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Abstract 
Oil and gas production wastewater (i.e., produced water) may contain appreciable concentrations 
of rare-earth elements and critical minerals (REE/CMs), such as lithium, that can be recovered. 
However, each individual produced water source may have insufficient concentration or volume to 
meet the economic and operating requirements of the recovery facility. Therefore, there is the need 
to appropriately blend multiple sources to meet recovery and water reuse demands. Optimal stream 
mixing operation planning can be posed as a multiperiod blending problem (MPBP) to provide 
quantity and quality guarantees over time. We present several formulations to solve the MPBP for 
the recovery of REE/CMs from produced water and propose a decomposition approach that 
leverages strategies in general disjunctive programming to enhance its performance. We compare 
these proposed formulations/strategies via two illustrative case studies on recovering lithium from 
a network of produced water sources. 

Keywords: Multiperiod Blending, Lithium Recovery, Mixed-Integer Nonlinear Programming, 
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1. Introduction 
Wastewater streams from oil and gas production (i.e., produced water) are expected to surpass 60 
million barrels of water per day by 2030 in the U.S. alone (Wright, 2022). The treatment needed 
to mitigate the environmental impact of these wastewater streams is expensive due to high salinity 
and contaminant levels (Gaustad et al., 2021). Hence, a significant portion of produced water in 
the U.S. is simply disposed of via underground injection. 

Notably, however, produced water sources may contain appreciable concentrations of critical 
minerals (CMs) such as lithium which are crucial for manufacturing electronics, pharmaceuticals, 
batteries, renewable energy generators, and more (Quillinan et al., 2018). Moreover, establishing 
a sustainable REE/CM supply chain is a critical concern of many industrial and governmental 
stakeholders. Thus, the recovery of REE/CMs from produced water has the potential to add 
sufficient economic value to incentivize the use of treatment technologies that mitigate the impact 
of produced water on the environment. 

Operating a water network for the recovery of REE/CMs from multiple produced water sources is 
highly complex since REE/CM concentrations vary dynamically and geographically, there are limited 
storage locations, and treatment/recovery facilities have strict inlet-flow requirements (Gaustad et 
al., 2021). Such a system can be modeled as a classic multiperiod blending problem where source 
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streams with time-varying compositions are blended in pooling tanks to satisfy quality and  quantity 
demand requirements. Classic pooling formulations such as the one proposed in Haverly                       (1978) 
use bilinear terms to track compositions along the network. However, such formulations are often 
difficult to solve due to their inherent nonconvexity (Gounaris and Floudas, 2008). This                          difficulty 
is compounded by multiperiod models that incorporate binary variables. 

In this work, we investigate several multiperiod blending problem (MPBP) formulations and solu- 
tion strategies to optimally plan the delivery of lithium-rich streams for recovery and water reuse 
in development activities. In particular, we adapt the direct, generalized disjunctive programming, 
and decomposition MPBP approaches as described in Kolodziej et al. (2013) and Lotero et al. 
(2016) to a representative produced water network case study. It is shown that such strategies are 
key to guiding the treatment of a multi-enterprise produced water blending and determine whether 
such a system is feasible and economically viable. 

2. Problem Formulation and Solution Strategies 
2.1. Basic Problem Setup and Nomenclature 
The multiperiod blending problem (MPBP) is defined over a set of supply tanks 𝒮𝒮, blending tanks  
ℬ, and demand tanks 𝒟𝒟 interconnected by a set of edges 𝒜𝒜. The problem seeks to determine the 
optimal mixing schedule over a discretized time horizon 𝒯𝒯 that maximizes the operation profit, 
while meeting flow and concentration specifications for each component 𝑞𝑞 ∈ 𝒬𝒬. The initial 
conditions for each tank 𝑛𝑛 ∈ 𝒩𝒩 ≔ 𝒮𝒮 ∪ ℬ ∪ 𝒟𝒟 are specified via the initial level of every tank 𝐼𝐼𝑛𝑛0 
and its  corresponding compositions 𝐶𝐶𝑞𝑞𝑞𝑞0 . The incoming flow 𝐹𝐹𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 at each supply 𝑠𝑠 is known with an 
incoming composition 𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼  that varies over t. The nodal inventories and flows are restricted by tank 
and                            pipeline capacities, which are denoted [𝐼𝐼𝑛𝑛𝐿𝐿, 𝐼𝐼𝑛𝑛𝑈𝑈] and [𝐹𝐹𝑛𝑛𝑛𝑛′

