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Amorphous titanium dioxide (a-TiO2) is widely used as a coating material in applications such as electrochemistry and
self-cleaning surfaces where its interface with water has a central role. However, little is known about the structures
of the a-TiO2 surface and aqueous interface, particularly at the microscopic level. In this work, we construct a model
of the a-TiO2 surface via a cut-melt-and-quench procedure based on molecular dynamics simulations with deep neural
network potentials (DPs) trained on density functional theory data. After interfacing the a-TiO2 surface with water, we
investigate the structure and dynamics of the resulting system using a combination of DP-based molecular dynamics
(DPMD) and ab initio molecular dynamics (AIMD) simulations. Both AIMD and DPMD simulations reveal that the
distribution of water on the a-TiO2 surface lacks distinct layers normally found at the aqueous interface of crystalline
TiO2, leading to an ∼ 10 times faster diffusion of water at the interface. Bridging hydroxyls (Ti2-ObH) resulting from
water dissociation decay several times more slowly than terminal hydroxyls (Ti-OwH) due to fast Ti-OwH2 → Ti-OwH
proton exchange events. These results provide a basis for a detailed understanding of the properties of a-TiO2 in
electrochemical environments. Moreover, the procedure of generating the a-TiO2-interface employed here is generally
applicable to studying the aqueous interfaces of amorphous metal oxides.

I. INTRODUCTION

Amorphous metal oxides (AMOs) exhibit properties that
are useful in a plethora of energy and electrochemical
applications1. Compared to their crystalline counterparts,
AMOs often have better mechanical properties, stronger cor-
rosion resistance, and more desirable defect distribution2,3.
For example, when used as anodes in lithium ion batteries,
amorphous Fe2O3 offers small volume expansion, extra active
sites from defects and vacancies, as well as an ideal matrix for
fast ion diffusion1. Similar advantages have been observed
when V2O5, a cathode material for high energy Mg batteries,
is amorphized4. Moreover, non-precious AMOs have been
found to have favorable mechanical properties, thermal sta-
bility, and corrosion resistance that enhance the activity and
durability of fuel cells5,6. Generally speaking, AMOs don’t
have periodicity in their structures and therefore lack long
range order. Furthermore, they tend to have a broad distribu-
tion of coordination numbers. The unique structural features
of AMOs affect the structure and dynamics of water at their
aqueous interfaces, relevant to many applications, in intricate
and often unknown ways.

Among the AMOs, amorphous titanium dioxide (a-TiO2)
is of particular interest here because TiO2 is one of the most
widely used materials in photocatalysis, solar cells, self-
cleaning windows and hydrogen storage7–9. The functional
properties of crystalline TiO2 are largely preserved in a-TiO2,
which makes it a cost-effective coating material for applica-
tions ranging from antibacterial surfaces and surface passiva-
tion layers in biosensors to protective layers of photo-anodes
for water splitting10–12. Despite its important role in such ap-
plications, the structure of the surface and aqueous interface of
a-TiO2 is not well known. The scarcity of detailed experimen-
tal information has been exacerbated by the dependence of the
structure on preparation methods13, hindering the understand-

ing of the behavior of a-TiO2 in aqueous environment.
The relevance of a-TiO2 has also motivated numerous com-

putational studies. The structural properties of bulk a-TiO2
have been investigated using both classical force fields14–18

and ab initio molecular dynamics (AIMD) simulations19–22,
with the amorphous structure generated via the melt-and-
quench method23. While significantly more reliable than clas-
sical force fields, AIMD has a high computational cost, so that
relatively small models prepared by extremely fast quenching
from the melt could be examined. To generate more realis-
tic models of a-TiO2 with first principles accuracy, recently
Calegari Andrade et al. developed deep neural network po-
tentials (DPs) that reproduced the structural properties of bulk
crystalline and disordered TiO2 phases predicted by density
functional theory (DFT) calculations at a much lower com-
putational cost24. Molecular dynamics simulations based on
such DPs (DPMD) could thus explore the role of system size
and quenching rate, and further predict the effect of pressure
on the structure of a-TiO2 in good agreement with experiment.
However, the above studies have all focused on bulk a-TiO2,
whereas little is known about a-TiO2 surfaces and their in-
teraction with an aqueous environment. To our knowledge,
only one computational study considered the surface of a-
TiO2 using classical MD for structural generation and DFT
for characterization25.

