

PNNL-35030

Investigating carbon stabilization in soils via mineral adsorption

What are we missing when we define
mineral associated organic matter.

September 2023

Qian Zhao
Odetta Qafoku,
Kenton Rod

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062

www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728
email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
or (703) 605-6000
email: info@ntis.gov
Online ordering: <http://www.ntis.gov>

Investigating carbon stabilization in soils via mineral adsorption

What are we missing when we define mineral associated organic matter

September 2023

Qian Zhao
Odeta Qafoku,
Kenton Rod

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

Abstract

Understanding carbon (C) fluxes released from soil to atmosphere is critical to regulating global climate change. Soil minerals play a crucial role in stabilizing C, based on recent studies which have found that mineral associated C can be stored in soils for decades to centuries longer than non-mineral associated C. We aim to maximize C sequestration via mineral adsorption in soils. To achieve this objective, it is important to understand the potential impacts of C stabilization via adsorption to mineral surfaces. Particularly, investigating the quantitative impacts of C sorption to minerals is novel to understanding and implementing multi-scale biogeochemical processes of C stabilization in soils. We will conduct a literature review on potential impacts of C sorption to minerals, thereby contributing to the net C storage in soils. Our findings will allow us to quantitatively understand soil C changes and durability at molecular and ecosystem scales, fulfilling existing scientific gaps in the community as well as interests of sponsors, such as DOE-BER.

Summary

This project provides insights into the role of minerals on soil carbon (C) storage, sequestration, and contribution to the global C cycle. The outcomes of this study demonstrated how mineral adsorption processes might enhance C storage in terrestrial ecosystems. We have conducted an outline of a manuscript that focuses on the diverge quantification methods of mineral associated organic matter (MAOM) pool in soil could lead to an uncertain estimation of global mineral associated C stock in models. Meanwhile, we also build up a body of literatures as well as a dataset of MAOM-C stock and the fraction of MAOM-C to total soil organic carbon (SOC) across different ecosystems from literatures. Along with MAOM pool size data, this dataset also includes site metadata, including mean annual temperature (MAT), mean annual precipitation (MAP), soil moisture, soil pH, etc. We are continuously building this dataset by synthesize data from literatures. Information from this LDRD project will be used to develop a literature review manuscript and potential DOE BER proposals.

Acknowledgments

This research was supported by the **EBSD Mission Seed**, under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.

Acronyms and Abbreviations

soil organic matter (SOM)
mineral associated organic matter (MAOM)
carbon (C)
soil organic carbon (SOC)
mean annual temperature (MAT)
mean annual precipitation (MAP)

Contents

Abstract.....	ii
Summary	iii
Acknowledgments.....	iv
Acronyms and Abbreviations.....	v
1.0 Introduction.....	1
2.0 Current understanding of C budget in the MAOM pools.....	2
3.0 Different parameters impact on MAOM pool size.....	4
3.1 Quantification methods	4
3.2 Other factors	4
4.0 Implications and discussion on C cycling modeling.....	5
5.0 Conclusion	6
6.0 References.....	7
Appendix A – A working dataset of MAOM-C.....	A.1

Figures

Figure 1. a–c , Carbon content (gC kg ⁻¹ soil) in POM (a) and MAOM (b), and ratio between MAOM carbon and total SOC (c) from Lugato et al (2021).	3
Figure 2. The list of literatures of quantifying mineral-associated OC in soil.....	6

Tables

Table 1. Percentage of Fe-OC to total OC in natural soil and sediment environments	2
---	---

1.0 Introduction

Understanding carbon (C) fluxes released from soil to atmosphere is critical to regulating global climate change. Soil minerals play a crucial role in stabilizing C, based on recent studies which have found that mineral associated C can be stored in soils for decades to centuries longer than non-mineral associated C (Lützow et al 2006, Mikutta et al. 2019, Schmidt et al. 2011). For example, microbial-derived C can be stabilized in soil over years through adsorption to amorphous Fe hydroxides (e.g., ferrihydrite), Al oxides, and Ca-bearing minerals (e.g., calcite), due to their high surface areas, the prevalence of surface hydroxyl groups, and bridging capacities. This project probes the impact of organo-mineral and microbe-mineral interactions on C assimilation and protection in soil to guide soil C sequestration. Thus, our findings allow us to quantitatively understand the persistent soil C that associates with soil minerals at molecular and ecosystem scales, fulfilling existing scientific gaps in the community as well as interests of sponsors, such as the U.S. Department of Energy (DOE)-Biological and Environmental Research (BER). This effort aligns well with the directorate objectives of PNNL Earth and Biological Sciences Directorate (EBSD) on Durable Soil Carbon Storage for Atmospheric Carbon Dioxide Removal.