𝐿𝐿 ,𝐹𝐹𝑛𝑛𝑛𝑛′
𝑈𝑈 ], respectively. Required demand 

varies with                          time and needs to satisfy specifications on the flow [𝐹𝐹𝐷𝐷𝑑𝑑𝑑𝑑𝐿𝐿 ,𝐹𝐹𝐷𝐷𝑑𝑑𝑑𝑑𝑈𝑈 ] and concentration 
[𝐶𝐶𝑞𝑞𝑞𝑞𝐿𝐿 ,𝐶𝐶𝑞𝑞𝑞𝑞𝑈𝑈 ]. The MPBP formulations considered here assume that blending tanks do not operate at 
steady-state. Mixing requires that the tanks be charged at one period of time and discharged at 
another period (Lotero et al., 2016). 

2.2. Direct MIQCP Formulation 
We model the MPBP directly as a mixed-integer quadratically constrained program (MIQCP). 
The MIQCP formulation follows from extending steady-state pooling formulations to incorporate 
multiperiod scheduling. Here, binary variables 𝑥𝑥𝑛𝑛𝑛𝑛′𝑡𝑡 ∈ {0,1} are introduced to indicate the 
existence  of flow at each time period. This addition enables us to enforce a minimum flow in the 
pipeline, when the flow exists. We obtain the MIQCP formulation by adapting the formulation 
presented by Kolodziej et al. (2013) to handle time-varying concentration in the supply: 
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Where β𝑑𝑑𝑇𝑇  is the unit profit of demand 𝑑𝑑 satisfied, β𝑠𝑠𝑇𝑇 is the unit cost of supply stream 𝑠𝑠, β𝑛𝑛𝑛𝑛′
𝑁𝑁  is 

the unit transportation cost, α𝑛𝑛𝑛𝑛′
𝑁𝑁  is the fixed transportation cost, 𝐹𝐹𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 is the incoming flow from 

supply  tank 𝑠𝑠 at time period 𝑡𝑡, 𝐹𝐹𝑛𝑛𝑛𝑛′𝑡𝑡 is the flow between node 𝑛𝑛 and node 𝑛𝑛′ at time 𝑡𝑡, 𝐹𝐹𝐷𝐷𝑑𝑑𝑑𝑑 is the 
flow directed to demand tank 𝑑𝑑 at period 𝑡𝑡, and 𝑀𝑀 ∈ ℝ is a sufficiently large big-M constant. For 
simplicity in presentation, the edge set 𝒜𝒜 can refer to a subset of edges depending on the indices 
being used where 𝑛𝑛 refers to general nodes and 𝑠𝑠, 𝑏𝑏, and 𝑑𝑑 refer to supply, blending, and demand 
nodes, respectively. The formulation allows flows to go directly from the supply to the demands 
without blending if and only if they meet the required specifications. Also note that Equation (1h) 
enforces that blending tanks cannot be charged, mixed, and discharged simultaneously. The key 
complicating factor of Problem (1) is that Equation (1i) involves bilinear terms. 