In this work, we investigate the structure and dynamics of
interfacial water on a-TiO2 surfaces using a combination of
AIMD and DPMD simulations. Employing DFT data at the
level of the SCAN functional26, we trained the DPs via an ac-
tive learning protocol27 that has been utilized to generate ac-
curate DPs for crystalline TiO2/water interfaces28–30. We con-
structed models of the a-TiO2 surface using a variation of the
multi-step procedure previously employed to generate amor-
phous SiO2 surfaces31, which involves cycles of heating and
quenching the surface region of the sample while keeping the
bulk (central) part fixed, followed by relaxing the outermost
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surface region in order to reduce the strain at the surface-bulk
boundary. Such procedure was accomplished using nanosec-
ond timescale DPMD simulations with potentials that accu-
rately reproduced the structure of all bulk crystalline and dis-
ordered TiO2 phases given by DFT-SCAN24.

In more detail, we here examine two relatively small (162-
and 216-atom) slab models of the a-TiO2 surface in contact
with water, for which short (picosecond) timescale AIMD
simulations are also feasible. Our results show that the distri-
bution of water at the interface of a-TiO2 lacks distinct peaks
and can extend below the outermost TiO2 atoms. Due to the
lack of compact and ordered water layers, water at the surface
of a-TiO2 diffuses at a rate about 10 times faster than that on
crystalline TiO2 surfaces. Bridging hydroxyls (Ti2-ObH, with
the oxygen coordinated to two Ti atoms) resulting from water
dissociation are relatively stable and decay more slowly than
terminal hydroxyls (Ti-OwH; note that on TiO2 there are no
geminal Ti-(OwH)2 species like on silica surfaces32). These
findings provide new insights into the properties and behav-
ior of amorphous TiO2 in aqueous environments, and more
broadly demonstrate a computational procedure for studying
AMO - water interfaces.

II. METHODS AND MODELS

A. Training of Deep Potentials

DPs were trained using a data-driven active learning
protocol27,29. The three core components of active learning
are training a committee of DPs, exploration of configuration
space by DPMD, and appending the training data using high-
error snapshots from the exploration step. The last component
involves performing static DFT calculations on the high-error
snapshots and generating energies and forces; this is called
the labelling step in machine learning language. This proce-
dure iterates until convergence is reached when the standard
deviation in energy and forces among the committee of DPs
falls below a certain threshold. A committee of four DPs was
trained and the threshold for convergence was set to the av-
erage standard deviation in forces being within 0.08 eV/Å for
any 1 ns DPMD simulation.

The first step of the aforementioned protocol was carried
out using the deepMD-kit33. The cutoff radius and smooth
cutoff radius for the chemical descriptor were set to 6 Å and
3 Å respectively. About 20 % of the training data was used
for validation during neural network training. Technical de-
tails on the neural network architecture are published in a pre-
vious work34. DPMD simulations were performed with the
LAMMPS package35.

The training data consists of five types of systems: bulk
water, bulk a-TiO2, a-TiO2 surface in vacuum, a-TiO2 surface
with one adsorbed water in vacuum, and a-TiO2 - water inter-
face. The training data on bulk water was taken from a pre-
vious work30 while the initial training data for the other four
systems were acquired from sufficiently separated snapshots
of AIMD trajectories sampled in the canonical ensemble (see
below). Subsequent training data for the latter four systems

were acquired through the iterative protocol described above.
The final training data are summarized in Table I.

TABLE I. Summary of final training data. In the second column the
number of snapshots used for training (validation) are reported.

System (no. atoms) snapshots Temp. (K)
Bulk water (231) 8207 (2000) 300 - 600
Bulk a-TiO2 (162) 390 (100) 330
a-TiO2 surface (162) 793 (208) 330, 600
a- TiO2 - 1 H2O (165) 629 (154) 330, 500
a- TiO2 - H2O (531) 2060 (554) 330 - 500

B. Ab initio Calculations

All ab initio calculations were performed with the CP2K
package36. Static density functional theory (DFT) calcula-
tions were conducted using the SCAN functional26. Ana-
lytic Goedecker-Teter-Hunter (GTH) pseudopotentials37 and
a double ζ -with-polarization (DZVP) basis set were used,
together with a cutoff of 1200 Ry for the plane wave ex-
pansion of the density. Only the Γ point was considered
for k-sampling. Structural optimizations were carried out
through the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm, where forces on all atoms were minimized to within
4.5×10−4 Hartree/Bohr.

