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Abstract

Oil and gas production wastewater (i.e., produced water) may contain appreciable concentrations
of rare-earth elements and critical minerals (REE/CMs), such as lithium, that can be recovered.
However, each individual produced water source may have insufficient concentration or volume to
meet the economic and operating requirements of the recovery facility. Therefore, there is the need
to appropriately blend multiple sources to meet recovery and water reuse demands. Optimal stream
mixing operation planning can be posed as a multiperiod blending problem (MPBP) to provide
quantity and quality guarantees over time. We present several formulations to solve the MPBP for
the recovery of REE/CMs from produced water and propose a decomposition approach that
leverages strategies in general disjunctive programming to enhance its performance. We compare
these proposed formulations/strategies via two illustrative case studies on recovering lithium from
a network of produced water sources.
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1. Introduction

Wastewater streams from oil and gas production (i.e., produced water) are expected to surpass 60
million barrels of water per day by 2030 in the U.S. alone (Wright, 2022). The treatment needed
to mitigate the environmental impact of these wastewater streams is expensive due to high salinity
and contaminant levels (Gaustad et al., 2021). Hence, a significant portion of produced water in
the U.S. is simply disposed of via underground injection.

Notably, however, produced water sources may contain appreciable concentrations of critical
minerals (CMs) such as lithium which are crucial for manufacturing electronics, pharmaceuticals,
batteries, renewable energy generators, and more (Quillinan et al., 2018). Moreover, establishing
a sustainable REE/CM supply chain is a critical concern of many industrial and governmental
stakeholders. Thus, the recovery of REE/CMs from produced water has the potential to add
sufficient economic value to incentivize the use of treatment technologies that mitigate the impact
ofproduced water on the environment.

Operating a water network for the recovery of REE/CMs from multiple produced water sources is
highly complex since REE/CM concentrations vary dynamically and geographically, there are limited
storage locations, and treatment/recovery facilities have strict inlet-flow requirements (Gaustad et
al., 2021). Such a system can be modeled as a classic multiperiod blending problem where source
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streams with time-varying compositions are blended in pooling tanks to satisfy quality and quantity
demand requirements. Classic pooling formulations such as the one proposed in Haverly (1978)
use bilinear terms to track compositions along the network. However, such formulations are often
difficult to solve due to their inherent nonconvexity (Gounaris and Floudas, 2008). This difficulty
is compounded by multiperiod models that incorporate binary variables.

In this work, we investigate several multiperiod blending problem (MPBP) formulations and solu-
tion strategies to optimally plan the delivery of lithium-rich streams for recovery and water reuse
in development activities. In particular, we adapt the direct, generalized disjunctive programming,
and decomposition MPBP approaches as described in Kolodziej et al. (2013) and Lotero et al.
(2016) to a representative produced water network case study. It is shown that such strategies are
key to guiding the treatment of a multi-enterprise produced water blending and determine whether
such a system is feasible and economically viable.

2. Problem Formulation and Solution Strategies

2.1. Basic Problem Setup and Nomenclature

The multiperiod blending problem (MPBP) is defined over a set of supply tanks S, blending tanks
B, and demand tanks D interconnected by a set of edges A. The problem seeks to determine the
optimal mixing schedule over a discretized time horizon J° that maximizes the operation profit,
while meeting flow and concentration specifications for each component q € Q. The initial
conditions for each tank n € V" := § U B U D are specified via the initial level of every tank I2
and its corresponding compositions Cgy,. The incoming flow F{" at each supply s is known with an
incoming composition C éé"t that varies over 7. The nodal inventories and flows are restricted by tank
and pipeline capacities, which are denoted [1%, IY] and [F,ll“n,, Fé’n,], respectively. Required demand
varies with time and needs to satisfy specifications on the flow [FD5,, FDJ,] and concentration
[C éd, C gd]. The MPBP formulations considered here assume that blending tanks do not operate at
steady-state. Mixing requires that the tanks be charged at one period of time and discharged at
another period (Lotero et al., 2016).