2.0 Current understanding of C budget in the MAOM pools

Second State of the Carbon Cycle Report (SOCCR2) has identified the soil C stock in top 1m soil from North American is 400 PgC (Lajtha et al. 2018). Estimates of global soil organic carbon (SOC) stocks vary from 684 to 724 Pg in the surface 0.3 m (Batjes 1996), the Intergovernmental Panel of Climate Change (IPCC) standard sampling depth (Aalde et al. 2006), and (Sokol et al., 2019) 1462 to 1548 Pg in the top meter and $2,060 \pm 220$ Pg C to 2 m (Batjes 1996). Diverse C inputs result in heterogeneity of the SOM pool. Studies showed both microbial-derived C and plant-derived C are major sources of mineral-associated organic matter (MAOM). The formation and accumulation of SOC are primarily derived from plant- and microbial C (Angst et al., 2021; Ma et al., 2018; Sokol & Bradford, 2019). While the significance of plant residues to SOM persistence is well recognized due to the slow cycling of plant debris (e.g., lignin and phenols) (Angst et al., 2021; Schmidt et al., 2011), the importance of microbial products and residues (hereafter ‘microbial necromass’) in the slowly cycling SOC pool has only recently been appreciated (Fan et al., 2021; Kallenbach et al., 2016; Liang et al., 2019; Wang et al., 2021; Wu et al., 2023). Microbial necromass contributes to 33-62% of total SOC in various types of ecosystems (measured as amino sugars) (Liang et al., 2019; Wang et al., 2021). However, the long-term persistence of microbial necromass in the SOM pool depends on the associations with soil minerals (Kästner et al. 2021), even though the specific necromass-mineral interactive mechanisms are still unclear.

The estimations of MAOM pool in soils have been largely studied in the last decade. Studies showed the proportion of MAOM to total SOM varies significantly, ranging from 25%-90% (Table 1). The proportion of the MAOM pool varies across different ecosystem types with 60% in forest, 72% in grassland, and 79% in cropland. Lugato et al (2021) did size fractionation on 400 soils and quantified MAOM with a machine learning (ML) approach. The model was then used to predict the C and N in the MAOM fraction for the 9,229. The average mineral associated C stocks in European grasslands and forest soils varied between 15 and 38 g C kg⁻¹ soil (Figure 1).

Table 1. Percentage of Fe-OC to total OC in natural soil and sediment environments.

Site or ecosystem type	Proportion of MAOM to total SOM	Methods	Reference
14 Forest soils in the USA	0.6-57.8% (average 37.8%)	Dithionite extraction	Zhao et al. 2016
4 wetland soils in China	7-91%	Size and density	Liu et al. 2023
Mangrove soils in the Philippines	~15 %	Dithionite extraction	Dicen et al., 2019
Arable soils in China	6.2–31.2 % Agriculture soils – grassland and arid	Dithionite extraction	Wan et al., 2019
10 Peatlands in China	1.64–5.94 %	Dithionite extraction	Huang et al., 2021a
186 grassland and forest soils in European	25-85% (60% in forest, 72% in grassland, 79% in cropland)	Size	Cotrufo et al., 2019
1451 all ecosystem types	65%	Size	Georgiou et al. 2022

Grasslands			
Tibetan alpine grasslands in China	$15.8 \pm 12.0 \%$	Dithionite extraction	Fang et al., 2019
Meadow soils in the Qinghai-Tibetan Plateau	4.1–25.6 %	Dithionite extraction	Mu et al., 2020
Sediments			
Marine sediments in Mexican and Indian margins, the Southern Ocean, the St. Lawrence estuary and gulf, and the Black Sea	$21.5 \pm 8.6 \%$	Dithionite extraction	Lalonde et al., 2012
East China Sea sediments	2.77–31.5 %	Dithionite extraction	Ma et al., 2018
Changjiang estuary sediments in China	$7.4 \pm 3.5 \%$	Dithionite extraction	Zhao et al., 2018
Wax Lake Delta sediments in the USA	~15.0 %	Dithionite extraction	Shields et al., 2016
Sediments in Eurasian Arctic Shelf	0.5-22%	Dithionite extraction	Salvadó et al., 2015
Saanich, Arabian Sea, Mexican margin, and St. Lawrence estuary	25.7–62.6 %	Dithionite extraction	Barber et al., 2017
Permafrost			
Permafrost soils in northern Alaska	$13.68 \pm 2.31 \%$	Dithionite extraction	Joss et al., 2022
Permafrost soils in the Qinghai-Tibetan Plateau	$19.5 \pm 12.3 \%$	Dithionite extraction	Mu et al., 2016
Discontinuous permafrost region in Sweden	9.9–14.8%	Dithionite extraction	Patzner et al., 2020