The main purpose of AIMD simulations was to generate
initial representative configurations to be labeled by the en-
ergy and forces obtained from static DFT-SCAN calculations.
The Born-Oppenheimer AIMD simulations were thus per-
formed using the PBE functional38, which is computationally
faster than SCAN and performs quite well for crystalline ru-
tile and anatase TiO2

19. Grimme’s D3 van der Waals disper-
sion (vdW) corrections39 were applied to aqueous interfaces.
The AIMD equations of motion were integrated using the Ver-
let algorithm40. Hydrogen atoms were replaced by deuterium
and a time step of 0.5 fs was used. For equilibrium sampling, a
canonical ensemble at 330 K was used for aqueous interfaces
and at 300 K for other systems. A Nosé-Hoover thermostat
with four chains41,42 was employed.

C. Models

To construct models of the a-TiO2 surface, we started from
(atomic coordinates and velocities of) a 1296-atom bulk a-
TiO2 sample generated in a recent DPMD study24, and utilized
a "cut-melt-and-quench" procedure that allowed us to gener-
ate a large number of bulk models of different sizes rather
easily. In detail, the 1296-atom unit cell was first "cut" to
form smaller bulk a-TiO2 cubic unit cells of 162- and 216-
atoms (two sizes used in previous computational studies of
a-TiO2

20,24), which are amenable to relatively fast DFT cal-
culations during an active learning procedure. To allow re-
moval/relaxation of the broken bonds at the unit cell bound-
aries, the cut models were heated to 2250 K, cooled to 300
K at a rate of 1 K/ps, and further equilibrated for 1 ns in an
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isothermal-isobaric ensemble using DPMD with the DPs gen-
erated in Ref.24. This procedure resulted in 20 different bulk
a-TiO2 models, which were characterized structurally (radial
distribution functions, coordination numbers, etc.). Two of
these models, one of 162 and the other of 216 atoms, were
then chosen as starting points for the surface construction
based on their agreement with the bulk a-TiO2 structure re-
ported in previous studies.

Starting from such small bulk a-TiO2 models, the a-TiO2
surface was generated based on the scheme in Ref.31. We first
added a vacuum region of about 18 Å along the z-direction
of the bulk a-TiO2 unit cell, which resulted in the formation
of periodically repeated slabs separated by a vacuum region.
Next, the two sides of each slab were equilibrated at 300 K for
500 ps while keeping the central (∼ 1/5) part fixed. The sur-
face layers were annealed to 1000 K and subsequently cooled
to 300 K at a rate of 1 K/ps, followed by equilibration at 300
K for 500 ps, while keeping the central part fixed throughout
the process. We used a quench rate of 1 K/ps because this
was found to yield an a-TiO2 structure nearly identical to that
obtained with a slower rate of 0.1 K/ps in ref.24. To alleviate
the strain built up at the boundary of mobile-immobile atoms,
the frozen portion at the center of the slab was increased (to ∼
1/3) and the two surfaces were further equilibrated at 300 K
for 500 ps. (Note that increasing the frozen portion of the slab
decreases the strain in the surface region because it creates the
boundary of mobile-immobile atoms in a region that had pre-
viously been equilibrated31.) The above steps were conducted
in a canonical ensemble using DPMD with the DPs generated
in Ref.24. Finally, the two surfaces were optimized geometri-
cally using DFT-SCAN.

Two water/a-TiO2 interface models were constructed by
confining 123 and 122 water molecules respectively at the
experimental density between the periodically repeated 162-
atom and 216-atom slabs; these will be called 162-atom
and 216-atom a-TiO2/water interface models in the follow-
ing. Due to the irregular profile of the a-TiO2 surface, wa-
ter molecules could diffuse below the uppermost TiO2 atoms
(see Fig. 2b). AIMD in a isothermal-isobaric ensemble was
then carried out to allow equilibration of water along the z-
direction. The resulting simulation boxes had dimensions of
13.6 × 13.6 × 29.77 Å3 and 15.6 × 15.6 × 26.49 Å3 for the
162- and 216-atom models, respectively. Finally, AIMD in the
canonical ensemble at 330 K was carried out in order to gen-
erate initial representative configurations of the a-TiO2/water
interface for training (and validating) the DPs.

