (d)

Figure 2-3. Simulated forward model solutions, f(x), computed using (2.16). (a) Transmission geometry with
r;=(0,0,13.5) m,r; = (0,0,0) m, r, = (0.3,0,6) m,I"= 0.9, and d = 0.2 m. (b) The corresponding transmission
f(x). (c) Reflection geometry with ry = (—0.7,0,0) m, r; = (0,0,0) m, r, = (0.3,0,6) m,I’=0.9,and d = 0.2 m.
(d) The corresponding reflection f(x). The total computational time for each case was 4 seconds.
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Figure 2-4. Different simulated forward model solutions f(x) for the reflection geometry in Fig. 2-3(c). The rows
correspond to different object diameters d. The columns correspond to different object positions r,, where the
distance to the object is increased. As the object becomes smaller and moves farther away, it’'s contrast with
the background in each image decreases, making it harder to detect.

farther away, the contrast decreases. When the object is 12 m away there is essentially no
contrast, implying the object is not detectable (as we will show below). This demonstrates the
effect of back-scattered light interfering with a measurement. Comparison with experimental data
suggests these model predictions are accurate [40], however further verification is needed,
especially for scattering media besides fog and for multiple sources, cameras, and objects.

2.4. Detection

We expand on the work of Milstein et al. [41], Cao et al. [42], and others [43, 44, 21, 20, 45] to
detect and localize opaque objects hidden in fog. Let the hypothesis H, correspond to the absence
of an object and H x to the presence of an object. The probability densities for measurement
vector y under the two hypotheses are then

1 1 ,
0 = ——1ly — -1, 2.20
Poly) (m)P,r,e"p( Sy =yl ) (2.20)
o T
P = e (v -l ) @2

where Y is the noise covariance matrix with [Y]; = a|y;|, & is a scalar parameter of the
measurement system that is determined from the signal to noise ratio (SNR) [19], wis a

~, =u’Y " 'u, and T is the transpose operation. Letting 6 = [x, w]
be the parameters of interest, the likelihood ratio test (LRT) is

npl,x(Y)

—h’ —Wyp| —c .
ooy) D (0)[y — wys] — c(6), (2.22)

L(y,0)=1
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Figure 2-5. Probability of detecting an object hidden in fog as a function of the object position, r,, for an
assumed Pr = 3% and d = 0.2 m. Slices within the 3-D geometry at y = 0 are shown as images. (a) Transmission
geometry from Fig. 2-3(a) and assuming a 30 dB SNR. (b) Reflection geometry from Fig. 2-3(c) and assuming a
40 dB SNR. As seen in Fig. 2-4, objects that are further than about 7 m from the camera that is located at the
origin are not detectable.

where In is the natural logarithm, h” (8) = [wf(x) —wy,)" Y[y — wy,), and

c(8) = 3||wk(x) — wys| \%,,1, a constant for each 6. According to the Neyman-Pearson

lemma, (2.22) provides the highest probability of detection, Pp, for a specified false alarm rate,
Pr. The decision statistic ¢ = h” (8)[y — wy,] then has a normal distribution under the two
hypotheses,

1 g
o(q) = —— -—— 1, 2.23

I S BN A5
P1 <Q) - \/@Gq p ( 205 ) ) (224)

where both the mean g and variance G%I are equal to ||wf(x) — wyp)| ]%.,1. For a specified Pr, the

detection threshold, kp, (8), can be then determined as kp, (0) = /26 erfinv(2Pr), where erfinv is
the inverse error function. Thus, an object is declared present if ¢ > kp, (), and the probability of
detection can be computed as

_ 1 kpy (8) — g
Pp = 2elrfc <—\/§Gq > ) (2.25)

where erfc is the error function.
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Figure 2-6. Influence of depth, u;, g, and d on Pp for the reflection geometry of Fig. 2-3(c), with Pr = 3%,
I'=0.9, and 30 dB SNR. (a) Pp as a function of object depth, z, where (i is designated in the legend, g = 0.8,
and d = 0.2 m. (b) Pp as a function of y;, where g = 0.8 and d = 0.2 m. (c) Pp as a function of g, where
us =0.25m~!and d = 0.2 m. (d) Pp as a function of 4, where u; = 0.25 m~! and g = 0.8.

Simulated calculations of (2.25) are shown in Fig. 2-5 for both the transmission and reflection
geometries of Figs. 2-3(a) and (b). The SNR specified in the figure caption was used to determine
o using the method described in [41], and w was set equal to 1. Experimentally, o could be
estimated for a specific measurement setup and w could represent a linear calibration factor.
Figure 2-5 used the optical parameters of the fog described in Section 2.3, which could be
determined experimentally be inverting the model using a known calibration object or light
source.

Simulated calculations of (2.25) for the reflection geometry of Fig. 2-3(b) are shown in Fig. 2-6 as
a function of depth, u;, g, and d. Here, the object positions were centered on the z-axis in

Fig. 2-3(b) so that the object depth, z, is the distance from the camera to the object. Figure 2-6(a)
shows that Pp decreases as the object depth is increased or y; is increased. Figure 2-6(b) shows
this more comprehensively as a function of both z and yg and suggests regions where the object
could be classified as either detectable or not detectable. Figure 2-6(c) shows the effect of the
average cosine of the scattering angle, g. Surprisingly, whether the light is isotropically scattered
(g = 0) or forward scattered (g = 1) is found to have a limited influence on detection depth limits
(Iess than a factor of 2). This appears to be a multiplescattering effect, as the backscattered light is
more important for detection when there is weak scatter. Figure 2-6(d) shows the effect of the
object diameter d. As expected, the object can be detected at greater depths as it increases in size.
However, once its size is larger than the field of view of the camera there is no longer additional
benefit.

From Fig. 2-6(b), we find the following fit for the maximum depth where the object can be
detected as a function of ug [40]

z=21.98exp(—12.08us) +9.175exp(—1.063;). (2.26)
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This fit is appropriate for predicting detection limits in fog (MOR) for the reflection geometry and
a 30 dB SNR measurement with visible light (i.e. y, ~ 0). We note that supplemental code is
available in [33] to compute yu; for different fog types. The predictions in Fig. 2-6 and (2.26) are
consistent with Fig. 2-4(b), Fig. 2-5(b), and our experimental data (not shown).

2.5. Localization

As in the references [41, 42, 21, 20, 44, 45], we use maximum likelihood (ML) estimation to
locate the object. We also characterize the object by estimating its diameter and reflection
coefficient. Assuming an object is present or has been detected, using (2.21) and (2.16), the ML
can be formulated as

c(ry,d) = argmin||y — wy, — wS(r,,d) — wI'R(r,,d) (2.27)

Hi-fla
Tw

where c(r,,d) is the negative log likelihood and is treated as a cost function and the goal is to
estimate r,, d, I', and w. To accomplish this, for each discretized position r, and object diameter
d within pre-determined ranges of interest, c¢(r,,d) is first minimized with respect to I" and w
along the search directions given by

I'R(r,,d)]"Y™!
VT/ — [Yb + S(r07 ) + (r07 )] 5 y (228)

HYb+S(I‘(,, )+ R(I‘(,, )Hrfl

- Y _ TT*]R
W|| (ro d)ll3-
such that the estimated parameters are given by
[f,,d] = argmin||y — Wy, — WS(r,,d) — WIR(r,,d)|[3-1, (2.30)
Iy, d

W =1w(t,,d,I), (2.31)
[ =1(f,,d,W). (2.32)

In practice, for each interrogated r, and d, we first initialized ['t00.5, computed W using (2.28),
computed a new I using (2.29), then computed a new w, and so on for 10 iterations, which we
found gave good convergence.

Simulated localization and calculation of (2.27) is shown in Fig. 2-7 for both the transmission and
reflection geometries of Figs. 2-3(a) and (b). These results use [Y]; = |y;| rather than [Y]; = ay;|,
because o is assumed unknown [41]. This results in an unknown scalar factor for the cost
function, which has no effect on the optimization of (2.27). The parameters r,, d, and I were
estimated successfully for each case, suggesting that objects in fog can be both localized and
characterized using a single camera. We believe r,, and I" can be determined uniquely because the
fog between the object and the camera affects the measurement differently, depending on the
distance to the object and its reflection. We have localized a spherical object, however the same
procedure could be adapted to localize objects with more complex shapes.
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Figure 2-7. Localization and characterization of objects. (a) Cost in (2.27) calculated for the transmission
geometry from Fig. 2-3(a) with r, = (0.3,0,6) and assuming a 30 dB SNR. (b) Cost in (2.27) calculated for
the reflection geometry from Fig. 2-3(c) with r, = (0.3,0,4) and assuming a 30 dB SNR. The parameters r,,
d, and I were estimated successfully for each case. The black dot designates the correct object location,
r, = (—0.22,0,8) m, where the cost reaches a global minimum. The contrast in cost is much less for the
reflection geometry because the object is almost undetectable.

2.6. Imaging

Considering (2.16), y, could be treated as a background contribution to the measurement.
Subtracting y, would then isolate the effect of the object, kS(r,,d) +I'R(r,,d), effectively
reducing the effect of the scattering media on the image. In a similar approach known as
dehazing, yj is estimated and removed [46, 47]. However, current dehazing approaches are
limited to the weakly scattering regime because they do not account for multiple scattering. Here,
using (2.15), it becomes possible solve the “dehazing” problem in the moderate and highly
scattering regimes.

In Sections 2.4 and 2.5, we have assumed the optical properties u;, t,, and g are known, for
example, measured by a transmissometer and particle sizer as described in [33, 40]. For
computational sensing applications, it would be practical to estimate the optical properties from
an image rather than relying on additional equipment. This can be done using the image data in a
region removed from the object location and computing

[its] = argmin ||y — Wy (us)|[5-1, (2.33)
Ms

where w = (y? XY 'y)/(||ys| \%, 1)- Next, the dehazed image can be computed as

Ydehaze =Y — WYb (.‘Als); (2.34)
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Figure 2-8. Image dehazing through estimation and subtraction of the effect of scatter, y;. (a) Experimental
data measured in the transmission geometry, where r; = (0,0,13.5) m, r; = (0,0,0) m, r, = (0.15,—0.05,4) m,
I'=0.1, and d = 0.15 m. The true fog parameters are u; = 0.24 m~!, yu, = 1073, and g = 0.8. The estimated
fis = 0.2 m~!. The object is a Styrofoam sphere painted black. (b) Dehazed image from (a). (c) Experimental
data measured in the reflection geometry, where r; = (—0.7,0,0) m, r; = (0,0,0) m, r, = (0.03,—0.03,2) m,
=1, and d = 0.03 m. The true fog parameters are u; = 1.0 m~!, y, = 1077, and g = 0.83. The estimated
‘i\ls =2 m_l-

where W = w(fiy). This treatment has assumed y, and g are known. For the case of visible light in
fog, we can assume to good approximation that y, = 0 and g = 0.8. However, there will be
significant error introduced into fi; compared to the true value. We consider this error to be
acceptable since our goal is to calculate y .nqz.. A procedure that estimates u, and g as well as y;
could be implemented to better characterize the optical properties of fog.

Representative results of the dehazing procedure using experimental data are presented in

Fig. 2-8. Figure 2-8(a) shows experimental data acquired in the transmission geometry [33, 40],
and Fig. 2-8(b) shows the corresponding dehazed image, yjenqz. For these images, the u; = 0.24,
as measured by the transmissometer and particle sizer, and fi; = 0.2 m~!. We consider this error
in fI5 to be low. Figure 2-8(c) shows experimental data acquired in the reflection

geometry [33, 40], and Fig. 2-8(d) shows the corresponding dehazed image, Y epqz- For these
images, the u; = 1.0, as measured by the transmissometer and particle sizer, and fi; = 2.0 m L.
This error is much higher than in Figs. 2-8(a) and (b), and could be caused by the transmissometer
and particle sizer measurement not accounting for multiple scattering properly. In fact, in general
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we observed good agreement between fi; and the value given by the transmissometer and particle
sizer when the scatter was low (u; < 0.5 m~!), however the error was substantial when the scatter
was high (u; > 0.5 m~!). Therefore, improving the transmissometer and particle sizer
measurements would likely reduce the error when the scatter is high.

The dehazed images in Figs. 2-8(b) and (d) show the effect of the object and could be used to
better identify the object. For example, in Fig. 2-8(b), the fishing line holding the object is visible
near (2,2) mm and light from the transmissometer is visible near (—4,0) mm. Since the source in
the experiment is not isotropic, differences between the model and data can be seen at (0,0) mm.
In both Fig. 2-8(b) and (d), the curvature of the spherical objects surface is much more

apparent.