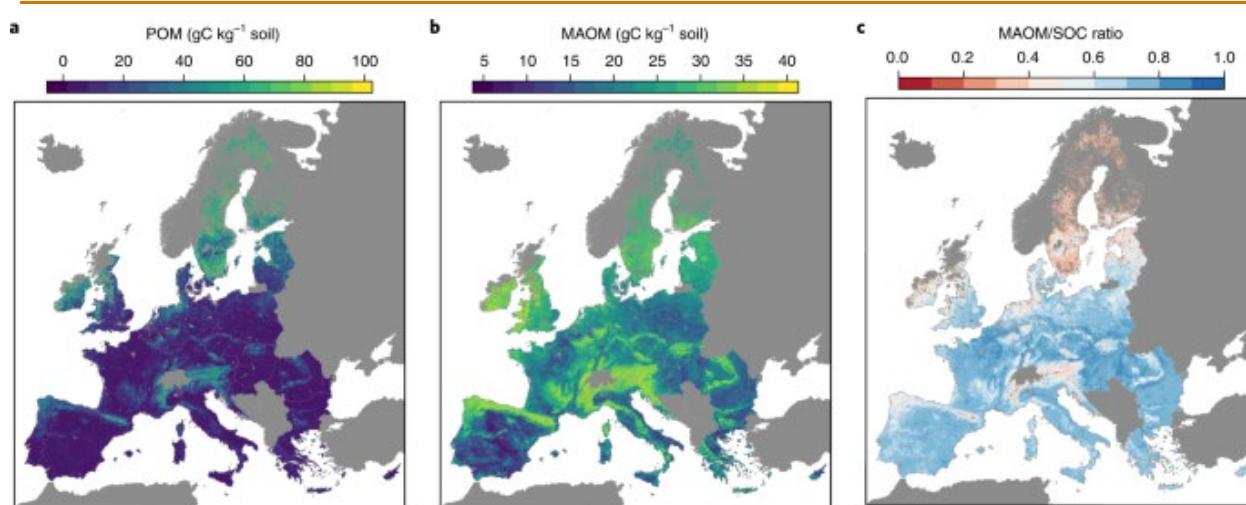


Figure 1. a–c, Carbon content (gC kg^{-1} soil) in POM (a) and MAOM (b), and ratio between MAOM carbon and total SOC (c) from Lugato et al (2021).

3.0 Different parameters impact on MAOM pool size

3.1 Quantification methods

There are diverse methodologies for quantifying the MAOM pool in soil. Abramoff et al (2021) compiled 402 laboratory sorption experiments and quantified, for the first time, the sorption capacity of mineral soils to DOC for six soil orders. They find that mid- and low-latitude soils and subsoils have a greater capacity to store DOC by sorption compared to high-latitude soils and topsoils. The global additional DOC sorption is estimated to be 107 ± 13 Pg C to 1 m depth, projecting a 7% increase in the existing total carbon stock.

Another two major MAOM quantification methods are chemical extraction and size fractionation. Chemical extraction includes sodium pyrophosphate, sodium dithionite, oxalate acid, and HCl. These solvents target to dissolve specific minerals from soils, thereby releasing OC that associates with these minerals. Among these solvents, sodium dithionite has been widely used to quantify mineral bound OC in addition to quantify extracted Fe, Al, and other metals (Lalonde et al 2012, Zhao et al. 2016). Meanwhile, size fractionation separates the MAOM pool by less than 53 μ m particle size. This approach is easy and high throughput so that can be applied to a large number of sample sites. Dithionite extraction could underestimate the MAOM pool as it only extracts a portion of minerals from soils but not all, whereas size fractionation most likely overestimates the pool as there could be non-mineral bound C within particles less than 53 μ m. These different quantification approaches result in large variations in estimating the MAOM pool size in soils. For instance, dithionite extraction estimates about 25% of total SOC as MAOM C, whereas size fractionation estimates an average of 65% of total SOC as MAOM C pool. Such different estimations on MAOM pool result in diverge projections in continental scale MAOM pool. Given the total C stock, we estimated 60-260PgC in the MAOM pool in top 1m soil in North America. This diverge estimations on the MAOM pool size will impact on the accuracy of C cycling predictions by biogeochemical process-based models.