D. Characterization of a-TiO2 Surfaces and Interfaces

Structures were analyzed using cutoff distances of 2.75 Å
and 4.1 Å respectively for Ti-O and Ti-Ti bonds. For surface
structures, only the top and bottom 1/3 of each slab were con-
sidered because the middle 1/3 was frozen during surface con-
struction and thus retained bulk-like properties. The surface
roughness was evaluated as the average absolute deviation of
the z-coordinates of surface atoms, i.e. Ra = 1

N ∑i |zi − z̄|.
Here, N is the number of outermost (Ti or O) atoms, zi is the

z-coordinate of a surface (Ti or O) atom, and z̄ is the corre-
sponding average z-coordinate.

The survival probability of a given species was calculated
from the expression

P(∆t) =
tmax

∑
t0=0

∑
N
i=1 Ii(t0, t0 +∆t)

N(t0)
(1)

where I(t0, t0 +∆t) is the indicator function that is one only
when a species of interest stays intact for the entire period
between t0 and t0 +∆t. N is the number of central atoms in-
volved in the bonding of the species of interest, N(t0) is the
number of species of interest at t0, and tmax is taken to be half
of each trajectory’s length. Often the computed survival prob-
ability displays a fast decay followed by a slower decaying
tail. This behavior was fitted with the sum of two exponen-
tials, P(t) = a ·exp(−t/τ1)+c ·exp(−t/τ2), with characteris-
tic times τ1 and τ2.

Diffusion coefficients were obtained by first computing the
mean squared displacement of water oxygen atoms as a func-
tion of time, followed by linear regression to obtain the slopes
in the long time limit using the Einstein relation:

D =
1

2d
lim
t→∞

⟨[r(t0 + t)− r(t0)]2⟩
t

(2)

where D is the diffusion coefficient, d is the dimensionality of
the system, and ⟨·⟩ denotes the average over all Ow atoms and
over all initial time t0.

III. RESULTS AND DISCUSSION

A. Validation of the Deep Potentials

The convergence of a committee of DPs in the active learn-
ing protocol implies self-consistency but not necessarily accu-
racy. It is therefore crucial to benchmark certain key quantities
computed using the trained DPs against those reported in the
literature. One 1 ns DPMD trajectory was carried out for bulk
water and bulk a-TiO2 at 330 K and 300 K respectively. Using
an arbitrary DP out of the committee of four is sufficient for
benchmarking purpose because the estimation of energy and
forces is consistent within the committee, therefore the stan-
dard deviation in the benchmarked quantities is negligible.

Liquid Water. Table II reports the positions of the peaks
in the radial distribution functions (RDFs) for bulk water, ob-
tained from a 1 ns DPMD simulation at 330 K. The agreement
with DFT-SCAN results (between parentheses) from Ref.43

is excellent. The computed diffusion coefficient of 0.181 ±
0.002 Å2/ps is also very close to the experimental value of
0.187 Å2/ps44.
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a) b)  
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FIG. 1. Ti-Ti (a), Ti-O (b), O-O (c) RDF, and Ti-O-Ti angle distribu-
tion (d) of bulk a-TiO2 (162-atom unit cell model) obtained from a 1
ns DPMD at 300 K. RDFs computed from the experimental structure
factor of sputtered a-TiO2

46 are plotted in red circles.

TABLE II. Location of the first two peaks of the radial distribution
functions (RDFs) for bulk water given by DPMD. Corresponding lit-
erature values computed using DFT-SCAN43 are given in brackets.
All values are in Å.

O-H H-H O-O
rmax
1 0.983 (0.978) 1.563 (1.56) 2.742 (2.75)

rmax
2 1.793 (1.79) 2.303 (2.31) 4.428 (4.47)

Bulk a-TiO2. The structures of the 162- and 216-atom mod-
els of bulk a-TiO2 generated with DPMD were characterized
in terms of RDFs (Fig. 1a - c), distribution of Ti-O-Ti an-
gles (Fig. 1d), coordination numbers of Ti- and O atoms (Ta-
ble III), and polyhedra connectivity. The computed density
was 3.64 g/cm3, which falls in the range of 3.62 - 4.09 g/cm3

obtained experimentally45. The trained DPs also reproduce
the experimentally measured pair correlation and the mean
coordination numbers of sputtered a-TiO2