2.7. Conclusion

We have presented a time-dependent model that approximates light transport in heterogeneous
scattering media. This may be the case because the diffusion approximation is only applied to the
in-scattering term in the RTE by leveraging an integral equation solution (2.15). Previously,
separate models based on either the small angle approximation or diffusion approximation were
required for moderate or highly scattering regimes, respectively [4]. The model can be used to
characterize the effects of scattering on imaging and to detect, localize, and image objects in
aerosols [48, 49, 50]. Compared to Monte Carlo [8], the computational time is minimal and
high-performance computing is not needed, ideal for low size, weight, and power (SWaP) systems
and when f(x) must be computed iteratively. Direct comparison of the computational time with
Monte Carlo is difficult because our model has not been parallelized. However, running on a
single core, we find that our model (written in MATLAB) is on the order of 10,000 times faster
than the MC code used in references [7, 8] (written in C++). We believe our model could be
parallelized and achieve similar performance when compared to Monte Carlo on HPC. We
examined computational detection, localization, and imaging of a spherical object in an infinite
domain, but other shapes could be considered and boundary conditions incorporated. The model
could be useful for the tissue imaging problem [51, 52], especially in tissue slices or near the
surface where there is moderately scattered light.

Possible future work includes theory, simulations, and experiments to better treat boundaries and
light sources [18, 19, 21, 45, 10]. Higher-order diffusion approximations could be leveraged to
better model collimated sources in the moderately scattering regime [25, 32]. A spatially
modulated structured light source could be incorporated into the model to improve spatial
resolution and contrast [53, 54]. Numerical solutions based on the finite element method

(FEM) [55] could be employed to model heterogeneous scattering media. It may be possible to
seek alternative solutions to the vector radiative transfer equations to treat polarized

light [3, 28, 29].
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3. DEVELOPMENT AND CHARACTERIZATION OF A TABLETOP FOG
CHAMBER

3.1. Introduction

Fog presents a widespread, complex issue for the sensing world. Furthermore, there is significant
case-by-case variation between fogs in nature, even within the same region [56, 57, 58, 59]. This
creates a complex problem space, where optical systems must be able to function in a wide
variety of scattering environments to be able to sense through fog [60, 61, 33, 40, 8]. Itis
therefore important that we be able to repeatably generate multiple different fogs to test optical
systems in a robust manner. To this end we have developed and characterized a tabletop chamber
capable of reliably generating a variety of repeatable fog-analogues [62].

(a) (b)

Figure 3-1. Light scattering in fog, shown by (a) an illustration depicting light randomly scattering off of fog
droplets of varying sizes and (b) an image of light from two different collimated sources (a 670 nm red laser
and a 532 nm green laser) being scattered in the Tabletop Fog Chamber described herein. Each beam travels
roughly 30 cm within the chamber before becoming isotropic.

3.2 Droplet Size Distribution and Light Attenuation in Fog

3.2.1. Kéhler Theory of Droplet Nucleation

In real-world environments fog most often occurs through either the rapid cooling of
supersaturated air, or an inversion of cooler, dry air and warm, moist air [56, 57, 59]. In either
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case, the thermodynamic equilibrium of droplet formation within the fog is described by the
Kohler equation [56]:
2M,, Oy, vhsmsM,, /M

Spw = — 3.1
o P Rprr (47V3Ps/3) — My ( )

where S§,,,, 1s the saturation ratio at the surface of the droplet, M,, is the molecular weight of
water, Gy, is the droplet surface tension, R is the ideal gas law constant, 7' is the temperature, p,,
is the density of water, r is the droplet radius, v is the number of dissolved ions present within the
droplet, ¢, is the osmotic coefficient, m; is the mass of solute present within the droplet, M is the
molecular weight of the solute, and p; is the density of the aqueous solution.

Figure 3-2 displays a curve that describes how the size of a droplet with a specific solute
concentration will increase or decrease depending on S,,,,. In essence, 3.1 describes droplet
growth as a relationship controlled by two competing factors, the curvature and solute effects.
Due to surface tension, water evaporates from a flat surface faster than curved surface, a
phenomenon known as the curvature effect. The curvature effect defines a relationship such that a
higher relative humidity is required to sustain smaller droplets have greater curvature/surface
tension. If the droplet contains a dissolved salt, also known as a cloud condensation nuclei
(CCN), the water in that droplet becomes less likely to evaporate due to the solute effect. To
nucleate a homogeneous water droplet from water vapor molecules (i.e. one without solute), an
ambient relative humidity of greater than 20 million percent would be required. Therefore,
homogeneous nucleation is not possible. The competing influences of the curvature and solute
effects, however, enable droplets to form at reasonable supersaturation (SS = RH — 100%),
known as the critical supersaturation which is located at the peak depicted in Figure 3-2. The
critical supersaturation corresponds to a critical droplet diameter; if a droplet is able to achieve its
critical diameter, it will continue to grow. Aerosols that have undergone deliquescence, but that
have not achieved their critical diameter (haze droplets), will have a pseudo-stable diameter that
may increase or decrease with relative humidity, but that will never achieve unbounded growth
(labelled as the “Saddle Point” in Figure 3-2) [56, 60, 62].

In real-world environments the amount and type of solutes present in the atmosphere vary, but
often include salt (near sources of salt water), lead, sulfur oxides, carbon oxides, and nitrogen
oxides [63]. Since many fogs occur near coastlines, we will largely focus on the effects of salt on
droplet size for this work.

3.2.2. Mie Theory of Light Attenuation in Fog

Light attenuation by spherical particles can be approximated with Mie Theory [34, 33, 40, 8].
Since fog droplets are roughly spherical, Mie Theory provides a good basis for calculating the
attenuation of light through fog [34, 33, 40, 8, 61, 60, 62]. A simplified calculation for the
scattering coefficient, (3.2), provides a useful basis for the discussions contained within this
chapter:

_ 3_V Gscatter(ria 7\1)\/,'
4m : 3

1

" (3.2)
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Figure 3-2. Graphical depictions of Kéhler curves, modified with permission from [60]. (a) A depiction of a
single Kéhler curve, showing droplet growth trends towards either the labelled saddle point, or growth past
the labelled activation point. (b) A set of Kéhler curves depicting how modifying solute concentration changes
the shape and intersections of the curve.

where yj is the scattering coefficient of the fog, V is the overall volume fraction of fog droplets in
the ambient environment, Gsq4sser 1S the scattering cross section of a droplet with radius r; for light
with wavelength A, and v; is the relative volume fraction of droplets with radius r;. This
formulation is convenient for this chapter because it shows the dependence of the scattering
coefficient (the ability of the fog to scattering light) on the droplet diameter and overall volume
concentration of droplets in the environment.

It is important we understand the fundamentals of (3.1) and (3.2) so that we can understand the
effect that changing the solute concentration has on visibility. To do so we use the scattering
Mean Free Path (MFP), [, which is the average distance between scattering events within the fog,
given by:

I (3.3)

This term is useful for understanding visibility as after ten (10) scattering events light from a
collimated beam becomes isotropic, and information becomes challenging to decipher with
conventional signal recovery approaches [33, 40, 62]. This term is also useful because we can use
it to calculate the Meteorological Optical Range (MOR), which is defined as the distance required
to reduce the flux of a collimated beam to 5% of its initial value. MOR is often used in
transportation and meteorology, and as such is a useful metric for comparing and communicating
the impacts of different fogs [64, 8, 61]. We have shown before that in the visible spectrum,
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where water has low absorption, MOR can be approximated as the same distance as three (3)
scattering paths [40], giving:

—In(0.05)
Hs

MOR = ~ 3l (3.4)
This correlation both allows us to predict transmission through fog and provides a useful
parameter for comparing our generated fogs to real-world atmospheric conditions, giving
relevance to optical tests performed within our tabletop chamber.

It is fundamental that we understand both 3.2.1 and 3.2.2 as together they go to show that
atmospheric conditions and composition will dictate aerosol formation, which in turn will dictate
light scattering and thus the efficacy of remote sensing, imaging, etc. Thus, to combat this we
must develop a test-bed capable of generating a wide variety of fogs-like environments.

3.3. Tabletop Chamber Design

3.3.1. Tabletop Fog Chamber "MiniFog"

Our final chamber design (Figure 3-3) is a 48” x 18” x 15” rectangular chamber with an
additional 15 of head space to allow for fog generation and mixing. We designed the head space
as a 45° isosceles trapezoid to accommodate the angle of the spray nozzle while minimizing dead
space above the rectangular testing chamber. The chamber is constructed from 7 thick acrylic
paneling and 1” aluminum t-slots, sealed with silicone epoxy at the connections and clamped
along the lid line to ensure no leaks occur during experiments.

(a) (b)

Figure 3-3. The Sandia National Laboratories Tabletop Fog Chamber (otherwise called the "MiniFog" chamber)
shown both (a) as an initial schematic and (b) assembled at a test site.
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The fog generation system consists of an air compressor, a water tank, and a 1/4J air atomizing
spray nozzle from Spraying Systems Co. We selected this nozzle because it generates aerosolized
droplets at atmospherically relevant diameters (< 100um) [56]. The nozzle operates by atomizing
a water flow from the tank with a shearing air flow, spraying fog droplets into the chamber. Both
head pressure for the water tank and the shearing airflow are generated by the compressor.

The chamber is equipped with six optical paths (five across the long axis of the chamber and one
across the short axis) each fitted with hydrophobic, optical windows which are transparent in the
visible waveband, and multiple ports with Swage connections. These paths and ports allow for
many different configurations of equipment to support testing needs. Figure 3-3 shows one such
possible configuration of the test chamber, where several of the longer optical paths are utilized
for fog characterization tests.

3.3.2. Diffusion Study Tabletop Fog Chamber "MesoFog"

A secondary, larger chamber is currently under construction in support of the Pluminate LDRD
(LDRD 226083). This chamber is designed to study diffusion of and within atmospheric aerosols
on a tabletop scale. The new system is made from the same materials as the current system, is
double the overall length of the current system, and will include a retractable panel in the center
to allow for two stable aerosols to be generated in separate halves of the chamber and then be
allowed to mix. The design of this system can be seen in Figure 3-4.

Figure 3-4. Initial schematic of the Sandia National Laboratories Diffusion Study Tabletop Fog Chamber (other-
wise called the "MesoFog" chamber). System is currently under construction.
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3.4. Fog Characterization

3.4.1. Characterization Equipment

Droplet size distribution measurements were performed by a Malvern Spraytec, a
diffraction-based particle sizer that was connected to the chamber via an inhalation cell. Optical
transmission through the chamber was measured by an in-house transmissometer. The
transmissometer measures transmission at multiple wavelengths (532nm, 1550nm, and 9.68um),
and was aligned through the central full-length optical paths of the tabletop fog chamber, as
shown in Figure 3-3. All these pieces of equipment are also utilized at the SNLFC.

3.4.2. Spray Regime

We generate fog in the tabletop fog chamber by spraying through the nozzles until a maximum
optical density is achieved, indicated by the stabilization of transmission through the chamber.
We then turn off the fog generation system and allow the fog to evolve and dissipate. In the
current configuration it takes the system three minutes to reach a maximum density point and
about ten minutes to fully dissipate, depending on the type of fog generated.

3.4.3. Fog Parameter Sets

As we have discussed several times in this chapter, for this system to be a useful optical test-bed it
must be able to generate several fog-like environments with varied droplet size distributions and
overall droplet number densities. To this end we designed six different sets of input parameters.
Five of these parameter sets focus on the effects of adding solute to the feed water (Tabletop Fogs
1-5), while the sixth tested the effect of changing the volume of water sprayed during a spray
(Tabletop Fog 6).

Tabletop Fog 1. This fog-analogue was generated by spraying feed water with no solute present
(only distilled water) through the fog generation system at 72 psi.

Tabletop Fogs 2-4. These fog-analogues were generated by spraying feed water with an
increasing concentration of salt (sodium chloride, NaCl) in the feed water at 72 psi. The
concentrations were 10, 20, and 30% respectively.

Tabletop Fog S. This fog-analogue was generated by spraying feed water with a salt
concentration of 355 at 72 psi. This concentration was selected in addition to the concentrations
in Tabletop Fogs 2-4 because it is roughly the average salinity of sea water. [65]

Tabletop Fog 6. This fog-analogue was generated with the same salinity as Tabletop Fog 2 (10%)
but at a lower system pressure (40 psi).
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3.5. Results

Over the duration of this project each of these parameter sets was run a minimum of 15 times for
characterization purposes, often this number was much higher due to collaborations and other
tests. Please see 3.9 for details regarding these collaborations. All fog-analogues generated by
this system proved to be optically and microphysically different from one another and highly
repeatable. Additionally, the chamber proved to be simple to operate, requiring less than an hour
of set up and tear down and able to be run with only a single operator.

Table 3-1. Microphysical and optical properties of the generated Tabletop Fogs.

Comparison of Tabletop Fogs
Mean Average Maximum Mie
Fog Parameter . . . . Average
Set Diameter Density Density Scattering MOR (m)
(um) (cm™?) (cm ™) (m~")
Tabletop 1 1.58 9.8x10% 1.6x10° 2.8 1.10
Tabletop 2 1.70; 12.1 2.0x10° 4.2x10° 6.1 0.49
Tabletop 3 1.71;9.26 3.2x10° 6.5x10° 5.6 0.54
Tabletop 4 3.16; 19.1 3.4x10° 5.7x10° 5.4 0.53
Tabletop 5 3.19;23.3 3.7x10° 5.6x10° 5.7 0.55
Tabletop 6 1.87 1.0x10% 2.0x10% 4.1 0.70
3.5.1. Tabletop Fog 1

The fog-analogue generated with no solute present in the feed water had the lowest mean droplet
diameter and density, showed only a single mode, and did not fully obscure the chamber across
the 1 meter path length. A representative droplet size distribution can be seen in Figure 3-5 (a).