3.2 Other factors

MAOC to reactive Fe ratios (OC:Fe) can indicate the mechanism of Fe-OC interactions. A mass ratio over 0.22 is indicative for Fe-OC associations predominantly formed by co-precipitation or chelation (Wagai and Mayer, 2007). Below an OC:Fe mass ratio of 0.22, OC is mainly assumed to be sorbed onto Fe minerals. Around 86% of the permafrost samples exceed an OC:Fe mass ratios of 0.22 (Joss et al. 2022). Other soil parameters, such as the bulk density, pH, and moisture content, were correlated with MAOM-C (Mu et al. 2022). Soil with higher pH results in higher fraction of MAOM-C, whereas higher soil moisture contents result in lower MAOM-C due to high microbial activities and consumption of available C.

4.0 Implications and discussion on C cycling modeling

Ungeneralizable MAOM fractionation approach results in a large uncertainty to the estimation of MAOM pool, thereby impacting the estimation of C persistence in soil. Consensus on the experimental method of defining MAOM pool is necessary to the soil community. The lab-scale quantification of C storage via minerals is applicable to ecosystem scale and global scale. Soil mineralogy is a major factor to predict ecosystem-C behavior in terms of microbe-mineral interactions and nutrient-mineral interactions. The quantitative data from this project can be incorporated into process-based models, such as Earth and Environmental Systems (ESS), and/or artificial intelligence and machine learning (AI/ML) based models to improve model prediction on C storage by considering organo-mineral protection.

5.0 Conclusion

This project provides insights into the role of minerals on soil carbon (C) storage, sequestration, and contribution to the global C cycle. The outcomes of this study demonstrated how mineral adsorption processes might enhance C storage in terrestrial ecosystems. We have conducted an outline of a manuscript that focuses on the diverge quantification methods of MAOM pool in soil could lead to an uncertain estimation of global mineral associated C stock in models.

Meanwhile, we also build up a body of literatures (Figure 2) as well as a dataset of MAOM-C stock and the fraction of MAOM-C to total SOC across different ecosystems from literatures (Appendix A). Along with MAOM pool size data, this dataset also includes site metadata, including MAT, MAP, soil moisture, soil pH, etc. We are continuously building this dataset by synthesize data from literatures. Information from this LRD project will be used to develop a literature review manuscript and potential DOE BER proposals.

