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Outline

• Introduction	
– Mori-Zwanzig	(MZ)	projection-operator	formalism	for	building	reduced-order/coarse-grained	(CG)	dynamical	models

• Regression	analysis
– Regression	is	a	projection
– A	principled	way	of	extracting	MZ	operators	for	regression-based	projection	operators

• Numerical	experiments
– Lorenz	’63	model:	Progressive	improvements	from	the	linear	Mori’s	projector,	over	nonlinear	and	spline	regression,	to	neural	
networks

– Kuramoto–Sivashinsky	model
Ø Important	difference	between	MZ	memory	and	Delay	Embedding

• Summary

5/12/2023,	LA-UR-22-24323Yen	Ting	Lin	(CCS-3,	LANL)



Introduction	to	Mori–Zwanzig	(MZ)	formalism

Context
Non-equilibrium	statistical	physics,	for	coarse	graining/model	reduction/reduced-order	modeling
Problem	
• A	dynamical	system	with	a	many	degrees	of	freedom	𝐷
• One	only	cares	about	the	evolution	of	a	small	set	(𝑀 ≪ 𝐷)	of	resolved/coarse-grained	variables
(observables,	descriptors,	dynamic	variables:	functions	of	the	system’s	state)

• Also	for	partially-observed	dynamical	system
Example
• Models	describing	biomolecules	with	many	atoms:	the	dynamics	of	the	“rough”	molecular	conformation
• Models	describing	materials:	meso/macroscopic	features,	e.g.	dislocation	density
• Complex	fluid-dynamical	models:	the	dynamics	of	the	mesoscopic	features:	e.g.,	large	eddies/coherent	structures
Key	challenge	
		How	to	evolve	𝑀	variables	under	the	influence	of	unresolved	degrees	of	freedom?	
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Time
Resolved/CG	variables

Un	variables
… ????



Projection

Projection	operator
			
Suppose	the	system’s	state	𝝓 ∈ ℝ!	is	fully	characterized	by	

• Resolved/CG	observables	𝐠": ℝ! → ℝ#	and	
• Unresolved	observables	𝐠$: ℝ! → ℝ!%#

Given	an	state	𝝓 ∈ ℝ! ,	the	CG	and	unresolved	observations	are	𝐠" 𝝓 	and	𝐠$ 𝝓 .

The	projection	operator	𝒫	maps	any	function	𝑓	of	the	resolved	and	under-resolved	observations	to	another	function	𝒫𝑓	
that	depends	only	on	the	resolved	observation:

𝑓→
𝒫
𝒫𝑓 ,

𝑓 𝐠" 𝝓 , 𝐠$ 𝝓 ≈ 𝒫𝑓 𝐠" 𝝓 	 ∀𝝓 ∈ ℝ!

This	allows	us	to	write	a	closed	reduced-order	dynamics	in	terms	of	the	resolved	observables	only.	

We	will	denote	𝐠 = 𝐠" 	when	appropriate.	
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Projection	operators
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Existing	projection	operators	include

• Mori’s	[Mori65,	Lin21b]	linear	functional	projection	operator:			 𝒫𝑓 𝐠" ≔ 𝑓, 𝐠" ' ⋅ 𝐠" , 𝐠"( '
%) ⋅ 𝐠"

with	inner	product	space	 𝑓, 𝑔 ' ≔ ∫* 𝑓 𝜙 𝑔 𝜙 	𝜌 𝜙 	𝑑𝜙,	with	a	density	𝜌	induced	by	the	dynamics

• Finite-rank	projection:	orthonormal	components	of	𝐠" 	under	the	induced	density	𝜌,		 𝒫𝑓 𝐠" ≔ 𝑓, 𝐠" ' ⋅ 𝐠"

• Zwanzig’s	[Zwanzig73]	conditional	expectation	projection:		

𝒫𝑓 𝒉 = 𝔼' 𝑓 𝐠" 𝝓 , 𝐠$ 𝝓 |𝐠" 𝝓 = 𝒉 = >
𝐠!"# 𝒉

𝑓 𝐠" 𝜙 , 𝐠$ 𝜙 	𝜌 𝜙 	𝑑𝜙

• Truncations	[Durasaimi,Stinis19,Stinis21]:	sending	𝐠$ 𝝓 → 𝟎

• Wiener	projection	[Lin21a]:	delay	embedding	but	with	infinite	delay	to	augment	state	space;	no	MZ	memory	kernel

Mori’s	linear	𝒫
Computationally	OK
but	with	unsatisfactory
predictions	[Lin21b]

Zwanzig’s	nonlinear	𝒫
Optimal	yet	computationally	infeasible

Question:	can	we	gradationally	fill	the	gap?	