3.5.2. Tabletop Fogs 2-5

The fog-analogues generated with 10 to 35% salt concentration gradually increased in mean
particle diameter and decreased in average and maximum droplet densities. Commensurately, the
average meteorological optical range for visible light was changed as the droplet size distribution
was altered. The full table of measured and calculated parameters can be seen in Table 3-1.
Representative droplet size distributions can be seen in Figure 3-5 (b)-(e).

3.5.3. Tabletop Fog 6

The fog-analogue generated by this parameter set had a similar particle diameter distribution as

the Tabletop Fog 2, which had the same solute concentration (10%), however with significantly
lower average and maximum densities. See Table 3-1 and Figure 3-6 (b).
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Figure 3-5. Droplet distribution plots of the generated aerosols. (a) Tabletop Fog 1, no solute. (b) Tabletop Fog
2, 104 salt. (c) Tabletop Fog 3, 20% salt. (d) Tabletop Fog 4, 304 salt. (e) Tabletop Fog 5, 35% salt. (f) Tabletop
Fog 6, 10% salt, low pressure injection.
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3.6. Discussion & Applications

3.6.1. Fog Generation Microphysics

The observed results are in good agreement with Kohler theory (Section 3.2.1). Changing the
solute concentration in the feed water has a clear and significant impact on the microphysical
properties of the fog. As solute concentration increases, we can see that the mean droplet
diameter size of the dominant mode gradually increases (see Figure 3-6 and Table 3-1).

The average number density increases similar to the mean droplet diameter, however the
maximum number density gradually decreases (Table 3-1). This phenomenon is likely due to the
fact that Tabletop Fogs 1-5 were each generated under the same operating pressure. As such they
each contained approximately the same overall liquid water content (LWC). As droplet diameter
increased the number of droplets naturally decreased as larger droplets consumed more of the
overall available water. The increase in average number density is due to the increased longevity
of the aerosols. As the solute concentration increases within the droplets so too does the
hygroscopicity of each droplet, defined as the chemical potential of the droplet with respect to
water [56]. As the hygroscopicity increases there is an overall increase in the longevity of the
droplet in the environment, leading to the seen increase in average number density seen in

Table 3-1.

Comparing Tabletop Fog 2 and Tabletop Fog 6 (Figure 3-6 (b), Table 3-1), which were
generated with the same solute concentration but at two different pressures, we can see that the
two fog-analogues appear similar in regards to average number density and apparent mean droplet
diameter of the dominant size mode. Though the mean diameters appear significantly different in
Table 3-1, by plotting the diameter distributions (Figure 3-6 (b)) we can see that the dominant
diameter is nearly identical between the fog-analogues, and the main difference comes from the
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Figure 3-6. (a) Comparison of salt concentration and resultant first mode droplet diameter of generated fogs.
Red trendline indicates parabolic increase in modal diameter as a result of increased salt concentration. (b)
Comparison of Tabletop Fogs 1 and 6. Both generated with 10 10% salt in the feed water. Both fogs show
similar ranges.
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lack of a distinct secondary mode in Tabletop Fog 6. When truncating the size distribution data
to below 5 um (the inflection point of between size modes in Tabletop Fog 2) the resultant mean
diameter of Tabletop Fog 6 shifts to 1.62 um, becoming statistically indistinguishable from
Tabletop Fog 2. Since the two fogs were generated with the same solute concentration we
anticipated that the mean droplet diameters would be nearly identical. Indeed, the fogs appear to
be nearly identical in distribution, and are different only in overall number density of droplets.
This tells us that we are able to generate the same fog-analogue at different densities by holding
solute concentration constant and instead altering the system pressure of the chamber.

Furthermore, a bimodal droplet size distribution can be seen in sprays with a solute present, as is
also predicted by Kohler theory (Section 3.2.1). By analyzing the gradual development and
separation of the secondary mode in Figures 3-5 (b)-(e) we can see that the mean diameter of this
mode also increases with respect to solute concentration. This adherence to theory suggests that
the generated fog-analogues are representative of real-world fogs and aerosols [56, 57, 59].

3.6.2. Fog Optical Properties

As discussed in Section 3.2, as the microphysical properties of the fog change, so too do the
optical properties. We can see this to be true in Table 3-1, where each generated fog has a unique
Mie scattering coefficient and MOR value. This variety allows us to generate multiple different
conditions relevant to real-world environments that might affect industries such as security,
remote sensing, and transportation. A quarter (25%) of all transportation accidents are caused by
inclement weather, including fog [58]. By being able to better simulate naturally occurring fogs,
we can begin to test next-generation optical equipment for transportation instrumentation.

The International Civil Aviation Organization (ICAQO) defines several categories of inclement
visibility as standards for aviation. Category IlIb is the most severely visually impaired of these
categories, defined by ICAO as less than 200 meters of visibility along a runway [66]. In Category
IIIb conditions pilots are required, and often times only able, to navigate using instrumentation
only. As such, it is clearly advantageous to be able to test aviation equipment in these conditions
prior to deployment. Using the Tabletop Fog Chamber we are able to simulate out to 200 meters
of ICAO Category IIIb conditions with the various fogs generated in this section.

By being able to reliably replicate a variety of aviation-relevant fogs this chamber can test optical
equipment in relevant environments prior to real-world deployment.

Section 3.9 details current optical research that this chamber is supporting and has supported
throughout this LDRD.

3.6.3. Scale Up

We can compare our tabletop chamber to the SNLFC, our large-scale research facility. Figure 3-7
shows droplet size distributions of the fogs generated in the tabletop chamber plotted with fog

measured in previous experiments at the SNLFC [60, 33, 40, 8]. The SNLFC fog was generated in
a manner like Tabletop Fog 2 in this experiment, with 10% salt added to the feed water [60, 8]. As
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Table 3-2. Comparison of experimentally generated Tabletop Fogs to equivalent aeronautical distances.

Average Aerospace Relevant Values
Equivalent
Fog Parameter Droplet Density | MOR for Visible Distance in
Set (em™3) Light (m) ICAO Cat. IIIb
Conditions (m)
Tabletop 1 9.8x10% 1.10 90
Tabletop 2 2.0x10° 0.49 200
Tabletop 3 3.2x10° 0.54 185
Tabletop 4 3.4x10° 0.53 190
Tabletop 5 3.7x10° 0.55 180
Tabletop 6 1.0x10° 0.70 140

is clear in Figure 3-7, both the SNLFC fog and Tabletop Fog 5 show a similar bimodal behavior
due to the effect of the salt on droplet formation in a stable environment. This type of bimodal fog
is referred to as an advection fog and is most often seen in coastal regions [57, 59]. Replicating
this type of fog has immediate application to testing optical systems intended for deployment in
coastal regions, at sea, and in other areas where the dominant fog is advective in nature.

Figure 3-7 also includes the droplet size distribution of a historical real-world fog from Garland,
et al. [57], labelled as “Garland”. This fog has a tight unimodal distribution very similar to that
seen in Tabletop Fog 1 from this experiment. This type of diameter distribution classifies these

—No solute
—35 g/L salt
SNLFC

—--Garland

10° 102
Diameter (um)

Figure 3-7. Comparison of two experimentally generated fogs (Tabletop Fogs 1 and 5 from this chapter) with
a naturally occurring fog (Garland, from [57]) and a previously generated fog-analogue (SNLFC, from [60, 8,
40, 33]) from our large-scale chamber. Similar fog and fog-aerosols share a similar color-scheme for easy
comparison. With reds indicating the similarity of the Garland fog and Tabletop Fog 1, and blues indicating the
similarity of the SNLFC fog-analogue and Tabletop Fog 5.
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fogs as radiation fogs, which are more common inland, where there is less available

humidity [57, 59]. Radiation fogs are often less dense than advection fogs, which we can also see
if the case when we compare Tabletop Fogs 1 and 5 in 3-1. There is also immediate relevance to
being able to replicate radiative fogs for optical testing of systems that are intended to be
deployed at inland facilities. Furthermore, the ability to replicate not just one, but multiple
categories of fog is relevant to optical systems that might experience both radiation and advection
fogs, such as those present on airplanes and in autonomous vehicles.

Furthermore, we can use the information present in Figure 3-7 to compare the two chambers.
This information is useful for informing experiments that wish to scale up or down between the
two chambers, where being able to replicate conditions in each chamber will be essential to
continuity of testing. By comparing the SNLFC fog to the Tabletop Fog 5 we can discern that the
SNLFC facility maintains a higher RH than the tabletop chamber was able to during these
experiments. This can be concluded by observing the larger mean droplet sizes of both modes in
the SNLFC fog versus Tabletop Fog 5 even though Tabletop Fog S had a significantly higher
solute concentration. This implies that there is simply more overall water available for nucleation
and fog formation in the SNLFC than the Tabletop Fog Chamber. However, the overall similarity
between the SNLFC fog and Tabletop Fog S implies that we can expect our experiments in the
Tabletop Chamber to scale well to the SNLFC, allowing for support of small and large-scale
experimentation.

3.6.4. Generating Fog From Injected Dry Solute Aerosols

While the fog generation technique presented in the preceding sections is able mimic stable
real-world fogs, there are some limitations. Because many of the fog droplets exceed their
activation diameter when they are initially injected, the methodology lacks control to modulate
those droplets to smaller sizes. Even as humidity decreases in the chamber, the supersaturation at
the surface of the activated droplets is maintained at a level that promotes stability or even growth.
This is in contrast with “haze droplets” decrease in size (“‘Saddle Point” in Figure 3-2). This
provides motivation to generate fog from an initial dry aerosol particle. Enhancements made to
the chamber and the microphysical properties of the “seeded” fog are presented in Section 3.6.4.1
and 3.6.4.2.

3.6.4.1. Experimental and Desigh Enhancements

A TSI 3076 atomizer and diffusional dryer were used in tandem to generate and inject dry aerosol
into the MiniFog chamber. The concentration of NaCl in the atomizer solution can also be
increased or decreased to achieve a higher or lower aerosol concentration and a larger or smaller
aerosol size distribution. A heated bubbler system was implemented by pushing filtered
compressed air through a water-filled heated metal canister and was used to humidify the chamber
to supersaturation conditions required to achieve droplet activation. The humidified flow
introduced into the chamber also enabled the generation of mixing/turbulence. A Julabo
recirculating chiller pushed cooled ethylene glycol through a copper cooling coil fashioned to the
base to the chamber to provide a minimal about of temperature regulation.
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Additional aerosol instrumentation was installed in the chamber to provide diagnostics that are
important for characterizing parameters that dictate fog microphysical properties. Temperature,
relative humidity, and flow sensors were installed in the humidification line from the bubbler
system. To characterize the MiniFog’s thermodynamic state, temperature and relative humidity
probes were also installed at the top and base of the chamber. Aerosol size distribution and
concentration was measured with a TSI NanoScan SMPS, which can size and count aerosols
ranging from 10nm to 500nm.

3.6.4.2. Seeded Fog Microphysical Properties

Figure 3-8 shows and exemplar case during which NaCl aerosols were injected in the chamber at
a relative humidity of 89% at 15:05. The humidity was subsequently increased to approximately
93.5% at 15:09 and increased again to 95% at 15:14. Although these modulations in relative
humidity are seemingly subtle, they have noticeable implications on the droplet size distributions.
During the initial time period (15:05 to 15:09), a low concentration of droplets that are less than
Sum in size are detected by the Malvern indicating haze droplet formation or, perhaps, the
activation of only the largest NaCl particles injected into the chamber. After the first increase in
relative humidity at 15:09, there is a noticeable increase in both the quantity and size of droplets
detected. Further, a clear signature of droplet growth from a mean size of approximately Sum (at
15:09) to 7um (at 15 :13) is detected. Following the third increase in relative humidity, a dramatic
increase in the concentration and size of droplets indicates that nearly all of the NaCl aerosols
present in the chamber have nucleated.
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Figure 3-8. Time series of droplet size distribution (top), temperature, and relative humidity (bottom) during a
period of incremental relative humidity increases in the MiniFog Chamber after a dry NaCl aerosol injection.
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These results demonstrate the advantages of the enhanced fog generation technique, which offers
modest control over the relative humidity conditions and droplet growth rate as well as the ability
to constrain the maximum droplet diameter.