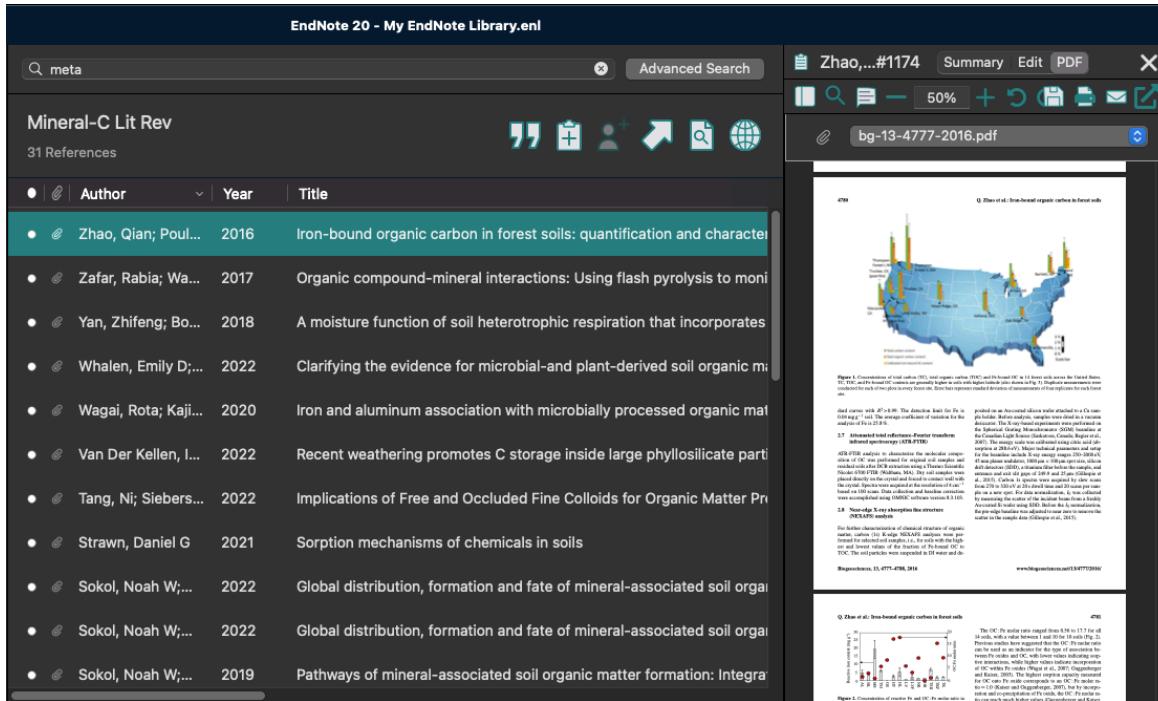


Figure 2. The list of literatures of quantifying mineral-associated OC in soil.

6.0 References

Aalde, H., P. Gonzalez, M. Gytarsky, T. Krug, W. Kurz, R. D. Lasco, D. Martino et al. "Generic Methodologies Applicable to Multiple Land-use Categories. IPCC Guidelines for National Greenhouse Gas Inventories." *Institute for Global Environmental Strategies (IGES), Hayama, Japan* (2006).

Abramoff, Rose Z., Katerina Georgiou, Bertrand Guenet, Margaret S. Torn, Yuanyuan Huang, Haicheng Zhang, Wenting Feng et al. "How much carbon can be added to soil by sorption?." *Biogeochemistry* 152, no. 2-3 (2021): 127-142.

Angst, G., Mueller, K. E., Nierop, K. G., & Simpson, M. J. (2021). Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. *Soil Biology and Biochemistry*, 108189.

Batjes, Niels H. "Total carbon and nitrogen in the soils of the world." *European journal of soil science* 47, no. 2 (1996): 151-163.

Fan, X., Gao, D., Zhao, C., Wang, C., Qu, Y., Zhang, J., & Bai, E. (2021). Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. *The ISME Journal*, 15(8), 2248-2263.

Joss, Hanna, Monique S. Patzner, Markus Maisch, Carsten W. Mueller, Andreas Kappler, and Casey Bryce. "Cryoturbation impacts iron-organic carbon associations along a permafrost soil chronosequence in northern Alaska." *Geoderma* 413 (2022): 115738.

Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. *Nature Communications*, 7(1), 13630.

Kästner, M., A. Miltner, S. Thiele-Bruhn, and C. Liang. "Microbial necromass in soils—linking microbes to soil processes and carbon turnover." *Frontiers in Environmental Science* 9 (2021): 597.

Lajtha, Kate, Vanessa L. Bailey, and Karis McFarlane. The Second State of the Carbon Cycle Report-Chapter 12. Soils. No. LLNL-TR-757064. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2018.

Lalonde, Karine, Alfonso Mucci, Alexandre Ouellet, and Yves Gélinas. "Preservation of organic matter in sediments promoted by iron." *Nature* 483, no. 7388 (2012): 198-200.

Liang, C., Amelung, W., Lehmann, J., & Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. *Global Change Biology*, 25(11), 3578-3590.

Lugato, Emanuele, Jocelyn M. Lavallee, Michelle L. Haddix, Panos Panagos, and M. Francesca Cotrufo. "Different climate sensitivity of particulate and mineral-associated soil organic matter." *Nature Geoscience* 14, no. 5 (2021): 295-300.

Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their

relevance under different soil conditions—a review. *European journal of soil science*, 57(4), 426-445.

Ma, T., Zhu, S., Wang, Z., Chen, D., Dai, G., Feng, B., Su, X., Hu, H., Li, K., & Han, W. (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. *Nature Communications*, 9(1), 3480.

Mikutta, R., Turner, S., Schippers, A., Gentsch, N., Meyer-Stüve, S., Condron, L. M., ... & Guggenberger, G. (2019). Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. *Scientific reports*, 9(1), 1-9.

Mu, Cuicui, Feng Zhang, Mei Mu, Xu Chen, Zhilong Li, and Tingjun Zhang. "Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan Plateau." *Catena* 187 (2020): 104282.

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. *Nature*, 478, 49-56. <https://doi.org/doi:10.1038/nature10386>

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. *Nature*, 478(7367), 49-56.

Sokol, N. W., & Bradford, M. A. (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. *Nature Geoscience*, 12(1), 46-53.

Sokol, N. W., Sanderman, J., & Bradford, M. A. (2019). Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. *Global Change Biology*, 25(1), 12-24.