46. The split-peak
feature in the Ti-Ti RDF (Fig. 1a) corresponds to edge- and
vertex-sharing (Ti-centered) polyhedra21. This medium range
order is also observed in the distribution of Ti-O-Ti angles
(Fig. 1d) where the sharper peak around 100◦ is attributed to
edge-sharing polyhedra whereas the smaller peak around 130◦

comes from vertex-sharing polyhedra. The computed angle
distribution is consistent with previous findings20,24. Another
characteristic metric, the fractions of Ti-centered polyhedra
of various connectivity, are found to be 0.71, 0.26 and 0.03
for vertex- (V), edge- (E) and face-sharing polyhedra, re-
spectively. The resulting V/E ratio is 2.7, to be compared
to the values of 2.120 and 2.624 reported in previous stud-
ies. Altogether, the above benchmarking of structural proper-
ties indicates that the cut-melt-and-quench procedure driven
by DPMD produces reasonably good bulk a-TiO2 structures,
validating the trained DPs.

TABLE III. Fractions of different coordination numbers for Ti and O
in bulk a-TiO2, from 1 ns DPMD simulations at 300 K. Reported val-
ues refer to the 162-atom model, while those in parentheses refer to
the 1296-atom bulk a-TiO2 model from Ref.24. Experimentally mea-
sured mean coordination numbers for sputtered a-TiO2 (with 10%
uncertainty)46 are given in square brackets.

Ti Fraction O Fraction
4 0.04 (0.03) 2 0.61 (0.26)
5 0.44 (0.30) 3 0.36 (0.64)
6 0.52 (0.64) 4 0.03 (0.10)
mean 5.48 [5.4] mean 2.75 [2.7]

TABLE IV. Fractions of different coordination numbers for Ti and O
atoms at the a-TiO2 surface from AIMD and DPMD (in parentheses)
simulations of the 162-atom slab model at 300 K. For this analysis,
only the top and bottom 1/3 of the slab were considered (see Section
II C). The statistics were calculated using the last 5 ps of the 10 ps
AIMD trajectory and the last 500 ps of the four independent 1 ns
DPMD trajectories. The average coordination numbers for DPMD
are committee averages.

Ti AIMD (DPMD) O AIMD (DPMD)
4 0.26 (0.32 ± 0.04) 2 0.66 (0.62 ± 0.01)
5 0.62 (0.60 ± 0.03) 3 0.26 (0.36 ± 0.01)
6 0.12 (0.08 ± 0.02) 4 0.08 (0.02 ± 0.01)
mean 4.86 (4.76) mean 2.42 (2.41)

B. Surface and Aqueous Interface of a-TiO2

1. AIMD Simulations and further validation of the Deep
Potentials

Surface of a-TiO2. To characterize the structure of the a-
TiO2 surface, we performed a 10 ps AIMD (also used for
DP training) and 1 ns DPMD (four independent trajectories
with the different DPs of the committee) simulations at 300
K of the 162-atom a-TiO2 slab model described in Section
II C. Table IV reports the distribution of coordination num-
bers of Ti and O atoms at the a-TiO2 surface obtained from
these simulations. At the surface, both Ti and O have a higher
fraction of smaller coordination numbers than the bulk struc-
ture, as can be seen by comparing Table IV with Table III for
bulk a-TiO2. Furthermore, the fraction of vertex-sharing (Ti-
centered) polyhedra decreases whereas that of edge-sharing
polyhedra increases (Table V), resulting in a slightly lower
V/E ratio. We can see small differences between the distri-
butions of coordination numbers given by AIMD and DPMD,
which are likely related to both the different duration and (to
a smaller extent) the different underlying density functionals
(PBE vs SCAN) of the two simulations. However, both the
average Ti and O coordinations and the polyhdedra connectiv-
ity obtained from the DPMD and AIMD simulations are very
similar. The surface energy of the a-TiO2 slab was estimated
to be 1.16 J/m2 relative to bulk a-TiO2.