Mori-Zwanzig	(MZ)	formalism
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We	consider	an	autonomous	and	deterministic	dynamical	system:

𝝓̇ = 𝑹 𝝓 , 𝝓 𝑡 = 0 = 𝝓-,
where	𝑹:ℝ! → ℝ!	is	the	vector	field.	

Suppose	we	always	observe	at	discrete	times	𝑛Δ;	the	discrete-time	formulation	of	the	system	is	
𝝓./0 = 𝑭 𝝓. , 	𝑭 ⋅ : discrete	mapping

The	discrete-time	Mori–Zwanzig	formalism	prescribes	the	evolution	of	a	vector	observable	𝐠:ℝ! → ℝ#	[Darve05,	Lin21a]	
as	the	Generalized	Langevin	Equation:
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Resolved/CG

Unresolved
= Markov

Present Memory=1

?

+

+

Memory=2

Orthogonal

+

𝐠1/) ≜ 𝒦0
1𝐠 =R

ℓ3-

1

𝛀 ℓ ∘ 𝐠1%ℓ +𝑾1,

𝛀 ℓ ≔ 𝒫𝒦0 1 − 𝒫 𝒦0
1	

𝑾1 ≔ 1 − 𝒫 𝒦0
1/)𝐠 ⇒ 𝒫𝑾1 = 0.

where	𝒦0	is	the	finite-time	(Δ)	Koopman	transfer	operator.	

𝛀(𝟎)

𝛀(𝟏)

𝛀(𝟐)

𝑾𝟐



Generalized	Fluctuation-Dissipation	Relation
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𝐠1/) ≜ 𝒦0
1𝐠 = ∑ℓ3-1 𝛀 ℓ ∘ 𝐠1%ℓ +𝑾1	 (Generalized	Langevin	Equation)	

𝛀 ℓ ≔ 𝒫𝒦0 1 − 𝒫 𝒦0
1	 (ℓ = 0:	Markov,	ℓ > 0: 	memory	kernel)	

𝑾1 ≔𝑾1 ≔ 1 − 𝒫 𝒦0
1/)𝐠	 (𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙	𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠, 𝒫𝑾1 = 0)

Importantly,	the	operators	are	related	by	the	Generalized	Fluctuation-Dissipation	Relation:

𝛀 𝒏 = 𝒫 𝑾1%) ∘ 𝑭 , 𝑛 ≥ 1
which	relates	the	𝑛th	memory	kernel	to	the	 𝑛 − 1 th	orthogonal	dynamics.	

It	is	challenging	to	compute	𝛀 𝒏 	and	𝑾1	analytically.	

Ø		Research	question:	Can	we	learn	the	operators	𝛀 1 	and	observables	𝐖1	from	snapshots	(time	series)	of	𝐠1 𝜙- 	out	
of	exact	simulations	of	the	full	system,	with	sufficiently	many	samples	of	𝜙-?



𝑓𝜽: ℝ# → ℝ	a	family	of	functions	parametrized	by	𝜽	to	approximate	𝑓 𝐠" 𝝓 ; , 𝐠$ 𝝓 ;

Cost/Risk/loss/Negative	log-likelihood	𝐶 𝜽; observed	data = 𝐠" 𝝓 ; , 𝑓 𝐠" 𝝓 ; , 𝐠$ 𝝓 ;
;

Best-fit	parameter:	𝜽∗ = argmin= 	𝐶 𝜽; observed	data

In	dynamics,	𝐟	is	just	resolved	part	of	the	dynamics	in	the	future!

Regression	as	a	projection	operator
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We	propose	to	use	statistical	regression	as	a	projection	operator

𝑓
𝒫3>?@>?AABCD

𝑓𝜽∗

Van	der	Pol	oscillator



Learning	the	memory	kernels	and	orthogonal	dynamics
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Generalized	Langevin	Equation	(GLE):	𝑾1 ≡ 	𝐠1/) − ∑ℓ3-1 𝛀 ℓ 𝐠1%ℓ
	 Key	idea:	𝑾1	is	the	residual	of	the	regression	model,	which	can	be	computed

Generalized	Fluctuation-Dissipation	relation	(GFD):	𝛀 𝒏 = 𝒫 𝑾1%) ∘ 𝑭

𝛀 - ≔ 𝒫𝒦0	is	just	a	regression	of	𝐠)	on	𝐠-:	Many	talks	are	about	this	Markov	operator!