Results from a separate measurement period are provided in Figure 3-9 during which the relative
humidity remained constant at approximately 95% and salt was injected for 50 s (15:27), 40 s
(15:40), 30 s (15:50), 20 s (15:58), and 10 s (15:59). Although the peak concentration following
the injection of dry aerosols in the chamber decreased accordingly with the duration of the
injection, the droplet size distribution does not change much and only subtle decreases in droplet
concentration are detected. It’s important to note that a secondary period of droplet growth that
initiated approximately five minutes after each of the NaCl injections. Further investigation of this
phenomena is needed, but we hypothesize that this signature is a result of either relatively slow
growth of smaller NaCl aerosols compared to larger ones that produce the initial droplet signature,
or delayed nucleation that’s facilitated by an excess water vapor imposed by the depletion of
larger droplets in the chamber that would otherwise grow at the expense of smaller droplets.
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Figure 3-9. Time series of droplet size distribution (top), temperature, and relative humidity (bottom) during a
series of NaCl injections with approximately constant relative humidity.
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3.7. Summary

In this chapter we have discussed the design, characterization, and applicability of a tabletop fog
chamber. We have shown that this tabletop system has significant potential for use as an optics
test-bed for fog. We attribute this to the chamber’s ability to generate several different fogs with a
high level of repeatability, as well as the ease of operation of this chamber, which can be run
entirely by a single operator.

3.8. Ongoing & Future Work

Both the "MiniFog" (Section 3.3.1) and "MesoFog" (Section 3.3.2) Tabletop Fog Chambers will
be used in support of several ongoing and upcoming projects, as well as available in support of
ongoing external customer work.

Under the Pluminate LDRD (LDRD 226083) both the "MiniFog" and "MesoFog" Tabletop Fog
Chambers will be used to investigate the effects of various anthropogenic aerosols on the
microphysical and optical properties of atmospheric aerosols (fog and clouds). The data from
these experiments will be used to inform atmosphere-scale diffusion models, give greater context
to albedo-based measurements, and develop a greater understanding of the role atmospheric
aerosols play in the environment, all in support of Sandia National Laboratories Climate and
Global Security Objectives.

Under a variety of other projects this group intends to utilize these chambers to investigate the
scattering regimes of light in degraded visual environments. Much of the current literature is
inconsistent on when light is considered to be "weakly", "moderately", and "highly" scattering.
By measuring the angle space of scattered light within these chambers we hope to better
understand light scattering within degraded visual environments. We further intend to use these
chambers to collect data to advance the understanding and utilization of machine learning in

degraded visual environments (see Chapter 5 for more detail).

Finally, work performed in these chambers will be presented at the upcoming American
Association for Aerosol Research (AAAR) annual conference and the Institute of Electrical and
Electronics Engineers (IEEE) Aerospace Conference. Abstracts have also been submitted to
present work performed in these chambers at the upcoming International Society for Optics and
Photonics (SPIE) Defense and Commercial Sensing (DCS) conference.

3.9. Collaborations

Following initial proving and publication of data regarding the MiniFog chamber [62] this
chamber has been utilized on several data collects to support internal and external
collaborations.
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3.9.1. Purdue University

As part of this LDRD an identical chamber to the one described in this chapter was constructed at
Purdue University. These twin chambers were initially designed for tandem experimentation and
for remote leveraging of Sandia equipment and capabilities. This Purdue-based chamber was
utilized for much of the experimental design and initial testing of the work described in Chapter 6
with the Sandia-based chamber and personnel providing anticipated fog optical and
microphysical properties for experimentation.

(b)

Figure 3-10. Photographs of the twin Tabletop Fog Chambers generating the same fog, Tabletop Fog 2 from
this chapter. (a) The Sandia National Laboratories Tabletop Fog Chamber in Albuquerque, NM. (b) The Purdue
University Tabletop Fog Chamber in West Lafayette, IN. On visual inspection, the chambers generate similar
fog-analogues when using the same parameter set.

3.9.2. Internal Collaborations

3.9.2.1. Event Based Sensing

This chamber was utilized in support of the evaluation of a variety of commercially available
event-based sensors (EBS) against degraded visual environments in support of Center 6700

objectives, providing datasets in support of two upcoming LDRDs and one direct customer
funded project.

3.9.2.2. FarField Project

This chamber was utilized in collaboration with the FarField customer funded project in Center
6700 to test the propagation of shaped beams through different atmospheric environments. This
set of experiments provided data in support of an ongoing direct customer funded project, as well
as supporting Center 6700 objectives.
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4. INCREASED RANGE AND CONTRAST IN FOG WITH CIRCULARLY
POLARIZED IMAGING

4.1. Introduction

Autonomous systems, whether military or commercial, require a suite of optical sensors for
guidance and remote sensing that can be rendered inoperable in dense fog conditions. Degraded
visual environments pose a serious problem for optical systems as image contrast can be reduced
to zero in dense situations. Tens of thousands of people are killed each year in vehicle crashes
[67], hundreds of which are attributed to degraded visuals from fog events [68]. The future of
human transport is autonomous vehicles, but before they can become a reality the issues of
sensing/imaging in highly scattering environments like fog must be addressed. There are several
methods currently being investigated to solve the problem of sensing in fog/scattering
environments. In this paper, we describe one method which utilizes the polarization
characteristics of light to increase imaging range.

Polarized light imaging/sensing in scattering environments has been of interest for many decades.
Previous research has encompassed a wide range of scattering environments including:
underwater scenes [69, 70, 71, 72,73, 74,75, 76, 77], biological tissue or phantoms

[78, 79, 80, 81, 82, 83, 84, 85, 86], smoke [74, 87], and fog [88, 89, 90, 91]. We previously
presented several polarimetric simulation results that predict increased performance from
circularly polarized light in highly scattering environments [92, 93, 94, 95]. Other researchers
recently experimentally verified some of these predictions in fog environments at visible
wavelengths [90]. In this work, we present contrast and range enhancements with circularly
polarized imaging. We describe the design, testing, and analysis of visible and short-wave
infrared (SWIR) polarimetric imagers in real fog conditions generated at the Sandia National
Laboratories (SNL) Fog Chamber (SNLFC) [60]. The goal of this work is to reveal the imaging
performance of active polarimetric systems in highly scattering fog conditions for relevant
autonomous vehicle targets, showing circularly polarized imaging increases range and contrast.
Here we compare the performance of visible and SWIR systems, as well as linearly and circularly
polarized illumination and collection. Our targets of interest throughout this work are
commercially available retroreflective road sign and personnel safety materials. This work
includes the first experimental analysis of both visible and SWIR polarimetric imaging systems in
realistic fog conditions with these materials. The ability to detect and analyze road signs or
reflective clothing at enhanced distances through dense fog is crucial for safe operation of
autonomous vehicles/systems. The results presented here can also be utilized to design new
materials which perform better with autonomous sensing systems [96].

This paper presents the following: background information on polarized light and the SNLFC’s
scattering environment (Section 4.2), the experimental setup for the visible and SWIR systems
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and the methods used during fog generation (Section 4.3), results from testing and analysis of
imaging in the fog environment, showing circularly polarized imaging increases range in dense
fog (Section 4.4), and conclusions and potential future work (Section 4.5).

4.2, Background

4.2.1. Polarized Light

The polarization state of light is defined by the Stokes parameters within a 4x1 Stokes vector.

So (E|Ej+ELET) In+1y

§= M _ <E||E|T_ELET_> o Iy — Iy @1
S2 (E\ET+ELE]) Iyso — I1350 '
S3 i(E\E[ —ELE|) Irnc — ILHC

The Stokes parameters describe the total light intensity (Sp), what portion of the light is
horizontally or vertically linearly polarized (S;), what portion of the light is linearly polarized at
plus or minus 45 degrees (S2), and what portion of the light is right or left circularly polarized
(83) [97]. To compare circular and linearly polarized imaging, we measure S; and S3 images with
linear and circular polarized active illumination, respectively. This imaging process is also called
polarization difference imaging since multiple analyzer state images are subtracted from each
other.

In previously published work we have shown the potential for circularly polarized light to
maintain its intensity through fog better than linearly polarized light [92, 93, 95]. The
performance of circularly polarized light is dependent on the particle size distribution and density
of the fog, and the wavelength of interest. Circularly polarized light’s increased persistence may
increase the signal-to-noise when imaging in highly scattering environments. Circularly polarized
light has an increased number of highly polarized photons that transmit through the fog in the
intended state, thus getting more light to the target and returned to the sensor in the anticipated
states. Additionally, the target characteristics affect the returned intensity of polarized light. For
retroreflective films, such as road signs or safety materials, circular polarization can be of
increased benefit due to circular polarization’s handedness change upon reflection. These targets
exhibit higher contrast when performing polarization difference imaging with circular
polarization.

4.2.2. Sandia National Laboratories Fog Chamber

SNL has a unique fog facility where repeatable fog can be generated on demand [60, 98]. The
facility is 55 meters long and roughly 3 meters high and 3 meters wide. Along the length of the
facility are 60 spray nozzles that produce fog. The facility is entirely indoors, and Class IV lasers
can be safely operated inside. For all fog generation tests a suite of measurement tools are used to
characterize the fog. These include a laser diffraction Spraytec particle sizer from Malvern
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Instruments, a SNL-built three-band laser transmissometer at wavelengths of 0.543 (in more
recent work the wavelength was changed to 0.532), 1.55, and 9.68 pm, and temperature and RH
probes placed throughout the facility. With this instrumentation the fog characteristics are logged
on a per second sampling rate. Other relevant fog parameters, such as liquid water content,
number density, and meteorological range, can be calculated from the data we collect from the
measurement suite [99]. The SNLFC is a perfect place to test optical systems in fog since the fog
is always characterized. If small changes in the properties of the fog occur from test to test there
are robust measurements to determine those variations. This allows for data combination and
averaging over many tests to remove outlier test results, which we employ in this work.

4.3. Experimental Setup and Methods

4.3.1. Experimental Setup

Two nearly identical illumination and imaging setups were built for both visible and SWIR
polarimetric imaging in fog. The main difference between the two systems are the lasers, optical
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Figure 4-1. Active polarimetric imaging experimental setup for both visible and SWIR fog experiments. Each
system has a laser for polarized light illumination of the target in fog (visible - 532 hm, SWIR - 1550 nm). Laser
output power is controlled using a half-waveplate (A/2) and a fixed polarizer resulting in vertically polarized
light output. A quarter-waveplate (A/4) is rotated to output vertical linearly polarized light or right circularly
polarized light. lllumination optics diverge the beam to illuminate the full target. A multi-camera system collects
returned light. Polarized light is collected by the camera system and analyzed by a quarter-waveplate (during
circular operations) and a polarizing beam splitter (PBS). The beam splitter sends horizontally polarized light
into one channel and vertically polarized light into the other channel (or right circular in one channel and left
circular if the quarter-waveplate is present).

glass, and detectors used. Whenever possible similar components are used in the setups with only
anti-reflection coating differences. A general schematic of the experimental setup for imaging in
fog is shown in Figure 4-1. Both experimental setups are built on optical breadboards that are
then enclosed in Lexan boxes to protect the optical elements from the harsh fog environments.
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Each system has a laser for polarized light illumination of the target in fog. The visible system’s
laser has a wavelength of 532 nm (Newport EXLSRONE-532-200) and the SWIR system’s laser
has a wavelength of 1550 nm (Thorlabs FPL1009P). The output power of the laser is controlled
using a half-waveplate and a fixed polarizer. Power output is controlled by rotating the highly
polarized laser beam’s linear polarization output perpendicular to the polarizer axis. The output of
the polarizer is vertically polarized light. The laser beam is then sent through a quarter-waveplate
to output vertical linearly polarized light or right circularly polarized light. Lastly, a lens or set of
lenses diverge the beam to illuminate the full target. During experiments the lenses are optimized
to uniformly illuminate each target as best as possible.

The light that transmits to and reflects from the target, and light that scatters from the fog are
collected by the multi-camera system. The target is located 7.62 m (25 ft) from the imaging
systems. The polarized light collected by the camera system is analyzed by a quarter-waveplate
(during circular operations) and a polarizing beam splitter. The beam splitter sends horizontally
polarized light into one channel and vertically polarized light into the other channel (or right
circular in one channel and left circular if the quarter-waveplate is present). The polarized light is
collected by 50 mm focal length /1.8 lenses (Navitar VIS and SWIR versions). The lenses have
the exact same prescription for the visible and SWIR systems except the SWIR optics were
coated appropriately for those wavelengths. An image is then captured by either visible or SWIR
cameras. The visible camera is a Basler acA2440-75um with 2448x2048 pixels and the SWIR
camera is a FLIR TauSWIR with 640x512 pixels. The SWIR imager can collect data at a faster
rate than the higher resolution visible imager due to data link limitations. This led to a slightly
different frame rate between the imagers. The average frame rate for the visible system is 1 Hz
and for the SWIR system is 0.5 Hz.

The goal of the imaging system is to capture S; and S3 polarized Stokes component images. Thus,
the horizontal and vertical channel, or right and left circular channel, images are subtracted from
each other. Since the images are subtracted, care is taken to properly align the cameras with
respect to each other. A perfect alignment was not feasible mechanically. Thus, the camera
systems were calibrated with the resolution targets shown in Fig. 4-2. A post-process image
registration algorithm is performed to produce image shift error less than 0.5 pixel in magnitude
[100]. This resulted in nearly zero image alignment and subtraction artifacts.