2.2. Direct MIQCP Formulation

We model the MPBP directly as a mixed-integer quadratically constrained program (MIQCP).
The MIQCP formulation follows from extending steady-state pooling formulations to incorporate
multiperiod scheduling. Here, binary variables x,,/, € {0,1} are introduced to indicate the
existence of flow at each time period. This addition enables us to enforce a minimum flow in the
pipeline, when the flow exists. We obtain the MIQCP formulation by adapting the formulation
presented by Kolodziej et al. (2013) to handle time-varying concentration in the supply:

max E Z ﬁ}F,,d, — Z ﬁfﬂm — Z (ari\;,xmrf + ﬁ,ﬁ:anq) (la)
teT [(nd)eA (s,n)ed (nn")e A
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Where Bg is the unit profit of demand d satisfied, BZ is the unit cost of supply stream s, BZn, is
the unit transportation cost, (xZn, is the fixed transportation cost, F/Y is the incoming flow from
supply tank s at time period t, F,,,,/, is the flow between node n and node n' at time t, FDy, is the
flow directed to demand tank d at period t, and M € R is a sufficiently large big-M constant. For
simplicity in presentation, the edge set A can refer to a subset of edges depending on the indices
being used where n refers to general nodes and s, b, and d refer to supply, blending, and demand
nodes, respectively. The formulation allows flows to go directly from the supply to the demands
without blending if and only if they meet the required specifications. Also note that Equation (1h)
enforces that blending tanks cannot be charged, mixed, and discharged simultaneously. The key
complicating factor of Problem (1) is that Equation (1i) involves bilinear terms.

2.3. Generalized Disjunctive Programming Formulation

Generalized disjunctive programming (GDP) is a framework for naturally posing mathematical
programs that incorporate symbolic logic relationships between the variables (Grossmann and
Trespalacios, 2013). In the MPBP, the bilinear mass balance shown in (li) only needs to be
considered when tanks are charging. Hence, this nonconvex equation can be omitted when a tank
is discharging. Using GDP, we can define Y}, € {True, False} to specify whether or not, at a given
period, tank b is charging (Y,; = True) or discharging (¥}, = False). With this, we can replace
Equation (1i) in Problem (1) with the following disjunction that accounts for the operational mode
of the tank:

Yy
- YIH

By = Iy + I
1,C, L brcl zq(f Q“ nth. civ w Vo o =l = Lpmyea Fim (2)
L btqbt bt —1%gbt—1 (s,p)eALsbtgs J L qu;t _ qu;r—]- geQ J

+ X peaFrnCor 1. g€ Q

for each b € B and t € T. Note that bilinear terms are only considered in the left disjunct. Also,
the mass balances in both disjunctions have fewer terms since they leverage the tank operational
mode to only consider active flows.

Formulation (1) has other constraints that enforce logical implications on variables, which are
amenable for GDP reformulation. For instance, Equation (1b) activates the flow F,,/; only if
Xnn't = 1 during that period. Hence we can also redefine the flow existence as a Boolean variable
Xpn'e € {True, False} and rewrite Equation (1b) with the following disjunction:

Xi’lb.’ Anbt
Y , (mb)eAreT. 3
[ﬂ%iﬂmiﬁfé] [Fm:o} () &

Equations (1c) and (1d) can be reformulated via similar GDP disjunctions. Moreover, Equation
(1h) can be reformulated using GDP logical propositions:

Kbt = Yo, (H.b) cAtreT (4a)
ant = ﬁth (b,i’?) ceAreT (4b)
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All these GDP equations are substituted into Formulation (1) to yield the GDP-based MPBP,
which generalizes the GDP formulation proposed in (Lotero et al., 2016) to account for time-
varying concentrations (prevalent in produced water constituents). Note that this formulation ex-
tends the one presented in (1) to account for the tank operating mode to yield fewer bilinearities
after operating modes are determined.

2.4. GDP with Redundant Constraints (RC)

Typically, mixed-integer solvers employ continuous relaxations of the problem (by relaxing vari-
able integrality) to iteratively obtain an optimal solution. Tight relaxations often provide high-
quality solutions relative to the mixed-integer formulation, which can accelerate solver conver-
gence. One way to tighten relaxations is to include additional constraints therefore redundant that
provide no additional modeling information but further restrict the feasible region.

We derive redundant constraints for our GDP formulation by tracking component flow origins:

Foy = Z Fry, (non') € AreT (5a)
reR
Iy = Eirbh beBireT (5b)
rcR

where R := § U B is the set of possible initial origins, B is the set of blending tanks with nonzero
initial inventory, and F, T, and CO are the flows, inventories, and initial composition identified by
origin, respectively. Following Lotero et al. (2016), we employ other redundant constraints to
strengthen the GDP formulation, and we refer the reader to that work for more details and analysis
on the tightness of the relaxation.