2.3. Generalized Disjunctive Programming Formulation 
Generalized disjunctive programming (GDP) is a framework for naturally posing mathematical 
programs that incorporate symbolic logic relationships between the variables (Grossmann and 
Trespalacios, 2013). In the MPBP, the bilinear mass balance shown in (1i) only needs to be 
considered when tanks are charging. Hence, this nonconvex equation can be omitted when a tank 
is discharging. Using GDP, we can define 𝑌𝑌𝑏𝑏𝑏𝑏 ∈ {True, False} to specify whether or not, at a given 
period, tank 𝑏𝑏 is charging (𝑌𝑌𝑏𝑏𝑏𝑏 = True) or discharging (𝑌𝑌𝑏𝑏𝑏𝑏 = False). With this, we can replace 
Equation (1i) in Problem (1) with the following disjunction that accounts for the operational mode 
of the tank: 
 

 
 

for each 𝑏𝑏 ∈ ℬ and 𝑡𝑡 ∈ 𝒯𝒯. Note that bilinear terms are only considered in the left disjunct. Also, 
the mass balances in both disjunctions have fewer terms since they leverage the tank operational 
mode to only consider active flows. 
Formulation (1) has other constraints that enforce logical implications on variables, which are 
amenable for GDP reformulation. For instance, Equation (1b) activates the flow 𝐹𝐹𝑛𝑛𝑛𝑛′𝑡𝑡 only if 
𝑥𝑥𝑛𝑛𝑛𝑛′𝑡𝑡 = 1 during that period. Hence we can also redefine the flow existence as a Boolean variable 
𝑋𝑋𝑛𝑛𝑛𝑛′𝑡𝑡 ∈ {True, False} and rewrite Equation (1b) with the following disjunction:  
 

 
 
Equations (1c) and (1d) can be reformulated via similar GDP disjunctions. Moreover, Equation 
(1h) can be reformulated using GDP logical propositions: 
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All these GDP equations are substituted into Formulation (1) to yield the GDP-based MPBP, 
which generalizes the GDP formulation proposed in (Lotero et al., 2016) to account for time- 
varying concentrations (prevalent in produced water constituents). Note that this formulation ex- 
tends the one presented in (1) to account for the tank operating mode to yield fewer bilinearities 
after operating modes are determined. 

 
2.4. GDP with Redundant Constraints (RC) 
Typically, mixed-integer solvers employ continuous relaxations of the problem (by relaxing vari- 
able integrality) to iteratively obtain an optimal solution. Tight relaxations often provide high- 
quality solutions relative to the mixed-integer formulation, which can accelerate solver conver- 
gence. One way to tighten relaxations is to include additional constraints therefore redundant that 
provide no additional modeling information but further restrict the feasible region. 

We derive redundant constraints for our GDP formulation by tracking component flow origins:  

 
where ℛ ≔ 𝒮𝒮 ∪ ℬ� is the set of possible initial origins, ℬ� is the set of blending tanks with nonzero 
initial inventory, and 𝐹𝐹� , 𝐼𝐼 , and 𝐶𝐶0�  are the flows, inventories, and initial composition identified by 
origin, respectively. Following Lotero et al. (2016), we employ other redundant constraints to 
strengthen the GDP formulation, and we refer the reader to that work for more details and analysis 
on the tightness of the relaxation. 

 
2.5. Two-Stage MILP-MIQCP Decomposition 

We can pose a two-stage decomposition to the above GDP formulations for complex MPBPs that 
incur high computational cost. We define an upper-level problem that omits the bilinear species 
balances to obtain a linear formulation that provides an upper bound 𝑈𝑈𝑈𝑈 on the optimal solution 
and candidate operating states of 𝑌𝑌𝑏𝑏𝑏𝑏. Then we define a lower-level problem that fixes 𝑌𝑌𝑏𝑏𝑏𝑏 in the 
full formulation to the values provided by the upper-level problem and removes the bilinear terms 
corresponding to idle/discharging tanks. When feasible, the lower-level problem provides a lower 
bound on the optimal solution. Integer cuts are added to the upper-level problem after each run 
of the lower-level problem as shown in (Lotero et al., 2016):  

 
 

where 𝑍𝑍 is the objective of the upper-level problem, 𝑦𝑦𝑏𝑏𝑏𝑏 are the binary variables associated with 
𝑌𝑌𝑏𝑏𝑏𝑏,  𝑦𝑦�𝑏𝑏𝑏𝑏 are the fixed values of the tank modes at the 𝑖𝑖𝑡𝑡ℎ iteration, and ℐ𝒪𝒪 and ℐℱ contain the 
feasible and infeasible iteration indices, respectively. Here, Equation (6a) is added based on a 
feasible lower-level solution, and Equation             (6b) is added based on infeasible solutions. Iterating 
between upper- and lower-level problems leads to convergence to a globally optimal solution of 
the MPBP. The gap of the decomposition is  calculated between the upper and lower bounds (𝐿𝐿𝐿𝐿 
and 𝑈𝑈𝑈𝑈) as shown in Equation (7) where ϵ is a  small tolerance. A formal analysis is provided in 
(Lotero et al., 2016). 
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3. Case Study 

We compare the formulations in Section 2 via two case studies focused on delivering a lithium 
rich stream from a network of produced water sources. Case 1 is a smaller system composed by 
a subset of the tanks considered in Case 2. Produced water with varied lithium concentrations is 
produced at different wells and a source of fresh water is available. Several demand nodes are 
considered with their respective schedules for feed quality and quantity. We choose parameters 
based on those reported by Dworzanowski (2019) and Figure 1 details the topology of Case 2. 

 

Figure 1: Topology of Case Study 2. Edges that connect sources with demands directly are con- 
sidered in the case study but are not shown in the figure for simplicity. 

 
GDP problems are often solved via big-M reformulation (BM) or Hull reformulation (HR) (Gross- 
mann and Trespalacios, 2013; Lee and Grossmann, 2000). Previous work conducted by Lotero et 
al. (2016) and Ovalle Varela et al. (2021) only use BM reformulations. We explore solving 
these formulations using both BM and HR to study their impact on solution performance. We 
implement all approaches in Pyomo.GDP on a Linux machine with 8 Intel® Xeon® Gold 6234 
CPUs running at 3.30 GHz with 128 hardware threads and 1 TB of RAM with Ubuntu. We use 
Gurobi v9.5.1 and BARON v22.7.23 as appropriate to solve all formulations. We impose a 
target optimality gap of 1% and 3% for case studies 1 and 2, respectively; moreover, we set a 
wall-time of 3600s. 

Table 1: Approach comparison for the lithium recovery case studies 

 
 

Table 1 shows the solution time and final optimality gap of each solution method and case study. 
The columns corresponding to the levels indicate the selected formulation and GDP reformulation 
(BM or CH) when applicable. Rows without an entry in the lower-level column are solved directly 
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without the two-stage decomposition. Note that the two-stage decomposition using RC (BM) and 
RC (BM) was originally proposed by Lotero et al. (2016), and decomposition using RC (HR) and 
RC (BM) is proposed in this work. The results from Case 2 suggest that the monolithic 
formulations readily become intractable, which justifies the use of decomposition strategies. In 
fact, only our proposed decomposition is able to achieve an optimal solution for Case 2 within the 
wall-time. Hence, we observe that the choice of GDP reformulation strategy can significantly 
affect solution performance. 

4. Conclusions 
The multiperiod blending problem is a nonconvex mixed-integer quadratically constrained pro- 
gram that is challenging to solve for real life applications such as lithium recovery from produced 
water. We observe that the previous solution approaches considered in this work are extremely 
expensive computationally for this problem class. Moreover, our adaptation of the two-stage de- 
composition approach to use hull reformulations significantly enhances scalability. These results 
motivate further investigation into how combinations of possible formulations, GDP solution tech- 
niques, fixing strategies, and solver tunings can accelerate the convergence of the two-stage de- 
composition strategy considered in this work. Future work also includes integrating these formu- 
lations within the PARETO framework (Drouven et al., 2022) for REE-CM recovery extensions. 
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