We	can	learn	𝛀 1/) 	and	𝑾1	if	𝛀 - ,…	𝛀 1 	and	𝐠1/)	are	given.	

Operationally	an	intuitive	iterative	procedure	(statistical	boosting)	 :

Mori’s	linear	𝒫
(Linear	regression)

Zwanzig’s	nonlinear	𝒫
(Conditional	expectation)Polynomial	regression																Spline	regression																Neural	network



Clarification
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Our	proposition:

1. [Crucial	decision!]	Define	a	set	of	resolved/CG	variables
2. [Crucial	decision!]	Define	a	projection	operator:	a	model	and	a	regression-based	parametrization	scheme
3. Use	Generalized	Fluctuation	Dissipation	to	recursively	extract	the	memory	kernels	and	the	orthogonal	dynamics

(The	kernels	and	the	orthogonal	dynamics	depends	on	the	choices	of	CG	variables	and	projection	operators)
a. Solve	for	the	the	best-fit	function
b. Compute	the	residual
c. Assign	the	residual	as	the	dependent	variable	and	an	earlier	snapshots	as	the	independent	variables
d. Repeat

What	our	proposition	is	not:

1. Motivated	by	Mori-Zwanzig’s	memory-dependent	dynamics
2. Postulate	a	memory-dependent	dynamics	(e.g.,	delay-embedded	dynamics;	Recurrent	Neural	Network	with	Long	

Short-Term	Memory;	time-embedded	Transformer)
3. Use	the	data	to	fit	a	memory	kernel	without	enforcing	or	checking	Generalized	Fluctuation	Dissipation	
Ø 	Logical	fallacy:	MZ	is	memory	dependent,	but	not	all	memory-dependent	dynamics	is	MZ.	

History-dependent MZ
(GFD)



Clarification:	comparison	between	MZ	and	delay	embedding
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MZ	is	more	less	expressive	due	to	its	structure:

𝒈 𝝓(𝑛 + 1) = 𝒇 𝝓 𝑛 ; 𝜽- + 𝒇 𝝓 𝑛 − 1 ; 𝜽) + 𝒇 𝝓 𝑛 ; 𝜽E +⋯

Delay	embedding	is	more	expressive	(may	be	even	more	data-hungry):

𝒈 𝝓(𝑛 + 1) = 𝒉 𝝓 𝑛 ,𝝓 𝑛 − 1 ,𝝓 𝑛 − 2 … ; 𝜽

They	are	not	exclusive:	possible	to	apply	MZ	to	DE	with	finite-embedding:

𝒈 𝝓(𝑛 + 1) = 𝒉 𝝓 𝑛 ,𝝓 𝑛 − 1 ,𝝓 𝑛 − 2 ; 𝜽-
+𝒉 𝝓 𝑛 − 1 ,𝝓 𝑛 − 2 ,𝝓 𝑛 − 3 ; 𝜽)
+𝒉 𝝓 𝑛 − 2 ,𝝓 𝑛 − 3 ,𝝓 𝑛 − 4 ; 𝜽E
+𝒉 𝝓 𝑛 − 3 ,𝝓 𝑛 − 4 ,𝝓 𝑛 − 5 ; 𝜽F
+⋯

𝑓:	Same	regression	family	of	functions	parametrized	by	𝜃



Making	predictions
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How	well	do	these	“trained”	model	(truncated	𝐻)	predict?

In	prediction,	we	truncated	the	memory	by	the	threshold	and		provided	a	finite	history	for	the	GLE	to	propagate:

𝐠) ←R
ℓ3-

G

𝛀 ℓ ∘ 𝐠%ℓ

Assuming	negligible,	𝑾G ≈ 0.	We	iteratively	used	the	predicted	observables	again	assuming	𝑾G/) = 0,	e.g.,	

𝐠E ←R
ℓ3-

H

𝛀 ℓ ∘ 𝐠)%ℓ

A	technical/nuanced	detail:		Take	two	polynomial	features	for	example,	[𝜙, 𝜙E]	:
• Linear	projection:	𝜙 𝑡 = 1 = 𝜅))	𝜙 𝑡 = 0 + 𝜅)E	𝜙E 𝑡 = 0 	and	𝜙E 𝑡 = 1 = 𝜅E)	𝜙 𝑡 = 0 + 𝜅EE	𝜙E 𝑡 = 0
• Nonlinear	projection:	𝜙 𝑡 = 1 = 𝜅))	𝜙 𝑡 = 0 + 𝜅)E	𝜙E 𝑡 = 0 	and	𝜙E 𝑡 = 1 = 𝜅))	𝜙 𝑡 = 0 + 𝜅)E	𝜙E 𝑡 = 0 E	

Linear	projection	scheme	is	commonly	used	in	approximate	Koopman,	the	resulting	DS	is	linear.	
Nonlinear	projection	scheme	is	commonly	used	in	modeling;	the	resulting	DS	can	be	nonlinear.	