In comparison to the surfaces of crystalline TiO2, the sur-
faces of a-TiO2 appear irregularly corrugated. We thus eval-
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TABLE V. Fractions of vertex-, edge- and face-sharing Ti-centered
polyhedra at the a-TiO2 surface (162-atom slab model) computed us-
ing AIMD and DPMD. The values reported for DPMD are commit-
tee averages. See the caption of Table IV for details of the AIMD
and DPMD simulations.

Vertex Edge Face V/E
AIMD 0.62 0.35 0.03 1.8
DPMD 0.64 0.34 0.02 1.9

TABLE VI. Roughness (in Å) for the 162- and 216-atom models of
the a-TiO2 surface. For comparison, the surface roughness was also
evaluated for the crystalline anatase TiO2 (001) and (101) surfaces
and for rutile TiO2(110). All surfaces were relaxed using DFT-PBE
prior to analysis.

System Ra,Ti Ra,O
a-TiO2 (162-atom) 0.695 1.267
a-TiO2 (216-atom) 0.847 1.052
anatase(001) 0.009 0.505
anatase(101) 0.380 0.263
rutile(110) 0.280 0.560

uated the surface roughness in terms of the deviation from
the average of the outermost atoms along the z-direction.
As shown in Table VI, our DPMD-generated a-TiO2 mod-
els exhibit a substantially higher degree of surface roughness
in comparison to crystalline surfaces such as anatase(001),
anatase(101) and rutile(110).

a-TiO2/water interface. Preliminary insight into the struc-
ture of our a-TiO2/water interface models was obtained from
the last 22 ps of a 27 ps AIMD trajectory that started from the
final configuration of a previous simulation in the isothermal-
isobaric ensemble (see Section II C). For comparison, four
independent 27 ps DPMD simulations of the a-TiO2/water in-
terface were also performed starting from the same configu-
ration as the AIMD simulation. The water density profiles of
the 162-atom a-TiO2/water interface model obtained from the
two types of simulations are presented in Fig. 2. Unlike at
a crystalline TiO2 interface, water at the interface of a-TiO2
lacks distinct peaks. Moreover, the distribution of water is
asymmetrical because the two sides of the slab are different,
and extends slightly below the outermost TiO2 atoms. The
agreement between the density profiles predicted by the short
time scale DPMD and AIMD simulations is quite good, fur-
ther supporting the reliability of our DPs.

Analysis of the dynamics of interfacial water on a-TiO2
shows that the water diffusion coefficient is about 10 times
larger than that of water at crystalline TiO2 surfaces such as
rutile (110)30 and anatase(101)47 (Table VII). This result can
be attributed to the irregular surface morphology of a-TiO2.
Due to the relatively high surface roughness, many intra- and
inter-surface hydrogen bonds are indeed disrupted, leading to
the lack of compact and ordered water layers at the a-TiO2
surface described above.

a)

b)

FIG. 2. (a) A snapshot and (b) the water density profile of the 162-
atom a-TiO2/water interface. Water density was calculated using 22
ps of AIMD (dashed blue line) and DPMD trajectories (orange line).
Shaded orange areas represent the standard deviation in correspond-
ing values computed from a committee of four DPs. Pink and gray
areas in the density profile represent the location of the first water
layer and of the slab respectively. Due to the lack of distinct peaks
in the water density profile, the location of the first water layer is ar-
bitrarily chosen to be close enough to the surface. The atoms in the
snaphot are color coded: Ti (gray), Os (red), and Ow (blue).

2. Equilibrium Sampling via DPMD

To investigate the equilibrium properties of the a-
TiO2/water interface, four independent 10 ns DPMD trajec-
tories were performed, the last 5 ns of which were used for
analysis. Results for the structural and dynamical properties
of the 162-atom a-TiO2/water model are presented in Figs. 3
and 4. The water density profile (Fig. 3a) shows a better de-
fined bulk-like region at the center than that obtained from the
27 ps trajectories in Fig. 2. In comparison to the bulk-like wa-
ter region, the water density near the a-TiO2 surface exhibits a
significantly higher standard deviation among the DPs, as il-
lustrated by the shaded orange region in Fig. 3a. This is differ-
ent from previous DPMD studies of aqueous crystalline TiO2
interfaces28,30 where the interfacial water density showed a
relatively small standard deviation among the DPs for sim-
ulations on the nanosecond scale. This difference suggests
an intrinsic higher degree of fluctuation in the water density
near the a-TiO2 surface in comparison to the crystalline TiO2
surfaces. The relatively low peaks of the water density also
suggest that a-TiO2 is less hydrophilic than the crystalline sur-
faces, a result consistent with contact angle measurements for
water on a-TiO2 nanotubes48. Nonetheless, water dissociates
to a significant extent on the a-TiO2 surface. As shown by
the radial distribution functions in Fig. 3b and 3c, there is
indeed a strong peak around 0.97 Å in the Os-Hw RDF indica-
tive of water dissociation and a split peak around 1.86 Å and
2.15 Å in the Ow-Tis RDF corresponding to dissociative and
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a)

b) c)