Wagai, Rota, and Lawrence M. Mayer. "Sorptive stabilization of organic matter in soils by hydrous iron oxides." *Geochimica et Cosmochimica Acta* 71, no. 1 (2007): 25-35.

Wang, B., An, S., Liang, C., Liu, Y., & Kuzyakov, Y. (2021). Microbial necromass as the source of soil organic carbon in global ecosystems. *Soil Biology and Biochemistry*, 162, 108422.

Wu, H., Wan, S., Ruan, C., Wan, W., Han, M., Chen, G., Liu, Y., Zhu, K., Liang, C., & Wang, G. (2023). Soil microbial necromass: The state-of-the-art, knowledge gaps, and future perspectives. *European Journal of Soil Biology*, 115, 103472.

Zhao, Qian, Simon R. Poulson, Daniel Obrist, Samira Sumaila, James J. Dynes, Joyce M. McBeth, and Yu Yang. "Iron-bound organic carbon in forest soils: quantification and characterization." *Biogeosciences* 13, no. 16 (2016): 4777-4788.

Appendix A – A working dataset of MAOM-C

Author	Year	Lat	Lon	MAT	MAP	Soil.ord	Mineral	Top.dep	Bottom.	Vegetat	frc	met	Clay	Silt	Sand	SiltClay	P	Bulk.C	SiltClayC	POM_C	source	MAOM_f	MAOM_M	
Amelung	1998	52.92	-105.8	0.9	456	Mollisols	HM	0	10	Grassland	Particle_Size	29	22	49	51	58.2	39.88	13.1168	Synthesis	45.0832	0.7746254			
Amelung	1998	52.19	-106.17	1.6	343	Mollisols	HM	0	10	Grassland	Particle_Size	16	19	65	35	42.3	27.63	11.0297	Synthesis	31.2703	0.792506			
Amelung	1998	50.17	-107.5	3.2	380	Mollisols	HM	0	10	Grassland	Particle_Size	22	27	51	49	42.3	27.01	7.5469	Synthesis	34.7531	0.8215863			
Amelung	1998	45.35	-95.35	6.1	565	Mollisols	HM	0	10	Grassland	Particle_Size	34	31	35	65	64	49.23	10.9384	Synthesis	51.8844	0.835355			
Amelung	1998	45.35	-104.54	5	431	Mollisols	HM	0	10	Grassland	Particle_Size	21	20	59	41	31.5	22.54	2.3396	Synthesis	28.7696	0.7519114			
Amelung	1998	44.33	-109.41	6.1	300	Mollisols	HM	0	10	Grassland	Particle_Size	17	17	66	34	16.4	9.92	4.2794	Synthesis	11.61557	0.7076646			
Amelung	1998	44.5	-105.51	7.2	400	Andisols	HM	0	10	Grassland	Particle_Size	24	34	42	58	18.6	12.57	3.3882	Synthesis	15.2118	0.8178387			
Amelung	1998	41.22	-104.63	8.9	400	Mollisols	HM	0	10	Grassland	Particle_Size	14	12	74	26	8.1	6.99	1.7353	Synthesis	6.5647	0.7857654			
Amelung	1998	41.43	-105.7	9	400	Mollisols	HM	0	10	Grassland	Particle_Size	12	8	80	20	12.3	7.41	3.7291	Synthesis	8.5709	0.6968211			
Amelung	1998	40.1	-103.13	10.8	375	Mollisols	HM	0	10	Grassland	Particle_Size	18	15	67	33	16.9	9.92	5.2655	Synthesis	11.6345	0.688432			
Amelung	1998	40.26	-99.22	11.6	665	Mollisols	HM	0	10	Grassland	Particle_Size	24	23	53	47	29.9	23.12	9.3886	Synthesis	20.5114	0.868			
Amelung	1998	38.53	-99.2	12.2	573	Mollisols	HM	0	10	Grassland	Particle_Size	28	17	55	45	27.5	18.69	6.965	Synthesis	20.335	0.7462723			
Amelung	1998	40.48	-96.42	10.9	792	Mollisols	HM	0	10	Grassland	Particle_Size	32	28	40	60	40.5	29.39	7.785	Synthesis	32.15	0.807778			