4.3.2. Target

Multiple targets are used throughout our experiments. These targets are adhered to a large piece
of aluminum. In total five different reflective material targets are investigated. Each individual
material target has a precision USAF 1951 resolution target printed on it. The targets are shown
and labeled in Figure 4-2. Target 1 is a prismatic retroreflective material with linear patterning,
Targets 2 and 3 are prismatic retroreflective material with diamond patterning, Targets 4 and 5 are
glass microsphere retroreflective materials. The USAF 1951 bar charts were laser printed onto the
films with fine spatial frequencies beyond the limits of the two imaging system’s resolution
capabilities. These targets encompass a range of reflective film types and compositions relevant
for street/road signs and safety/emergency retroreflective materials.
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Figure 4-2. Visible color digital camera image of multiple USAF 1951 targets made up of different commercially
available retroreflective films. Target 1 is a prismatic retroreflective material with linear patterning, Targets 2
and 3 are prismatic retroreflective material with diamond patterning, Targets 4 and 5 are glass microsphere

retroreflective materials.
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4.3.3. Experimental Methods

Throughout all experiments the visible and SWIR imaging systems are tested side-by-side in
varied fog environments. Each polarization configuration is tested separately, i.e., the visible and
SWIR systems were set to linear polarized illumination and linear polarized image capture for a
single test then the experiment is repeated with circular polarized illumination and image capture.
Several fog generations were performed over multiple days. At the SNLFC we utilize salt as a
way to help coarsen/enlarge the fog particle sizes [60]. In general, we use a mixture of 10 g/L of
salt in the water that is mechanically sprayed into the facility. Other salt mixtures have been tested
and characterized in prior fog testing. All the fog generated during the experiments presented
here is formed from a 10 g/L saltwater mixture. Representative fog particle size and transmission
data can be found in previous publications [98]. Each fog generation consists of spraying fog into
the facility until max density is achieved, typically taking 10 to 20 minutes of spray time. After
the spray is stopped the transmission through the fog is tracked until it reaches 15 percent
transmission over a 20 ft path. We then repeat this process of fog pulse generation many times in
a day. We do this because each fog run may have slightly different characteristics as the
conditions in the facility change. This is also why we exhaustively characterize the fog
throughout the experiments on a per second time interval. Between each fog pulse the reflective
targets are cleaned and dried to remove any water or salt that has condensed onto the targets.
After three fog pulses the polarization configurations are changed to the other polarization states
and the fog procedure is repeated. In total, 6 fog pulse experiments are performed for each
polarization state per day. Imagery data collected during the turbulent spray periods and cleaning
periods is removed from the data.

Contrast is calculated from each collected polarization difference image. For the visible system,
18 total spatial frequencies were examined for each target in 4-2, corresponding to the largest 3
sets of 6 horizontal and vertical bars. For the SWIR system, 12 total spatial frequencies were
examined due to the decreased overall resolution of that system. The contrast for both horizontal
and vertical bars is calculated for each frequency for both systems using the Michelson contrast
equation [101],

Imax - Imin (42)

Lnax + Lnin
where 1, and I,;, are the max and min intensity values of the averaged pixel columns or rows
over the vertical or horizontal resolution bars and the spaces between the bars. These contrast
values associated with the corresponding target spatial frequencies defines a contrast transfer
function (CTF), contrast versus spatial frequency [102]. Ultimately, each temporal frame is
processed for the CTF curves for both vertical and horizontal resolution bars. To compare spectral
and polarization performance differences on a level playing field, the CTF curves are integrated
across spatial frequencies to give an overall CTF area under the curve (AUC). By taking the CTF
AUC we can use one value for each time stamp/fog characteristic and imaging configuration. The
AUC values are all normalized by the maximum AUC value calculated for each individual target.
This typically normalizes the AUC curves by the contrast when no fog is present during
calibration image collection.

To quantitatively compare the performance of linear and circular polarized imagers a standard
distance/range metric must be used. Here, we will follow a similar analysis as that in Redman, et
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al. [99]. Many other researchers use visibility as a metric, but the colloquial visibility leads to
ambiguity. Visibility can be a qualitative human-specific measure and/or a quantitative value that
is a measure of extinction when using the Koschmieder equation. Even the use of the
Koschmieder equation can lead to challenges/confusion [103]. In this paper we will compare
imaging contrast results against equivalent distance/range for the International Civil Aviation
Organization (ICAO) Category IlIc “thick fog” landing specifications. The ICAO specification for
visual range in Cat. Illc conditions is 92 m [104].

Using the experimentally collected transmissometer data, the meteorological optical range (MOR)
can be calculated from the Beer-Lambert Law and MOR’s 5% flux reduction definition [105],

& = Ppe PL (4.3)

—1n(0.05)
B

where B and L are the extinction coefficient of the fog and the path length in the fog, respectively.
The target distance is fixed throughout the experiments (25 ft or 7.62 m) so [ is calculated as,

(OB |

MOR = 4.4)

Using this, MOR can be modified for the specific wavelength of the transmissometer (543 nm),

In(0.05)

ln(%)

M0R543 = Ltrans (46)

where M ORs43 1s the meteorological optical range equivalent in meters, L4y, 1S the distance
between the source and the detector of the transmissometer, & is the flux on the detector, and P
is the initial flux with no scattering environment present.

The SNLFC can generate fog densities that are not typically measured in natural fogs. These fog
densities can approximate longer ranges than the facility allows. To scale the overall distance the
combination of optical thickness and MOR is needed. The optical thickness, OT, of a scattering
environment is defined as a unitless quantity [106],

OT = poL, 4.7)

where p is the density of the scattering particles, © is the extinction cross-section of the scattering
particle mixture, and L is the optical path length. The optical thickness can be defined as follows
for a target and imager configuration,

) (4.8)

where Ly4ye; 1s the distance from the imager to the target and L, is the distance between the
send and receive ends of a transmissometer. Combining this equation, (4.8), with the modified
MOR equation, (4.6), an optical thickness-based MOR can be defined as,

—In(0.05)

MOR = OT target -

(4.9)

50



From this equation, (4.9), and the modified MOR equation, (4.6), an equivalent range/distance at
a defined MOR value can be calculated,

M ORequival ent
Lequivalent = MOR

Lmeasurement- (4' 10)

measurement

For all results presented in this paper, we use an equivalent MOR of 92 meters to calculate
equivalent ranges. The ICAQO’s densest fog category, Cat. Illc, is defined for when MOR is equal
to or less than 92 m. Thus, our imaging contrast results are compared to equivalent distance/range
in an ICAO Cat. IIlc fog with the same attenuation. Using the equations above it is trivial to
convert from equivalent range to optical thickness if that is desired.

Before describing the experimental results, further details on the range scaling should be
discussed. The following presented results compare imaging contrast between active circular and
linear polarized imaging systems. Scaling the range to those equivalently found in nature/a Cat.
IIIc fog is useful for the broader community when thinking about polarized system utility in an
autonomous vehicle or other remote sensing systems. When the range is scaled, the size of the
resolution targets and field of view (FOV) of the optical systems would also need to be scaled
appropriately. We normalize the CTF AUC curves to remove the specifics of the resolution bars
and focus on the differences between the two polarization states. In a deployed imaging system
care would be needed when designing the FOV and target resolution requirements. We do not
consider those specific requirements here but merely present and discuss the advantage of
circularly polarized imagers to penetrate deeper into dense fog conditions compared to linearly
polarized imagers.

4.4. Experimental Results

To date there has been limited quantitative examination of circular polarized imaging’s range and
contrast enhancement in fully characterized fog environments; and no results showing contrast
variations in both the SWIR and visible spectrums for the same materials. Figure 4-3 and Figure
4-4 show CTF AUC results for the five targets with circular and linear polarized imaging at
visible and SWIR wavelengths, respectively. Circular polarized imaging contrast is shown in red
and linear polarized imaging contrast is shown in black. Horizontal bar target CTF AUC values
are shown with solid lines and vertical bar target CTF values are shown with dotted lines. Each
target’s plot includes a zoomed inset showing results for the largest distances/densest fogs.

4.4.1. Visible Imaging Results

Each target in Figure 4-2 has unique reflection properties which create different contrast variation.
Figure 4-3 shows the CTF AUC results for each of the five targets across the entire range of fog
densities/distances with the visible illumination and imaging system. Figure 4-3 compares both
circular and linear polarized imaging’s performance for both resolution orientations, horizontal
and vertical bars. In general, circular polarized imaging has larger contrast whether with fog or
without when imaging the retroreflective target materials. Circular polarization’s handedness
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change upon reflection from these target materials causes this increased contrast when imaging
the black resolution bars, while linear polarization remains in the same vertically polarized state
upon reflection. Thus, for most of the targets the circular CTF AUC values for each target are
larger than that of linear polarization even at lower fog densities, in some cases 2-3x higher
contrast. This is less the case in Targets 2 and 3. Similarly, horizontal and vertical resolution bars
exhibit the same contrast for all targets except Targets 2 and 3. For those targets, vertical
resolution bars have higher contrast when imaging with circular polarization. These two target
materials are prismatic retroreflectors with diamond patterning which may cause this increase in
vertical bar contrast at lower fog densities. Target 2’s visible results are unique due to the color of
the material. Since our visible illumination is at a green wavelength (532 nm), the orange target
has orders of magnitude less reflected light compared to the other targets. With such low
reflected/collected light from that target the normalized AUC values look abnormal; the values
don’t go to zero with very dense fog. These results have very low signal-to-noise. We include the
results for Target 2 because they show polarized imaging performance is dependent on a number
of factors which includes the target characteristics. Care should be taken when viewing these
results due to the low reflectivity of Target 2’s material at the active illumination’s visible
wavelength. Circularly polarized imaging has a lower contrast difference than linearly polarized
imaging for Target 3, compared to the other targets. Although it has the lowest contrast difference
for any of the targets, its contrast is still comparable to the contrast when imaging with linearly
polarized light for the same target. Where circularly polarized imaging really excels is at large
equivalent ranges/the densest fog situations. Beyond an equivalent Cat. Illc distance of 175 m
linearly polarized imaging loses all contrast. Meanwhile, circularly polarized imaging maintains
contrast until an equivalent range of roughly 190 m. These equivalent distances correspond to
optical thicknesses of roughly 5.7 and 6.2, respectfully. As we have shown in previous simulation
results, circularly polarized light maintains its intended polarization state longer in highly
scattering environments compared to linearly polarized light. These experimental results show the
polarization memory effect of circular polarization can increase sensing range in realistic fog
environments compared to linearly polarized light. In each of the target plots in Figure 4-3 there
are inset figures with zoomed in results for ranges from 165 to 200 m. These inset plots show the
same data as the larger plots but better illustrate circular polarized imaging’s increased contrast at
the largest ranges/densest fogs. For these reflective road sign and safety material targets, and 532
nm active polarimetric imaging, circular polarized imaging increases range and contrast in dense
realistic fog conditions.

4.4.2. Short-Wave Infrared Imaging Results

SWIR polarimetric imaging exhibits both differences and similarities to the visible case. Figure
4-4 shows the CTF AUC results for each of the five targets across the entire range of fog
densities/distances with the SWIR illumination and imaging system. Like the visible
experimental results, Figure 4-4 also compares both circular and linear polarized imaging’s
performance for both resolution orientations, horizontal and vertical bars, but for the SWIR
wavelength. Targets 1, 4, and 5 show circular polarized imaging has higher contrast for shorter
ranges/lower densities in fog which is similar to the visible experiments. Linear polarized
imaging has higher contrast at similar ranges for Targets 2 and 3 which differs from the visible
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Figure 4-3. Visible CTF AUC results for each target and polarization vs ICAO Cat. llic heavy fog equivalent
distance/range: A) Target 1, B) Target 2, C) Target 3, D) Target 4, E) Target 5. Circular polarized imaging
contrast is shown in red and linear polarized imaging contrast is shown in black. Horizontal bar target CTF
AUC values are shown with solid lines and vertical bar target CTF values are shown with dotted lines. Each
target’s plot includes a zoomed inset showing results for the largest distances/densest fogs.
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experiments. Target 2 has similar reflected intensity levels as the other targets in the SWIR. The

orange film color is not an issue at SWIR wavelengths compared to the visible illumination

wavelength. As in the visible, circular polarization outperforms linear polarization at the largest
ranges/densest fog for most targets. For all targets except Target 2, circular polarized imaging
maintains contrast at the longest ranges better than linear polarized imaging. Generally, linear
polarized imaging loses all contrast by an equivalent range of 170-180 m, optical thicknesses of