2.5. Two-Stage MILP-MIQCP Decomposition

We can pose a two-stage decomposition to the above GDP formulations for complex MPBPs that
incur high computational cost. We define an upper-level problem that omits the bilinear species
balances to obtain a linear formulation that provides an upper bound UB on the optimal solution
and candidate operating states of Y;,. Then we define a lower-level problem that fixes Y}, in the
full formulation to the values provided by the upper-level problem and removes the bilinear terms
corresponding to idle/discharging tanks. When feasible, the lower-level problem provides a lower
bound on the optimal solution. Integer cuts are added to the upper-level problem after each run
of the lower-level problem as shown in (Lotero et al., 2016):

z<—(UB-Z") Yo o~ X wm (62)
beBeTIsH, =1 beBET|7,=0
(UB*Zi) ( Z (_{.'{H)I)JFUB, i€lp
beBeT
Z (1 —ymr) + E Yo 2 1, i< 1r (ob)
beBeT|H, =1 bCBACT |3, =0

where Z is the objective of the upper-level problem, y,, are the binary variables associated with
Yy, Ppe are the fixed values of the tank modes at the i*" iteration, and J, and J7 contain the
feasible and infeasible iteration indices, respectively. Here, Equation (6a) is added based on a
feasible lower-level solution, and Equation (6b) is added based on infeasible solutions. Iterating
between upper- and lower-level problems leads to convergence to a globally optimal solution of
the MPBP. The gap of the decomposition is calculated between the upper and lower bounds (LB
and UB) as shown in Equation (7) where € is a small tolerance. A formal analysis is provided in
(Lotero et al., 2016).

UB—LB

LB+¢

Gap = (7
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3. Case Study

We compare the formulations in Section 2 via two case studies focused on delivering a lithium
rich stream from a network of produced water sources. Case 1 is a smaller system composed by
a subset of the tanks considered in Case 2. Produced water with varied lithium concentrations is
produced at different wells and a source of fresh water is available. Several demand nodes are
considered with their respective schedules for feed quality and quantity. We choose parameters
based on those reported by Dworzanowski (2019) and Figure 1 details the topology of Case 2.

Blending Demand

High

Produced Water
Lithium Recovery
Water Disposal
Treatment
Non-Oil & Gas

——— Fresh Water

Figure 1: Topology of Case Study 2. Edges that connect sources with demands directly are con-
sidered in the case study but are not shown in the figure for simplicity.

GDP problems are often solved via big-M reformulation (BM) or Hull reformulation (HR) (Gross-
mann and Trespalacios, 2013; Lee and Grossmann, 2000). Previous work conducted by Lotero et
al. (2016) and Ovalle Varela et al. (2021) only use BM reformulations. We explore solving
these formulations using both BM and HR to study their impact on solution performance. We
implement all approaches in Pyomo.GDP on a Linux machine with 8 Intel® Xeon® Gold 6234
CPUs running at 3.30 GHz with 128 hardware threads and 1 TB of RAM with Ubuntu. We use
Gurobi v9.5.1 and BARON v22.7.23 as appropriate to solve all formulations. We impose a
target optimality gap of 1% and 3% for case studies 1 and 2, respectively; moreover, we set a
wall-time of 3600s.

Table 1: Approach comparison for the lithium recovery case studies

Case 1 Case 2
Upper-level Lower-level Time[s] Gap[%] Time [s] Gap[%]
MIQCP - 843.87 0.77 3,600 20.02
GDP (BM) - 3,600 61.10 3,600 4791
GDP (HR) - 3,600 - 3,600 -
RC (BM) - 69.05 1.00 3,600 26.33
RC (HR) . 3,600 1.30 3,600 -
RC (BM) RC (BM) 160.57 0.03 3,600 -
RC (HR) RC (BM) 12.54 0.08 54.1 1.08

Table 1 shows the solution time and final optimality gap of each solution method and case study.
The columns corresponding to the levels indicate the selected formulation and GDP reformulation
(BM or CH) when applicable. Rows without an entry in the lower-level column are solved directly
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without the two-stage decomposition. Note that the two-stage decomposition using RC (BM) and
RC (BM) was originally proposed by Lotero et al. (2016), and decomposition using RC (HR) and
RC (BM) is proposed in this work. The results from Case 2 suggest that the monolithic
formulations readily become intractable, which justifies the use of decomposition strategies. In
fact, only our proposed decomposition is able to achieve an optimal solution for Case 2 within the
wall-time. Hence, we observe that the choice of GDP reformulation strategy can significantly
affect solution performance.

4. Conclusions

The multiperiod blending problem is a nonconvex mixed-integer quadratically constrained pro-
gram that is challenging to solve for real life applications such as lithium recovery from produced
water. We observe that the previous solution approaches considered in this work are extremely
expensive computationally for this problem class. Moreover, our adaptation of the two-stage de-
composition approach to use hull reformulations significantly enhances scalability. These results
motivate further investigation into how combinations of possible formulations, GDP solution tech-
niques, fixing strategies, and solver tunings can accelerate the convergence of the two-stage de-
composition strategy considered in this work. Future work also includes integrating these formu-
lations within the PARETO framework (Drouven et al., 2022) for REE-CM recovery extensions.
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