FIG. 3. (a) Water density profile, (b) Ow - Ti RDF, and (c) Os - Hw
RDF at the 162-atom a-TiO2 - water interface from the last 22 ps
of AIMD (dashed blue line) and 5 ns of DPMD trajectories (orange
line). Shaded orange areas represent the standard deviation of four
independent DPMD trajectories. Pink and gray areas in the density
profile represent the location of the first water layer and the slab re-
spectively.

TABLE VII. Diffusion coefficients for the first water layer at the
aqueous interface of 162-atom a-TiO2 sampled using AIMD (the last
22 ps of the trajectory) and DPMD (the last 5 ns of the four indepen-
dent trajectories). The values reported for DPMD are the committee
averages.

D∥ (Å2/ps) D⊥ (Å2/ps)
AIMD 0.021 0.016
DPMD 0.034 0.024

molecular adsorption of water respectively. Remarkably, the
same features, although less pronounced, are also present in
the RDFS obtained from the short AIMD trajectory.

The time evolution of the fraction of dissociated water is
plotted in Fig. 4. We find that H2O-OH proton exchange be-
tween adsorbed water and hydroxyl at adjacent sites occurs
frequently, with an average water dissociation fraction of ∼
15%. Moreover, the survival probabilities of bridging and
terminal hydroxyls show that the terminal hydroxyls (OwH)
decay at a faster rate in comparison to their bridging counter-
parts (ObH). The survival probability for the bridging hydrox-
yls exhibits a piece-wise linear behavior. In contrast, terminal
hydroxyls display a fast decay followed by a slower one, with
characteristic times of 16 and 150 ps, both shorter than the
lifetime of terminal OD species on anatase (101) reported in
Ref.28.

The computed diffusion coefficients of interfacial water ob-
tained from DPMD are similar to those given by AIMD (Ta-
ble VII), with diffusion perpendicular to the interface slightly
slower than that parallel to the interface.

FIG. 4. Top: Fraction of dissociated water molecules as a function
of time (top) at the aqueous interface of 162-atom a-TiO2 sampled
using the last 5 ns of DPMD trajectories with a resolution of 10 ps.
Bottom: Survival probability of bridging (ObH, blue circles) and ter-
minal (OwH, red circles) hydroxyls at the same interface, calculated
using a time resolution of 100 fs. The gray dashed line indicate the
(1/e) level. Quantities shown are the committee averages.

3. General vs. model-specific properties

To explore the sensitivity of the results for the a-TiO2/water
interface to the specific model used for the simulations, we
also conducted one 37 ps AIMD simulation and four indepen-
dent 10 ns DPMD simulations of the 216-atom a-TiO2/water
interface model (see the Appendix). The aqueous interfaces of
the 162-atom and 216-atom a-TiO2 models share many simi-
larities even though the latter has a higher proportion of under-
coordinated surface atoms than the former. At both interfaces,
the distribution of water is asymmetrical and extends below
the uppermost surface atoms (see Figs. 3 and 5). The equilib-
rium water dissociation ratio averages to 19.3 % for the 216-
atom a-TiO2 - water interface. This is higher than the 14.9
% fraction found at the 162-atom interface, consistent with
the higher proportion of under-coordinated atoms on the 216-
atom surface.