Numerical	experiment	1:	Lorenz	`63
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̇𝜙! = 10 𝜙" − 𝜙!
̇𝜙" = 𝜙! 28 − 𝜙# − 𝜙"

̇𝜙# = 𝜙!𝜙" −
8
3𝜙#

Only	𝜙! 𝑛Δ 	is	observed,	Δ = 0.01

𝑁 = 10$	data	points	along	a	long	trajectory	

Regression	models:

• Mori	(1):	linear	regression	on	𝜙)-,	𝜙))	(DMD)
• Mori	(5):	polynomial	regression	on	𝜙)-…J	(EDMD)
• Nonlinear:	5th	order	polynomial	regression	on	𝜙)

Ø Identical	to	Mori	(5)	only	in	the	first	step	of	
prediction

• Spline	regression
• Fully-connected	Feedforward	Neural	Network

Validation	error,	1st	prediction Memory	contribution



Numerical	experiment	1:	Lorenz	`63
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Numerical	experiment	1:	Lorenz	`63

5/12/2023,	LA-UR-22-24323Yen	Ting	Lin	(CCS-3,	LANL)

(DMD)

(EDMD)



Numerical	experiment	1:	Lorenz	`63
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Numerical	experiment	1:	Lorenz	`63

5/12/2023,	LA-UR-22-24323Yen	Ting	Lin	(CCS-3,	LANL)



Numerical	experiment	2:	1D	Kuramoto–Sivashinsky	Equation
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𝜕.𝑢 𝑥, 𝑡 + 𝜕K 𝜆 𝑥 𝜕K𝑢 𝑥, 𝑡 + 𝜕KKKK𝑢 𝑥, 𝑡 +
1
2 𝜕K𝑢 𝑥, 𝑡 E

𝑥 ∈ 0, 16𝜋 , 	 periodic	boundary	condition.	

Ground	truth:	spatially	discretized	as	128	points
Integration	step	𝛿 = 0.001,	observe	every	1,000	steps	(Δ = 1)
Integrator:	Exponential	Time-Derivative	4th	order	Runge–Kutta	
Reduced-order	observables:	observation	every	4	points
Total	number	of	observations:	10J

Data-augmentation	by	translational	symmetry	+	PBC	

Baseline:	Reduced-order	simulation	(as	if	a	32-point	system)

Regression	models:
• Mori+Delay	Embedding	(DEm)	=	Hankel	DMD	[Arbabi17]
• FCNN
• CNN
• CNN+DEm



Numerical	experiment	2:	1D	Kuramoto–Sivashinsky	Equation
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Prediction

Error≔Prediction−	GT



Summary

• Theoretical	contribution:	Regression	is	a	projection	operator	for	learning	Mori–Zwanzig	formalism
– Generalize	Mori’s	projection	operator,	which	is	already	a	higher-order	generalization	of	approximate	Koopman	[Lin21b]
– Consistent	to	nonlinear	closure	schemes,	and	also	other	learning	frameworks	such	as	SINDy	[Brunton16]	and	Koopman	+	NN	[Li17,	
Yeung	17,	Lusch18]

– Bridging	the	gap	between	Mori’s	[Mori65]	and	Zwanzig’s	[Zwanzig73]	projection	operators
– Makes	connection	to	mechanistic	models	that	are	parametrized	by	data

• Computational	Contribution:	A	principled	way	of	extracting	MZ	operators
– …	that	are	applicable	to	regression	models	with	adjustable	complexities:

Ø Linear	regression	on	nonlinear	observables
ØNonlinear	regression	on	linear	observables
ØNon-parametric	(spline	regression)
ØNeural	architectures

– The	reduced-order/coarse-grained	model	can	again	be	a	nonlinear	dynamical	system	(with	MZ	memory)
– Finite	memory	truncation	and	zero-orthogonal-dynamics	seemed	to	work	relatively	well

• Future	directions
– Applications:	isotropic	turbulence	[Tian21],	hypersonic	boundary	layer	transition	[Woodward22]	and	dislocation	density	evolution
– “Generalized	Mori-Zwanzig”:	non-uniform	time	grid,	non-uniform	projection	operator
– Beyond	zero-orthogonal-dynamics	model;	modeling	by	correlated	noise
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