5.5 and 5.8, depending on the target. Circular polarized imaging maintains contrast until an

equivalent range of 185 or 190 m, optical thicknesses of 6.0 or 6.2. This is not the case for Target
2 where linear polarized imaging modestly outperforms circular polarized imaging at the largest
ranges/densities. For these reflective road sign and safety material targets, and 1550 nm active
polarimetric imaging, circular polarized light increases range and contrast in dense realistic fog
conditions for Targets 1, 4, and 5 but not for Targets 2 and 3. Targets 2 and 3 are made of the same
materials but a different visible color. At the SWIR wavelength, linearly polarized imaging is
ideal for these materials. Linear polarized imaging also performed better in lighter fog conditions
for the two diamond pattern materials. Figure 4-4, like the Figure 4-3, shows inset figures for
each Target with zoomed in results for ranges from 165 to 200 m, or for Target 2 ranges from 180
to 210 m. These inset plots show the same data as the larger plots but better illustrate circular or
linear polarized imaging’s increased contrast at the largest ranges/densest fogs.
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Figure 4-4. SWIR CTF AUC results for each target and polarization vs ICAO Cat. llic heavy fog equivalent
distance/range: A) Target 1, B) Target 2, C) Target 3, D) Target 4, E) Target 5. Circular polarized imaging
contrast is shown in red and linear polarized imaging contrast is shown in black. Horizontal bar target CTF
AUC values are shown with solid lines and vertical bar target CTF values are shown with dotted lines. Each
target’s plot includes a zoomed inset showing results for the largest distances/densest fogs.
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4.5, Conclusions

Fogs, low lying clouds, and other highly scattering environments pose a challenge for many
commercial and national security sensing systems. Current autonomous systems rely on optical
sensors for navigation whose performance is degraded by highly scattering environments. Our
previously published work has shown circular polarization maintains its polarization state through
higher numbers of scattering events compared to linear polarization. The ability to maintain the
intended polarization state can allow circular polarization to perform better in imaging and
sensing scenarios within highly scattering environments like fog. In this work, we experimentally
show that active circularly polarized imaging can increase contrast and range in highly scattering
realistic fog conditions compared to linearly polarized imaging. We present imaging contrast
results for retroreflective road sign and safety materials with polarimetric imaging systems
working at both visible and SWIR wavelengths. Contrast from the following five target materials
with USAF 1951 resolution patterns printed on them is described: 1) grey colored prismatic
retroreflective material with linear patterning (road sign material), 2) orange colored prismatic
retroreflective material with diamond patterning (road sign material), 3) grey colored prismatic
retroreflective material with diamond patterning (road sign material), 4) grey glass microsphere
retroreflective material (road sign or safety material), 5) grey glass microsphere retroreflective
material (safety material). For the experimental visible wavelength (532 nm), circular polarized
imaging has enhanced contrast, in some cases 2-3x compared to linear polarized imaging, at
nearly all ranges for all the reflective materials; other than the orange material (Target 2) that is
not reflective at the illumination wavelength. The circular polarized imaging system images
deeper into fog compared to linearly polarized light, in most cases 15-20 meters deeper. SWIR
circularly polarized imaging shows similar results as those observed in the visible for some target
materials (Targets 1, 4, and 5) but worse performance compared to linear polarized imaging for
two of the target materials (Targets 2 and 3). Upwards of 15 meters deeper imaging with circular
polarization in the SWIR is also observed, even for one of the materials where linearly polarized
light has higher contrast at lower fog densities (Target 3). Linearly polarized imaging penetrates
deeper than circularly polarized imaging only for Target 2 with SWIR illumination. This target
has a unique visible color compared to all the other reflective targets which makes it somewhat of
an outlier. The results for Target 2 are valuable as they show polarized imaging performance is
dependent on a number of factors which includes the target characteristics, such as color and
reflectivity at the imaging system wavelengths. Overall, circularly polarized active imaging has
higher contrast and can image deeper into fog when imaging reflective targets, both at visible and
SWIR wavelengths. These results show that active polarimetric imaging can be a useful tool for
autonomous vehicles and remote sensing in highly scattering environments such as fog. Many
areas of future work in this area are needed. This includes more exhaustive examination of
different material types and target types; non-retroreflective targets, structured targets, human
model targets, etc. This work focuses on retroreflective targets but other target types could show
benefits for either circular or linear polarized imaging. Additionally, we have presented results for
two specific wavelengths in the visible and SWIR. Future work comparing circular and linear
polarized imaging across a broad sweep of wavelengths is needed. Lastly, we present active
polarimetric imaging results but we have not examined the ever growing area of active laser
detection and ranging (LADAR). Work needs to be explored to compare our results with a large
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illumination beam vs. the small laser profiles used for LADAR applications.

56



5. MACHINE LEARNING DENOISING MODEL

5.1. Introduction

We have demonstrated that computational imaging is able to image deeper into aerosols by
accounting for scattered information in a weak angular light transport approximation. However,
challenges persist, primarily that deployment is limited to controlled settings and the high
computational cost limits practical utility for real time assessments. In this chapter we describe
efforts to overcome these limitations by adapting our computational approach with machine
learning (ML). We sought to leverage data-driven methods in the form of ML to gain
computational efficiency since the computational cost of ML comes primarily in training the
model and relatively no cost arises in forward predictions. The data-driven method is also not
limited by physical assumptions rather, it finds representation in information rich data. The ML
approach is readily adapted to varying settings by gathering sufficiently diverse setting
representations within the training dataset that generalizes the model to desired conditions.
However, careful consideration and formulation must be undertaken to achieve the same
performance as our computational imaging approach.

The remaining sections of this chapter present our initial attempt to develop an ML model using a
previously gathered dataset via a denoising autoencoder approach. Our findings suggested the
ML model developed a bias to our expected output which stems from a lack of diversity in the
training examples. This lack of diversity leads to memorization by the ML model. This finding
led to efforts to gather a dataset with the intention of using it for supervised ML. Details regarding
the gathered dataset is presented in the second section of this chapter. The final section presents
future steps that can be taken to further the state-of-the-art of our computational imagining
capabilities.

5.2. Denoising Autoencoder

Preliminary work sought to leverage previously gathered experimental longwave images in the
fog tunnel facility to explore the capabilities of ML for imaging in fog. The general approach
treated fog’s scattering effect as noise in images and the task of the ML models was to denoise the
images. Two approaches were investigated, a direct and indirect approach. The first approach
aimed to estimate the denoised images directly. The second approach aimed to estimate the
residual portion of the image (the degrading portion) to then subtract from the noisy image
resulting in a denoised image. Both approaches utilized the same autoencoder denoising MLL
architecture which has been used in literature to process noisy images. Autoencoders are
comprised of two main components, an encoder and a decoder. The encoder component takes a
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given input and reduces it to its key features in a dimensionality reduction process. The decoder
component then reconstructs the key features to form the expected output which is the original
image in approach 1 and the residual portion of the image in approach 2. Depending on the
learning objective, the encoding section of the neural network can be thought of as learning how
to keep the important features of the image while discarding the rest. The decoding section learns
how to reconstruct the expected output from the key features.
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Figure 5-1. Autoencoder schematic.

The available dataset consists of longwave images that were taken in series in the fog tunnel. A
total of 682 images constituted the entire dataset, with each image gradually increasing in
degradation as the density of the fog present in the image increases. The first image is used as the
true image, Y. It is assumed that all other images are degraded and should resemble the first
image after denoising. The residual portion of an image, R, is obtained by subtracting the
expected image, Y, from the foggy image, X

R=X-Y. (5.1)

Thus, the objective of the first approach is to directly estimate the true image. The learning
objective is as follows.

Approach #1

Optimize[f;(X)| =Y
-minimizing MSE(Y,Y)

A=Y

The goal is [Optimizefi(X)] = ¥, by tuning function parameters to minimizing mean square error
MSE(Y,Y). The objective of the second approach is to estimate the residual portion of the image,
R, to then subtract from the foggy image, X, to finally obtain a denoised image estimate, ¥ .
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Approach #2
Optimize|f,(X)| =R
-minimizing MSE (R, R)

R=X-Y
(X)) =R
Y=X-R

The goal is Optimize[fzr(X)] = R, by tuning function parameters to minimizing error MSE (R, R).
The estimated denoised image is then

Yy =X-R. (5.2)

Approach 1 of estimating the clear image directly resulted in the ML model memorizing the
expected output as shown in Figure 5-2, Approach 1 section. Regardless of the input, an exact
replica of the expected output is produced as seen by the memorization check. A memorization
check was performed by providing a randomly generated noise image, Xearpage, @S the input to see
if there lies a bias in the output of the model. Approach 1 reproduces the exact expected output
even though there is no useful information from the provided input, suggesting that regardless of
what is being analyzed the same output will be provided. This memorization is undesirable since
the ML model is not learning the intended functionality of denoising but is rather overfitting to
the training conditions. Approach 2 attempts to limit the memorization of the ML model by
adding increased variability in the training dataset. The residual portion of the fog images varies
from example to example, which helps mitigate memorization to an extent but a bias to the
constant scenery is still overserved by the memorization check in Figure 5-2 Approach 2 section.
Even though there is no helpful information provided by the input, X,4,p4ge, the estimated residual
output of approach 2 has some resemblance to the setting of the expected output. This
resemblance suggests overfitting, or bias is still prevalent in approach 2, though it is not as severe
as approach 1.

The overfitting of approaches 1 and 2 largely stem from the lack of variability in the dataset. A
large portion of the dataset has little presence of fog. As a result, there is little representation
within the collective examples of conditions that would help the ML models learn the desired
computation. Differences between the true image (Oth image) and the remaining images are not
significant until after around the 500th image. This is reflected in the error plot of Figure 5-3
comparing the Oth image to the nth image.

It became clear to us that a well labeled dataset with diverse settings for supervised ML was
required to truly gauge the capabilities of ML in imaging in fog conditions. Thoughts were also
placed in gathering data that would allow us to leverage gains in computational imaging
approaches in the learning process of ML to better generalize its estimates and avoid overfitting as
seen in approaches 1 and 2. This is discussed further in the next section of this chapter.
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Figure 5-2. Results of denoising autoencoder by approach.

5.3. Well Labeled Dataset for ML

The ML intended dataset was collected using the mini fog chamber and a visual PixeLink camera.
Targets were displayed on a monitor at the other end of the chamber from the visual camera’s
location. The targets displayed on the monitor are also the light source. A schematic of the
experimental setup is provided in Figure 5-4.

During runs, the fog density was varied from a stable 2 percent transmission (SWIR) to the lowest
transmission levels possible as reflected in Figure 5-5. The range in transmission was decided
upon based on observation where apparent signals were received at around 2 percent
transmission. It is important to reach the conditions where signal cannot be distinguished from
noise. This way we can really test the capabilities of the ML approach to failure. Thus, we assure
nontrivial examples were collected by setting the visibly identifiable transmission percentage as
our upper bound. In addition to the transmission percentage data, we deployed a particle sizer to
provide fog particle size distribution as a function of time via the Malvern system. Having well
characterized fog conditions that vary over time will also allow us to relate the ML model’s
denoising capabilities to fog conditions.

The experimental runs consisted of two phases, pre-treating the chamber and test sprays. The
pre-treatment of the chamber raised the relative humidity of the chamber to 80 percent or greater.
An initial mechanical humidification spray then follows to reach supersaturation conditions. After
completing the chamber pre-treatment test sprays were conducted. The test sprays began by
repeating mechanical sprays that bottomed out SWIR transmission (about 0.2 percent
transmission) and stabilized at around 2 percent transmission. Once the 2 percent transmission
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Figure 5-4. Schematic of experimental setup for ML data gathering.

stabilized as the upper bound of SWIR transmission, we began to collect data for the ML test with
corresponding characterized fog conditions. The ML tests consist of three main testing
conditions, a baseline condition where no fog is present, a fog only condition where fog is present
in the chamber, and a fog + solar pedestal condition where a lamp is turned on overhead of the
chamber to simulate atmospheric light in addition to the generation of fog. For each test condition
two types of tests were conducted. The first type of test was runs that aimed to measure point
spread function (PSF). The PSF runs aim to empirically measure the degrading effect of fog as a
point spread function. Point source lights are emitted on the monitor by lighting up a single
monitor pixel at varying monitor spatial locations. We can empirically measure how fog effects
the points source at the camera as a function of location along the monitor’s plane. The second
type of test consist of MNIST handwritten digits comprising the target dataset. The MNIST
handwritten digits dataset is an opensource dataset that has been widely used form ML purposes.
The dataset has 70,000 unique examples of handwritten numbers that range from 0-9. The large
number of unique examples will help prevent overfitting due to the added complexity that
discourages shortcuts such as memorizing the expected output. We completed experiments and
gathered data that are better suited for supervised ML compared to previous available datasets.
The new dataset can also be used to model fog as a PSF and empirically measure point spread
functions to denoise fog images. The approach seeks to model the effects of fog as a point spread
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Figure 5-5. Transmission range in which data was gathered.

function that can then be used to back calculate an estimated clear image. The ML task is to
estimate the degrading PSF function. Empirically measured PSFs can then be used to constrain
the learning process of the ML model with the potential to lead to better generalization. This idea
is further expanded on in the last section of this chapter.

5.4. Future Work

Future work will utilize the collected data to demonstrate ML'’s ability to improve our imaging

capability in fog. With the new dataset three distinct models can be developed, the first being a
purely physics-based approach by empirically measuring PSF from the PSF dataset, the second
being a purely data-driven ML approach, and the third being a physics-informed ML approach

that utilizes the empirically measured PSF to constrain or regularize the learning process of the
ML component. The three approaches can be compared to see which method provides the best
opportunity to detect a target masked by fog all as a function of fog condition.