Similarly, proton exchange is observed more frequently at
the 216- than at the 162-atom a-TiO2 - water interface (com-
pare top panels of Fig. 6 and Fig. 4). This results in a faster
decay of both bridging and terminal hydroxyls on the former
interface (compare bottom panels of Fig. 6 and Fig. 4). We
calculated the survival probability of the two types of hydrox-
yls using a 100 fs sampling frequency. We observe a double-
exponential decay behavior for both terminal and bridging hy-
droxyls, with characteristic times of 13 and 121 ps for the
terminal vs. 24 and 568 ps for the bridging hydroxyls. The
lifetime of the terminal hydroxyls on the 216-atom interface
is indeed slightly shorter than that on the 162-atom interface.
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IV. CONCLUSIONS

We trained a committee of deep potentials capable of de-
scribing the potential energy surface of amorphous TiO2/water
interface with the accuracy of DFT at the level of SCAN func-
tional via a data driven active learning protocol. Through
benchmarking key quantities of bulk water and bulk a-TiO2,
we validated the accuracy of the converged deep potentials.
Using both AIMD and DPMD simulations, we then investi-
gated the structure and dynamics of the interfacial water on
two different models of a-TiO2 surface, one of which is not in
the training data, illustrating the transferability of the DPs.

The two interface models are qualitatively similar, despite
their different equilibrium water dissociation ratios (14.9 %
and 19.3 %) that result from the difference in the proportion
of under-coordinated surface atoms. We find that the distribu-
tion of water lacks symmetrical and distinct layers normally
found at the aqueous interface of crystalline TiO2. As a re-
sult of that, water diffuses about 10 times faster on the surface
of amorphous TiO2 than on crystalline TiO2. Bridging hy-
droxyls resulted from water dissociation decay significantly
more slowly than terminal hydroxyls due to frequent proton
exchanges between H2O and terminal OH species adsorbed at
adjacent Ti sites. These results for the structure of the a-TiO2 -
water interface will be useful for a better understanding of var-
ious phenomena involving this interface. Moreover, we expect
that the computational procedure of constructing a-TiO2/water
interfaces employed here will be broadly applicable to study-
ing other AMO - water interfaces as well.
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Appendix A: Aqueous Interface of 216-atom a-TiO2

We performed four independent 1 ns DPMD simulations
for the 216-atom a-TiO2 surface in the canonical ensemble at

a)

b) c)

FIG. 5. (a) Water density profile, (b) Ow - Ti RDF, and (c) Os -
Hw RDF at the aqueous interface of 216-atom a-TiO2 sampled using
the last 32 ps of AIMD trajectory (dashed blue line) and the last 5
ns of DPMD trajectories (orange line). Shaded orange area repre-
sents the standard deviation in corresponding values computed from
a committee of four DPs. Pink and gray area in the density profile
represents the location of the first water layer and of the slab respec-
tively.

TABLE VIII. Fractions of different coordination numbers for Ti and
O at the 216-atom a-TiO2 surface sampled using DPMD. The mean
coordination numbers reported are committee averages.

Ti Fraction O Fraction
4 0.43 ± 0.05 2 0.72 ± 0.03
5 0.48 ± 0.10 3 0.26 ± 0.04
6 0.09 ± 0.05 4 0.02 ± 0.01
mean 4.66 mean 2.30

300 K, and analyzed the last 500 ps. The coordination num-
bers of the surface atoms are reported in Table VIII. The com-
mittee averages of polyhedra connectivity are 0.77, 0.23, and
0.00 for vertex-, edge-, and face-sharing polyhedra respec-
tively, giving rise to a V/E ratio of 3.42.

Results for the aqueous interface are summarized in Table
IX (diffusion coefficients) and Figure 6 (fraction of dissoci-
ated water vs simulation time and lifetimes of bridging and
terminal hydroxyls).

TABLE IX. Diffusion coefficients parallel and perpendicular to the
a-TiO2 surface for the first water layer at the 216-atom a-TiO2-water
interface sampled using AIMD (the last 32 ps of the trajectory) and
DPMD (the last 5 ns of the trajectory). The values reported for
DPMD are committee averages.

D∥ (Å2/ps) D⊥ (Å2/ps)
AIMD 0.024 0.022
DPMD 0.027 0.012
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FIG. 6. Top: Fraction of dissociated water molecules as a function
of time (top) at the aqueous interface of 216-atom a-TiO2 sampled
using the last 5 ns of DPMD trajectories with a resolution of 10 ps.
The time averaged value is 19.3 %. Bottom: Survival probability
of bridging hydroxyls (ObH, blue circles) and terminal hydroxyls
(OwH, red circles) at the same interface with a resolution of 100 fs.
The gray dashed line indicate the 1/e level. Quantities shown are
committee averages.
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