Amelung	1998	39.11	-96.35	12.4	791	Mollisols	HM	0	10	Grassland	Particle_Size	33	27	40	60	30.7	24.24	8.6536	Synthesis	22.0464	0.7181238			
Amelung	1998	37.2	-95.16	14.2	1000	Aridisols	HM	0	10	Grassland	Particle_Size	21	18	36	46	54	26.8	19.84	6.1404	Synthesis	20.6596	0.7078006		
Amelung	1998	32.15	-101.28	17.1	717	Aridisols	HM	0	10	Grassland	Particle_Size	21	7	72	28	11.3	7.51	3.1101	Synthesis	9.4228	0.7525518			
Amelung	1998	30.05	-99.21	19.4	865	Vertisols	HM	0	10	Grassland	Particle_Size	45	32	22	77	59	47.76	5.2553	Synthesis	5.7916	0.8083486			
Amelung	1998	29.42	-96.33	20	1030	Mollisols	HM	0	10	Grassland	Particle_Size	25	14	61	39	23.7	15.12	4.9994	Synthesis	18.7616	0.789097			
Amelung	1998	30.05	-94.06	20.3	1308	Mollisols	HM	0	10	Grassland	Particle_Size	26	20	54	46	24.7	16.06	6.313	Synthesis	18.387	0.744413			
Amelung	1998	27.45	-98.04	22.2	700	Mollisols	HM	0	10	Grassland	Particle_Size	26	7	67	33	16	12.55	6.6429	Synthesis	9.3571	0.5848188			
Amelung	1998	27.57	-98.54	23.4	440	Aridisols	HM	0	10	Grassland	Particle_Size	28	22	50	50	22.5	22.22	2.6826	Synthesis	19.8174	0.8807733			
Anderson	1981	50	-103.5	3	450	Mollisols	HM	0	10	Cropland	Particle_Size	37	34	29	71	17.1	16.04	0.64	Synthesis	16.46	0.962531			
Anderson	1981	50	-103.5	3	450	Mollisols	HM	0	10	Cropland	Particle_Size	27	35	38	62	33.2	30.7	1.26	Synthesis	31.94	0.9620482			
Angers	1993	NA	NA	NA	NA				0	NA	Cropland	Particle_Size	23	50	27	73	27	17.07	9.8275862	Synthesis	17.172416	0.6360153		
Angers	1993	NA	NA	NA	NA				0	NA	Cropland	Particle_Size	23	50	27	73	27.5	17.12	9.099099	Synthesis	17.59009	0.636396		
Angers	1993	NA	NA	NA	NA				0	NA	Cropland	Particle_Size	23	50	27	73	25.8	13.98	10.4232729	Synthesis	15.376271	0.5959795		
Angers	1991	NA	NA	NA	NA				0	15	Cropland	Particle_Size	12	53	35	65	27.1	23.27	6.545	Synthesis	20.555	0.7584871		
Angers	1991	NA	NA	NA	NA				0	15	Cropland	Particle_Size	13	56	31	69	35.2	29.87	8.308	Synthesis	26.892	0.7639773		
Angers	1991	NA	NA	NA	NA				0	15	Cropland	Particle_Size	12	55	33	67	39.5	29.68	7.689	Synthesis	31.811	0.8053418		
Balbina	2008	49	-2	10	640	Oxisols	HM	0	10	Grassland	Particle_Size	18	23	61	39	17.1	9.91	NA	Synthesis	NA	NA			
Balbina	2008	49	2	10	640	Aridisols	HM	0	15	Cropland	Particle_Size	17	22	61	39	8.73	NA	Synthesis	NA	NA				
Balbina	2008	49	2	10	640	Aridisols	HM	0	15	Fallow	Particle_Size	16	58	26	74	4.7	4.22	NA	Synthesis	NA	NA			
Baledent	1998	43	0.5	13	1200	Incelsipts	HM	0	30	Temperate Fc	Particle_Size	21	40	39	61	52.6	47.4	0.90248	Synthesis	50.69752	0.9638812			
Baledent	1998	43	0.5	13	1200	Incelsipts	HM	0	26	Cropland	Particle_Size	19	43	38	62	30.9	25.8	1.6841	Synthesis	29.2159	0.9454984			
Baledent	1998	43	0.5	13	1200	Incelsipts	HM	0	26	Cropland	Particle_Size	18	40	42	58	17.8	14.08	1.22536	Synthesis	16.57464	0.9311596			
Baledent	1998	43	0.5	13	1200	Incelsipts	HM	0	30	Temperate Fc	Particle_Size	21	67	12	88	52.6	48.18	1.11648	Synthesis	51.48352	0.9787411			