More precisely, considering a clear image f(x,y) and a foggy image g(x,y), there exists a
degradation function A(x,y) or a PSF which when convolved with the clear image produces the
foggy image

F(x,y) xh(x,y) = g(x,). (5.3)

In practice, we receive g(x,y) and would like to estimate the clear image f(x,y) which requires us
to model the degradation function i(x,y). Assuming we know /A(x,y) we can use the Fourier
Transform (FT) to estimate f(x,y), f’(x,y)

fx,y)*h(x,y) =g(x,y) > FT — F(u,v) x H(u,v) = G(u,v), (5.4)
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G(u,v)

Fu,v) = H(u,v)

— InverseFT — f(x,y). (5.5)

The issue is that it will be difficult to perfectly model A (x,y) and we can almost assure there will
be inaccuracies or noise that can be modeled by 1(x,y). Depending on how well we can model
the degradation function, by minimizing 1n(x,y), will determine how well we can recover the
original clear image

h(x,y)+n(xy) =h (x.y), (5.6)
f/(x,y) *h/(x,y) =g(x,y) > FT — F/(u,v) X H/(u,v) =G(u,v), (5.7
F(u,v) = I-(I;'((L;’ ‘;)) —s InverseFT — f (x,y). (5.8)

Using this newly collected dataset one can develop the three distinct degradation models and note
their ability to image as a function fog condition. Follow-on efforts of this project will seek to
complete this study.
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6. IMAGING AND SENSING WITH LASER SPECKLE

6.1. Introduction

We have developed a complete theory to describe speckle correlations over object position [107],
providing a method for imaging through heavy amounts of scatter. Earlier experimental work
investigated the key parameters of this theory for example objects [16, 108] and suggested
subwavelength-sensitivity [109]. The concept relates to a computational imaging method we
proposed involving motion in structured illumination, including a variant where the incident field
is varied.

Speckle intensity correlations over object position are obtained by capturing speckle patterns as a
function of translated object position. The resulting speckle intensity spatial decorrelation can be
attributed to physical changes in the structure of the scattering medium [110], and changes in the
excitation, such as laser frequency [110, 111, 112] or beam shape [113, 114]. Fixing all of these
parameters allows the decorrelation to be attributed solely to the movement of the object of
interest, given sufficient interaction of the detected light and the object. Taking advantage of all
available pixels on a camera, we can form a statistical average at each object position, in lieu of
the mathematical picture of forming an average over the random background scatterer
configuration. This process of forming an average intensity correlation over object position
provides enough information to be able to reconstruct an image of the object.

Recently, we have extended this work to facilitate new capabilities and application spaces. The
ability to image objects hidden in fog has been demonstrated, as has sensitivity to fog
composition. Additionally, definitive evidence has been shown of far-subwavelength-scale
features of scattering objects becoming available. Also, the ability to simultaneously image and
localize objects has been demonstrated. Finally, an interferometric effect in speckle intensity
correlations has been found.

6.2. Characterization of Fog and Sensing of Hidden Objects

We have extended our technique of sensing hidden objects with speckle correlations to the
situation of imaging in fog. This is a significant development, because fog is a dynamic scattering
medium. Fog also occurs naturally, meaning the ability to characterize fog and achieve remote
sensing through it is extremely valuable. We have completed a series of experiments in which we
have shown the ability to characterize fog based on its density and composition. We have also
demonstrated sensitivity to the geometry of hidden moving objects.
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Figure 6-1. (a) Experimental setup. (b) “Default” fog. (c) “Low pressure” fog. (d) “No salt” fog. (e) The “Default”
fog with experiment running; the red laser (DL Pro) was used for imaging using generated speckle, while the
green laser (Artium) was used to sense particle size and velocity.

The experiments described used the “MiniFog” Tabletop Fog Chamber, described in Chapter 3.
Coherent 670-nm laser light (500 mW, Toptica DL Pro) was used for illumination and a Phantom
V1210 camera was focused a few centimeters inside the fog chamber (prior to fog generation)
through the imaging optics shown in Fig. 6-1(a). Three distinct types of fog were used in
experiments, which were created by combining pressurized air and water with a spray nozzle.
The first, referred to as “default” fog, was a thick advection fog, primarily seen out at sea and on
shorelines, which was made from salt water with a 10 g/L salt density. This parameter set is the
same as Tabletop Fog 2 from Chapter 3. This fog completely obscured objects inside the
chamber, as seen in Fig. 6-1(b). The other fog recipes used were “low pressure” fog, which was
identical to the default fog, except that the pressure in the air tank was reduced, resulting in a
thinner fog, equivalent to the default fog following dissipation. This parameter set is the same as
Tabletop Fog 6 from Chapter 3. The final fog was “no salt” fog, which was equivalent to the
default fog, but without salt. This parameter set is the same as Tabletop Fog 1 from Chapter 3.
This fog was significantly thinner than both of the other fog types.

Speckle correlations over time were measured through all three types of fog and sensitivity to the
fog composition and density was observed. Fig. 6-2(e) shows a comparison of speckle
correlations of all three fog recipes measured exactly two minutes after a 2-minute fog spray.
Thinner fog recipes resulted in speckle correlations with a higher minimum correlation value,
which can be explained by more ballistic light reaching the camera through the fog, creating
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Figure 6-2. (a) Speckle image in fog. (b) Temporal speckle correlation in default fog, with sets of speckle
images taken in two minute intervals after the fog spray. (c¢) Temporal speckle correlation in low pressure
fog. (d) Temporal speckle correlation in fog without salt. () Temporal speckle correlation over sets of speckle
images taken two minutes after the fog spray for the three fog recipes.

similarities in the speckle images. The speckle images from the “no salt” fog also decorrelated
more slowly than the other two, likely the result of both differences in fog composition and
decreased sensitivity to the field motion as a result of a less heavily scattering medium [115]. This
is also seen as the fog dissipates, as demonstrated in Figs. 6-2(b)—(d).

The challenge of applying speckle intensity correlations to imaging and sensing of moving objects
in fog is that the method is also sensitive to the motion of the fog particles. As seen in Fig. 6-3(b),
speckle measured through the advection fog decorrelates rapidly and reaches an approximate
minimum in just a few milliseconds. This non-zero minimum is a result of ballistic light getting
through the fog and creating inherent similarities between speckle images and is therefore heavily
influenced by the fog density. The millisecond-scale temporal decorrelation presents a substantial
obstacle to object sensing, as the decorrelation due to object motion must be distinguishable from
that due to scatterer motion. One way to overcome this challenge is to use an object that is moving
sufficiently fast to cause the intensity correlation curve to reach a minimum faster than it would
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have with no object. According to theory and previous experiments, such an intensity correlation
curve will reach a minimum at the diameter of the object, assuming optimized experimental
conditions [116, 16]. Therefore, using object speed to overcome the limitations imposed by the
particle motion requires that the object move by its diameter in only a few milliseconds.
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Figure 6-3. (a) Spherical ball bearing with dropping mechanism (b) Intensity correlation over time in "default”
fog without object. (c) Mean intensity over time measured while a 7/16" ball is dropped in default fog. A clear
drop in mean intensity is seen as the ball creates a shadow on the camera. (d) Intensity correlation over time
for 8 ms centered on the drop in mean intensity. (e) Temporal intensity correlation during ball drop converted
from time to distance using free-fall mechanics. Excellent agreement is shown between the experimentally
measured intensity correlation and the theoretical curve for a 7/16" circle.

The objects in the experiments described were a series of spherical steel ball-bearings. A
custom-built ball-drop mechanism, shown in Fig. 6-3(a), was placed on top of the fog chamber a
few cm away from the plane of focus. This device contained a sensor which triggered the camera
after the ball was dropped via a lever through the center. Upon triggering, the camera collected
images at a fixed rate of 2 kHz for 0.5 s, enough time for the ball to fall past the imaging spot to
the bottom of the fog chamber. These images were normalized to yield a mean intensity of zero
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and a standard deviation of one, with the normalization given by I = (I — (I)) /o;, where (I) is the
mean intensity formed as an average over a given camera image and oy is the standard deviation
over the camera image. The experiments yielded a contrast ratio close to unity (6;/(I) ~ 1), but
we find the aforementioned normalization with G; to be better in this work. The spatial
correlation at each temporal offset At was formed using all pairs of speckle images sharing the
same offset [116], resulting in more data samples for the smaller temporal offsets, which are the
most important for determining object information.

Figure 6-3 shows the result of the experiment for a 7/16-inch ball bearing dropped two minutes
after the fog spray for the “default” advection fog, with the fog still quite dense, demonstrating
the effectiveness of this method in the most heavily-scattering fog. Comparing Figs. 6-3 (b) and
(d) shows that the presence of the falling object caused the speckle to decorrelate faster, and that
the shape of the curve was altered. Fig. 6-3 (e) shows the same result as Fig. 6-3 (d), but rescaled
from O to 1 and with the x-axis converted from time to distance. This was done based on free-fall
mechanics for the moving object, with the speed of the object approximated to be a constant
0.129 inches/ms over the 8 ms of data used in the calculation, based on the object’s initial height
and the distance from that height to the plane of the imaging spot. The “theory” curve is the
square of the autocorrelation function of a simple 7/16-inch circle, an approximation based on a
theory developed for moving objects [116]. This is the first time that our speckle imaging theory
has been applied to three-dimensional objects, and our understanding is still evolving. However,
the experimental data suggests that the object should be modeled as a circle. Agreement between
the theoretical and experimental curves is quite good, indicating that the geometry of the moving
object can in fact be determined by speckle intensity correlations through heavily-scattering fog.
It has also been shown previously that speckle intensity correlations over object position can be
used to reconstruct images of the hidden objects through iterative phase retrieval, as long as such
correlations are measured along two spatial dimensions [16] or assumptions are made about the
symmetry of the object [117]. Therefore, this result implies direct extensions to imaging of
hidden moving objects in thick fog.

Figs. 6-4 (a) and (b) show experimentally measured speckle intensity correlation curves for two
ball bearings of different sizes dropped in the “default” fog. Figs. 6-4 (c) and (d) show
reconstructed images of those ball bearings using the experimental data and a phase retrieval
algorithm, as demonstrated in other applications in previous work, and extrapolating the
experimental data based on known circular symmetry of the object [117, 16]. The shapes and
sizes of the ball bearings can be clearly seen, and with improved experimental data, the
reconstruction could be improved further.

6.3. Super-Resolution Sensing

We have conducted experiments that demonstrate the ability to distinguish far-subwavelength
geometrical features using object motion in a speckled field [118]. In these experiments, which
used the setup shown in Fig. 6-5 (a), the object is translated in a speckled field. The speckle field
is created by passing a coherent laser through a stack of ground-glass slides. The resulting field
interacts with the object, and then with an analyzer constructed from another stack of
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Figure 6-4. (a) Speckle intensity correlation over object position for 7/16" ball bearing dropped in default fog. (b)
Speckle intensity correlation over object position for 3/4" ball bearing dropped in default fog. (c) Reconstructed
image of 7/16" ball using experimental data and phase retrieval. (d) Reconstructed image of 3/4" ball using
experimental data and phase retrieval.

ground-glass slides. The imaging optics include a 4 f system to control the speckle size, and a
magnifying lens. A linear polarizer is used to ensure negative exponential statistics at the imaging
plane. The interaction between the speckle field and the object provide access to sub-wavelength
features of the object.

In one experiment, two macroscopically identical acrylic rods embedded with 50 nm TiO,
scatterers were placed into the experiment one after the other, and were translated by a total
distance of approximately two wavelengths through the speckle field. Normalized speckle images
were collected as a function of object position. Each measurement was repeated 20 times to form
statistical averages. After scanning each rod 20 times, the first rod was placed into the experiment
again and scanned an additional 20 times to demonstrate the potential for unique identification of
each rod. As shown in Fig. 6-5, intensity correlation curves measured for two nominally identical
scattering rods made of the same material were different over a far-subwavelength distance,
indicating that we achieved sensitivity to the arrangement of scatterers in each rod and/or to
surface roughness.

Temporal decorrelation was measured over the experimental runtime with the object at its center
scanning position and was found to be negligible, as indicated in Fig. 6-5(a). Various remote
sensing applications are enabled by this discovery, including material and structure of hidden
object, material defect detection, unique identification of scattering objects, and assuming
adequate optical contrast, unlabeled protein tracking.
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Figure 6-5. (a) The experimental arrangement, with an expanded 850 nm laser beam illuminating two scattering
slabs with an acrylic scattering rod between them, and being imaged through a 4 f system and magnifying op-
tics. (b) Intensity correlation curves for two nominally identical scattering rods. The curves are distinguishable
on a length scale far less than the incident wavelength, indicating sensitivity to far sub-wavelength features.
(c) A magnified plot of the intensity correlation curves for the rods.

6.4. Imaging and Localization of Arbitrary Objects in Reflection and Transmission

Significant progress has been made in experiments related to imaging and sensing through scatter
using speckle intensity correlations in both the transmission and reflection measurement
geometries. Our earlier experiments involved both apertures and patch-like objects in a
transmission arrangement, and we have shown successful object reconstructions using our theory
with phase retrieval. More recently, we have extended this work to a reflection geometry, where
the incident laser beam and the camera are on the same side of the scattering medium and the
object of interest is made of reflective metal, an arrangement which is representative of imaging
satellites through the atmosphere. For example, using an object that consisted of two identical
reflective strips of metal, we were able to correctly obtain the size of the strips and the distance
between them, indicating that we can sense multiple objects through scatter and determine
defining characteristics of those objects. The results are shown in Fig. 6-6. Additionally, have
successfully reconstructed an image of a circular mirror through measurement of speckle intensity
correlations in reflection through heavily scattering acrylic, the results of which are shown in Fig.
6-7.

Additionally, we have developed an approach to simultaneously image (with coherent speckle
information) and localize (using a point-object picture in a diffusion framework with mean
intensity data) objects hidden inside or behind scattering materials. Previously, we had localized
hidden objects through the use of a diffusion model, and earlier experiments have demonstrated
the localization of hidden objects that absorb light or emit light (fluoresce) [119]. However,
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Figure 6-6. Intensity correlation as a function of position for an object consisting of two 8-mm-wide reflective
strips of metal. The mirrors were spaced by 21 mm center-to-center. This experiment was carried out in reflec-
tion through a ground glass diffuser with a 532-nm laser, and the intensity correlation plot clearly shows the
size of the two mirrors and the distance between them. The blue points show the measured intensity correla-
tion, while the red line shows the simulated intensity correlation from a rectangular function with dimensions
equal to those of the object.
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Figure 6-7. 15-mm reflective circle imaged through heavily scattering acrylic. (a) Photo of the object. (b)
Reconstruction showing the correct size of the object. Imaging was achieved by scanning the object in 1
dimension and taking advantage of the object’s rotational symmetry, then rescaling the measured speckle
intensity correlation curve to account for decorrelation due to surface roughness of the material surrounding
the object.
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Figure 6-8. (a) Simulated object function. (b) Reconstructed image of the object using known object positions.
(c) Localized object positions. (d) Reconstructed image of the object using localized object positions.

lacking was a method to simultaneously localize and image hidden objects using data from a
single camera. Now we have developed a method whereby we can accomplish this using a
moving laser source and mean intensity data from speckle images [120]. This concept could be
particularly useful for air and space applications, as in theory, our method could be used to find
the position of a moving object through the atmosphere, and then that information utilized to form
an image of the object from speckle correlation data. We have successfully localized and imaged
a circular patch object in transmission, even using scant experimentally determined object
positions for the image reconstruction. Using the same arrangement as in Fig. 6-5, an experiment
was performed in which a 3.7-mm circular patch was hidden in between two 6-mm layers of
scattering acrylic. The object was moved in 1-mm steps and speckle images were collected. A 2
x 11 array of laser source positions, produced by changing the laser position and repeating the
experiment, was used to localize the object using the mean intensity of the speckle images
collected. Exploiting the object’s circular symmetry, we reconstructed an image of the object
using iterative phase retrieval. Figure 6-8(b) shows the reconstruction results using known object
positions from our motorized stage and Fig. 6-8(d) shows the reconstruction results obtained from
localized object positions. The latter demonstrates that image reconstruction is possible without
prior information about the object’s position or motion.
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6.5. Interferometric Object Sensing and Localization using Laser Speckle

We present experimental results demonstrating an interference effect discovered in speckle
intensity correlations over the spatial positions of a moving hidden object which could be used to
characterize and localize hidden objects through a thick randomly scattering medium. Previously,
speckle intensity correlations over incident field position on the other side of a scattering medium
were shown to provide access to characteristic information about the incident field, allowing the
field itself to be reconstructed [121]. When using multiple laser sources, information about the
difference in incident wave vectors of the sources is also retained [122]. The interferometric
effect described here provides a new avenue to access coherent information about an object,
regardless of the level of random scatter, thereby offering opportunities for imaging and sensing
in and through various forms of environmental scatter. By using two non-overlapping laser
sources at different angles with no object, it was previously found that when scanning the beams
while keeping the beam separation distance constant, a beat was present in the speckle intensity
correlations which was related to the difference in the incident beam angles [122]. By using a
single stationary incident laser beam and measuring speckle intensity correlations over object
position in reflection, with a mirror behind the object, we now show that a beat exists in the
correlations due to an interferometric phenomenon.

The experimental setup is shown in Fig. 6-9. A coherent laser beam (Newport TLB-6917,

850 nm) was incident at an angle on a scattering medium, which was composed of three similar
ground-glass slides, and an object was placed behind the scattering medium and in front of a
mirror. The mirror was located 5 cm behind the scattering medium and the object was placed
approximately 2.5 cm behind the scattering medium. A camera (Photometrics Coolsnap HQ)
imaged a small spot (about 1 mm x 1 mm) on the front surface of the scattering medium through
a 4f system, used to regulate the speckle size on the camera. Speckle images were collected as the
object was moved with a motorized stepper-motor-driven stage (Zaber TLM-150A). The position
and angle of the incident laser spot were controlled with a motorized mirror (Zaber T-MM2).
These speckle images facilitate averaging.

Scattering Layer
Flat Mirror
4F System
Polarizer
X
A N
Circular Patch Mang:qumg
Moving Vertically S
Incident
Laser Beam

Figure 6-9. Experimental setup, with an absorptive black circular object placed between a scattering medium
and a mirror. Speckle images were collected as a function of translated object position.

Example experimental results using the parameters given in Table 6-1 are shown in Fig. 6-10. The
interference effect is due to the multiple interactions with the object as the speckle field is
transmitted and then reflected back to the detector. The interference creates an oscillation in the
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speckle intensity correlations which has a beat related to object position and size. Coherent
interactions between the object and mirror clearly survive the random scatter, providing a new
perspective on earlier random interferometry [123], where relative time delays between two
beams became evident in speckle intensity correlations. This interferometric phenomenon could
be exploited to both localize and characterize a hidden moving object.

Table 6-1. Experiment parameters for the results in Fig. 6-10.

Object Diameter

Laser Spot Position

Object Starting Position

Fie. (cm) (cm) (x, ) (cm) (x, )
6-10(a) 1 0, -1.5) 0, 0)
6-10(b) 0.37 0, -1.5) 0, 0)
6-10(c) 1 0, 1.5) 0, 0)
6-10(d) 1 0, -1.5) 0, 0)
6-10(e) 1 0, -1.5) (-1, 0)
6-10(f) 1 0, -1.5) (-1,-2)
o o
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Figure 6-10. Measured speckle correlations over translated object position using the arrangement in Fig. 6-9
with variations in object size and laser illumination spot. The interference ripples depend on both the object
size and the relative positions of the excitation laser spot and the object with respect to the detection region

on the scattering medium at (x, y) = (0, 0).
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6.6. Conclusion

We have demonstrated several new applications of speckle intensity correlations to sensing in
heavily scattering environments. Imaging moving objects in fog has been demonstrated, showing
that this method can be implemented in dynamic scattering media. Because this method is not
subject to the limits of ballistic light, imaging through even more heavily scattering fog and
aerosols should be possible. Sensitivity is also shown to fog composition, implying extensions to
fog characterization.

The ability to distinguish nominally identical objects on a far-subwavelength scale is also
demonstrated, implying numerous applications ranging from defect detection to security.
Additionally, we have shown the capability to simultaneously image and localize hidden objects,
which allows this method to be effective without prior object positional information. Finally, the
interferometric effect shown illustrates a new approach to analyzing speckle intensity correlations
that may lead to more effective ways to localize and image moving objects. All of these results
represent significant developments that challenge the limits of the application of speckle imaging
and open important application spaces.
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7. SUPER-RESOLUTION RADAR

7.1. Introduction

In various optical experiments and situations, we have demonstrated that far sub-wavelength
information can be extracted using relative motion in structured illumination [16, 124, 107, 109].
While the (microwave) radar problem is fundamentally similar to the optical one, there is at least
one key difference. In optical structured illumination microscopy, both the illumination and the
measurement have spatial support on the order of the distance to the target. In the case of
monostatic radar, both the illumination and the measurement have very small spatial support (=3
orders of magnitude smaller) relative to the distance to the target. As a result, the sensitivity of the
measurement to changes in the target is considerably lower, making it more challenging to extract
enhanced object information. Of course, the result can be enhanced with multiple detector
apertures separated by substantial distances.

While sub-wavelength transverse resolution is likely not achievable for stationary radar systems,
as it is in the optical case, relative motion in structured illumination may still provide a significant
resolution benefit. Making a set of known changes to an illumination pattern and measuring the
resulting scattered fields provides additional information relative to using a fixed illumination
pattern, because we are able to see how the system responds to a range of inputs, rather than just
one. As a result, it is reasonable to expect a commensurate enhancement in resolution if this extra
information is properly captured and utilized.

Existing radar technologies, such as monopulse radar, can localize the center of a target very
accurately, but are unable to distinguish multiple objects at close transverse separations in the far
field. Synthetic aperture radar systems can image a target with very high transverse resolution, but
require a large number of measurements at varying positions, and are thus primarily suitable for
applications where the target is stationary and the radar system is mobile. Relative motion in
structured illumination may allow for both high transverse resolution and a relatively fast
measurement using a single stationary antenna.

Angular super-resolution algorithms for scanning radar based on constrained deconvolution of the
beam pattern and the measured data have been presented previously in the literature [125, 126],
however, more work is needed to address the basis for these results. We also believe that the
performance of these approaches can be greatly exceeded using the theoretical framework of
relative motion in structured illumination, and that the maximum achievable resolution of a radar
system is fundamentally limited only by the achievable SNR. By means of simulations and a
rigorous analysis of the problem through the lens of information theory, we seek to develop an
understanding of the maximum achievable resolution for scanning radar that factors in noise,
beam geometry, and sampling strategy.
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Figure 7-1. The geometry used for the enhanced transverse radar resolution simulation results.
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Figure 7-2. Minimum distinguishable scatterer separation from noisy simulation data as a function of SNR for
a static measurement repeated multiple times (“without scanning”) and multiple measurements with beam
scanned over scatterers across its FWHM (“with scanning”). Scatters are positioned 100 km away from the
10 m? aperture antenna, at a frequency of 10 GHz, with 40 total samples.

7.2. Simulation Results

Initial work in this domain has focused on simulations considering two idealized scatterers
illuminated by a structured radar beam produced by an aperture antenna, as shown in Fig. 7-1.
The magnitude and phase of the scattered fields are measured by the antenna, with random
Gaussian noise added to the field measurements. A forward propagation model is then inverted to
provide an estimate of the scatterer separation from the noisy data.

Initial results suggest that scanning a structured beam over the target can yield significantly
enhanced transverse resolution. Figure 7-2 shows simulation outputs for the minimum separation
where the two scatterers are distinguishable as a function of SNR. The scatterers are positioned
100 km away from the antenna, which is a 10 m? square aperture operated at 10 GHz. The beam
produced by this antenna has a FWHM of around 300 m at 100 km. The total number of samples
is held equal between the scanning and non-scanning cases (either a single measurement is taken
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at each of 40 scan angles or 40 measurements are taken at a fixed position).

These results show a significant enhancement in the ability to determine the separation of the
scatterers with scanning, especially at high SNRs. Additional simulations are in progress that will
analyze a broader range of parameters and allow determination of where motion in structured
illumination provides the greatest resolution advantage. Work is also in progress to fully
understand the theoretical basis through which this additional resolution is obtained using the
framework of information theory.

7.3. Conclusions

A theory was developed and simulations were performed in order to assess the potential
transverse resolution benefit of relative motion in structured illumination for radar systems.
Simulation results considering a simplified radar system indicate that significant resolution
benefits are possible using data from scanning a structured beam over the target along with
appropriate signal processing.

While our simulations showed significant enhancements in resolution at high SNRs, our initial
results suggest that there is little or no enhancement in resolution with scanning at low SNRs. Our
theoretical analysis of the problem suggests that the resolution benefit of scanning should persist
regardless of SNR. We believe that this discrepancy is due to the specific cost function and
algorithm which is used to invert the noisy simulation data. An enhanced inversion methodology
is currently being developed which should yield better results at low SNRs. In addition to
investigating this discrepancy further, we plan to perform simulations and analysis to demonstrate
the role that beam geometry, constraints, and sampling strategy play in resolution.

This work has a wide range of potential applications which are relevant to national security.
Improved transverse radar resolution could help detect aircraft in a cluttered or jammed
environment, enhance sensing for autonomous vehicles, and more accurately track satellites in
orbit. Since our approach is focused on developing strategies for sampling and signal processing,
rather than design of the physical radar sensor, the understanding we are developing could readily
be applied to existing radar systems. Additionally, underlying theoretical developments in relative
motion in structured illumination are applicable to other coherent sensing topologies (for
example, in the optical or acoustic domains).
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