Baledent	1998	43	0.5	13	1200	Incelsipts	HM	0	26	Cropland	Particle_Size	19	72	9	91	30.9	26.26	1.22122	Synthesis	29.67878	0.9604783			
Baledent	1998	43	0.5	13	1200	Incelsipts	HM	0	26	Cropland	Particle_Size	18	70	12	88	17.8	14.38	0.92136	Synthesis	16.87864	0.9482382			
Baledent	1998	NA	NA	NA	NA				0	NA	Grassland	Particle_Size	19	60	21	79	58.8	30.7	0.6	Synthesis	58.2	0.987979		
Baledent	1998	NA	NA	NA	NA				0	NA	Grassland	Particle_Size	17	54	29	71	31.9	79.6	2.14	Synthesis	19.42151	0.8193156		
Baledent	1998	NA	NA	NA	NA				0	NA	Cropland	Particle_Size	24	39	37	63	16.9	8.9	1.5	Synthesis	15.7	0.919441		
Baledent	1998	NA	NA	NA	NA				0	NA	Grassland	Particle_Size	19	73	8	92	58.8	30.9	0.4	Synthesis	58.4	0.919173		
Baledent	1998	NA	NA	NA	NA				0	NA	Cropland	Particle_Size	24	64	12	88	16.9	9.3	0.8	Synthesis	16.1	0.9526627		
Bartnes	2008	-4	13.3	25	1100	Oxisols	LM	0	10	Savanna	Particle_Size	NA	NA	14	86	35	23.7	0.9	3.6	0.6	Synthesis	28.8	0.8282571	
Bartnes	2008	-4	13.3	25	1100	Oxisols	LM	0	10	Cropland	Particle_Size	NA	NA	22	78	21.8	16.7	3.6	3.6	0.6	Synthesis	18.2	0.8348624	
Bartnes	2008	-4	13.3	25	1100	Oxisols	LM	0	10	Savanna	Particle_Size	NA	NA	24	76	36.4	27.8	7.7	7.7	0.6	Synthesis	28.7	0.7884615	
Bartnes	2008	-4	13.3	25	1400	Oxisols	LM	0	10	Savanna	Particle_Size	NA	NA	37	63	42.5	22.4	17	17	0.6	Synthesis	25.5	0.787344	
Bartnes	2008	-4	13.3	25	1400	Oxisols	LM	0	10	Cropland	Particle_Size	NA	NA	74	26	5.1	2.9	1.6	1.6	0.6	Synthesis	3.5	0.6862745	
Bartnes	2008	-6.24	2.2	27	1200	Ultisols	LM	0	10	Cropland	Particle_Size	NA	NA	83	19	11.4	5.3	2.3	2.3	0.6	Synthesis	7.8	0.742102	
Bartnes	2008	-6.24	2.2	27	1200	Ultisols	LM	0	10	Fallow	Particle_Size	NA	NA	81	19	8.5	4.1	2.5	2.5	0.6	Synthesis	6.7	0.70524	
Bartnes	2008	-16	-49.3	23	1500	Oxisols	LM	0	10	Parture	Particle_Size	NA	NA	53	47	22.6	15.9	5.3	5.3	0.6	Synthesis	17.3	0.8546867	
Bartnes	2008	-16	-49.3	23	1500	Oxisols	LM	0	10	Cropland	Particle_Size	NA	NA	40	60	20.7	12.6	6.4	6.4	0.6	Synthesis	14.3	0.6908123	
Bartnes	2008	-21.22	-49.03	23	1600	Oxisols	LM	0	10	Cropland	Particle_Size	NA	NA	81	19	7.4	5.2	2.2	2.2	0.6	Synthesis	5.2	0.7027207	
Bartnes	2008	-21.22	-47.35	23	1600	Oxisols	LM	0	10	Cropland	Particle_Size	NA	NA	92	8	7	4.1	2.9	2.9	0.6	Synthesis	4.1	0.5857143	
Bartnes	2008	-23.23	-51.11	21	1600	Oxisols	LM	0	10	Tropical Fc	Particle_Size	NA	NA	23	77	30.8	17.3	7.8	7.8	0.6	Synthesis	23	0.7467532	
Bartnes	2008	-23.23	-51.11	21	1600	Oxisols	LM	0	10	Cropland	Particle_Size	NA	NA	13	87	17.8	12.9	7.2	7.2	0.6	Synthesis	15.1	0.8483146	
Bartnes	2008	-23.23	-51.11	21	1600	Oxisols	LM	0	10	Fallow	Particle_Size	NA	NA	17	83	23	15.7	3.4	3.4	0.6	Synthesis	13.6	0.8521739	
Bonde	1992	-2.7	-47.5	21	1250	Oxisols	LM	0	10	12	12	12</td												

Pacific Northwest National Laboratory

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov