

LA-UR-23-3174

Approved for public release; distribution is unlimited.

Title: Regression-based projection for learning Mori-Zwanzig operators

Author(s): Lin, Yen Ting

Intended for: SIAM Conference on Applications of Dynamical Systems,
2023-05-14/2023-05-18 (Portland, Washington, United States)

Issued: 2023-10-16

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Regression-based projection for learning Mori-Zwanzig operators

SIAM Conference on Applications of Dynamical Systems

5/12, 2023

Yen Ting Lin¹, Yifeng Tian¹, Danny Perez², & Daniel Livescu³

¹Information Sciences Group (CCS-3)

²Physics and Chemistry of Materials (T-1)

³Computational Physics and Methods Group (CCS-2)

Los Alamos National Laboratory (LANL)

Based on the work arXiv: 2205.05135 (V3)

Outline

- **Introduction**
 - Mori-Zwanzig (MZ) projection-operator formalism for building reduced-order/coarse-grained (CG) dynamical models
- **Regression analysis**
 - Regression is a projection
 - A principled way of extracting MZ operators for regression-based projection operators
- **Numerical experiments**
 - **Lorenz '63 model**: Progressive improvements from the linear Mori's projector, over nonlinear and spline regression, to neural networks
 - **Kuramoto-Sivashinsky model**
 - Important difference between MZ memory and Delay Embedding
- **Summary**

Introduction to Mori-Zwanzig (MZ) formalism

Context

Non-equilibrium statistical physics, for coarse graining/model reduction/reduced-order modeling

Problem

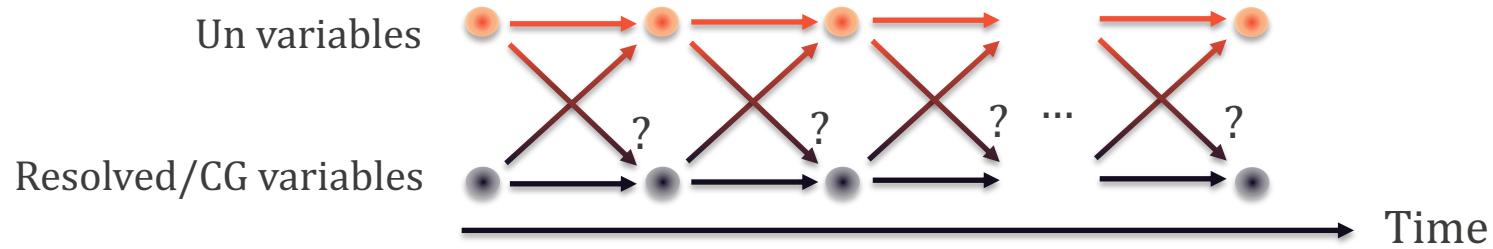
- A dynamical system with a many degrees of freedom D
- One only cares about the evolution of a small set ($M \ll D$) of *resolved/coarse-grained* variables (observables, descriptors, dynamic variables: functions of the system's state)
- Also for partially-observed dynamical system

Example

- Models describing biomolecules with many atoms: the dynamics of the “rough” molecular conformation
- Models describing materials: meso/macrosopic features, e.g. dislocation density
- Complex fluid-dynamical models: the dynamics of the mesoscopic features: e.g., large eddies/coherent structures

Key challenge

How to evolve M variables under the influence of unresolved degrees of freedom?



Projection

Projection operator

Suppose the system's state $\phi \in \mathbb{R}^D$ is fully characterized by

- Resolved/CG observables $\mathbf{g}_r: \mathbb{R}^D \rightarrow \mathbb{R}^M$ and
- Unresolved observables $\mathbf{g}_u: \mathbb{R}^D \rightarrow \mathbb{R}^{D-M}$

Given an state $\phi \in \mathbb{R}^D$, the CG and unresolved observations are $\mathbf{g}_r(\phi)$ and $\mathbf{g}_u(\phi)$.

The projection operator \mathcal{P} maps any function f of the resolved *and* under-resolved observations to another function $\mathcal{P}f$ that depends only on the resolved observation:

$$f \xrightarrow{\mathcal{P}} (\mathcal{P}f),$$
$$f(\mathbf{g}_r(\phi), \mathbf{g}_u(\phi)) \approx (\mathcal{P}f)(\mathbf{g}_r(\phi)) \quad \forall \phi \in \mathbb{R}^D$$

This allows us to write a *closed reduced-order dynamics* in terms of the resolved observables only.

We will denote $\mathbf{g} = \mathbf{g}_r$ when appropriate.

Projection operators

Existing projection operators include

- Mori's [Mori65, Lin21b] linear functional projection operator: $(\mathcal{P}f)(\mathbf{g}_r) := \langle f, \mathbf{g}_r \rangle_\rho \cdot \langle \mathbf{g}_r, \mathbf{g}_r^T \rangle_\rho^{-1} \cdot \mathbf{g}_r$ with inner product space $\langle f, g \rangle_\rho := \int_{\Omega} f(\phi)g(\phi) \rho(\phi) d\phi$, with a density ρ induced by the dynamics
- Finite-rank projection: orthonormal components of \mathbf{g}_r under the induced density ρ , $(\mathcal{P}f)(\mathbf{g}_r) := \langle f, \mathbf{g}_r \rangle_\rho \cdot \mathbf{g}_r$
- Zwanzig's [Zwanzig73] conditional expectation projection:

$$(\mathcal{P}f)(\mathbf{h}) = \mathbb{E}_\rho[f(\mathbf{g}_r(\boldsymbol{\phi}), \mathbf{g}_u(\boldsymbol{\phi})) | \mathbf{g}_r(\boldsymbol{\phi}) = \mathbf{h}] = \int_{\mathbf{g}_r^{-1}(\mathbf{h})} f(\mathbf{g}_r(\boldsymbol{\phi}), \mathbf{g}_u(\boldsymbol{\phi})) \rho(\boldsymbol{\phi}) d\boldsymbol{\phi}$$

- Truncations [Durasaimi, Stinis19, Stinis21]: sending $\mathbf{g}_u(\boldsymbol{\phi}) \rightarrow \mathbf{0}$
- Wiener projection [Lin21a]: delay embedding but with infinite delay to augment state space; no MZ memory kernel

Mori's linear \mathcal{P}
Computationally OK
but with unsatisfactory
predictions [Lin21b]

Zwanzig's nonlinear \mathcal{P}
Optimal yet computationally infeasible

Question: can we gradually fill the gap?

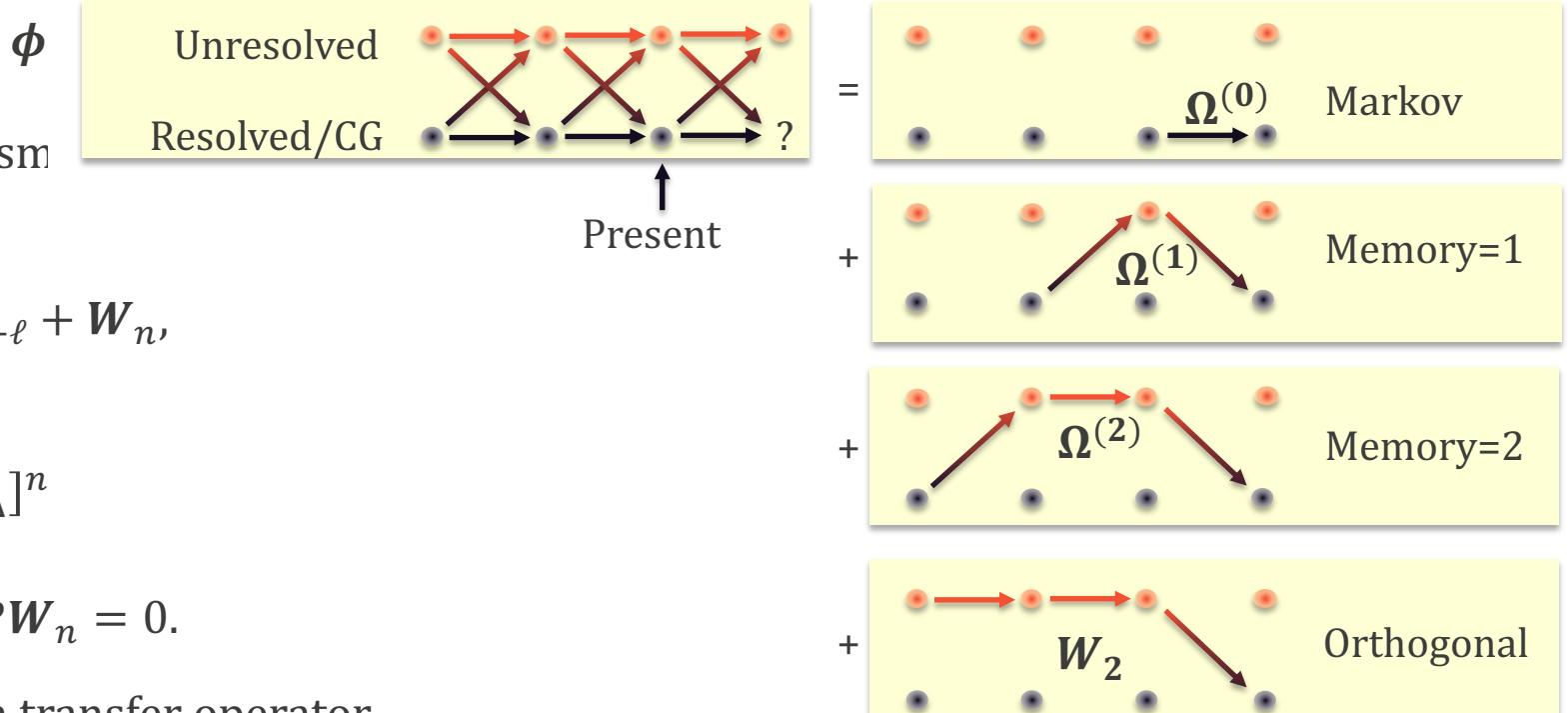
Mori-Zwanzig (MZ) formalism

We consider an autonomous and deterministic dynamical system:

$$\dot{\phi} = R(\phi), \quad \phi(t=0) = \phi_0,$$

where $R: \mathbb{R}^D \rightarrow \mathbb{R}^D$ is the vector field.

Suppose we always observe at discrete time



$$\mathbf{g}_{n+1} \triangleq \mathcal{K}_\Delta^n \mathbf{g} = \sum_{\ell=0}^n \Omega^{(\ell)} \circ \mathbf{g}_{n-\ell} + \mathbf{W}_n,$$

$$\Omega^{(\ell)} := \mathcal{P} \mathcal{K}_\Delta [(1 - \mathcal{P}) \mathcal{K}_\Delta]^n$$

$$\mathbf{W}_n := [(1 - \mathcal{P}) \mathcal{K}_\Delta]^{n+1} \mathbf{g} \Rightarrow \mathcal{P} \mathbf{W}_n = 0.$$

where \mathcal{K}_Δ is the finite-time (Δ) Koopman transfer operator.

Generalized Fluctuation-Dissipation Relation

$$\mathbf{g}_{n+1} \triangleq \mathcal{K}_\Delta^n \mathbf{g} = \sum_{\ell=0}^n \boldsymbol{\Omega}^{(\ell)} \circ \mathbf{g}_{n-\ell} + \mathbf{W}_n \quad (\text{Generalized Langevin Equation})$$

$$\boldsymbol{\Omega}^{(\ell)} := \mathcal{P} \mathcal{K}_\Delta [(1 - \mathcal{P}) \mathcal{K}_\Delta]^n \quad (\ell = 0: \text{Markov}, \ell > 0: \text{memory kernel})$$

$$\mathbf{W}_n := \mathbf{W}_n := [(1 - \mathcal{P}) \mathcal{K}_\Delta]^{n+1} \mathbf{g} \quad (\text{orthogonal dynamics}, \mathcal{P} \mathbf{W}_n = 0)$$

Importantly, the operators are related by the **Generalized Fluctuation-Dissipation Relation**:

$$\boldsymbol{\Omega}^{(n)} = \mathcal{P}(\mathbf{W}_{n-1} \circ \mathbf{F}), \quad n \geq 1$$

which relates the n th *memory kernel* to the $(n - 1)$ th orthogonal dynamics.

It is challenging to compute $\boldsymbol{\Omega}^{(n)}$ and \mathbf{W}_n analytically.

➤ **Research question:** Can we learn the *operators* $\boldsymbol{\Omega}^{(n)}$ and *observables* \mathbf{W}_n from snapshots (time series) of $\mathbf{g}_n(\phi_0)$ out of exact simulations of the full system, with sufficiently many samples of ϕ_0 ?

Regression as a projection operator

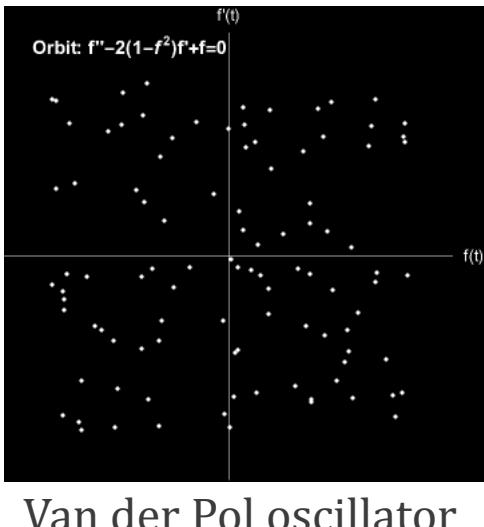
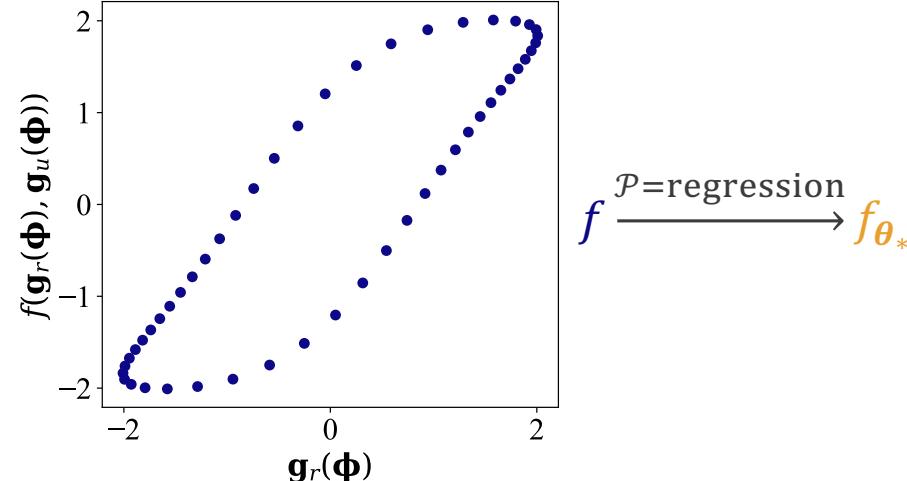
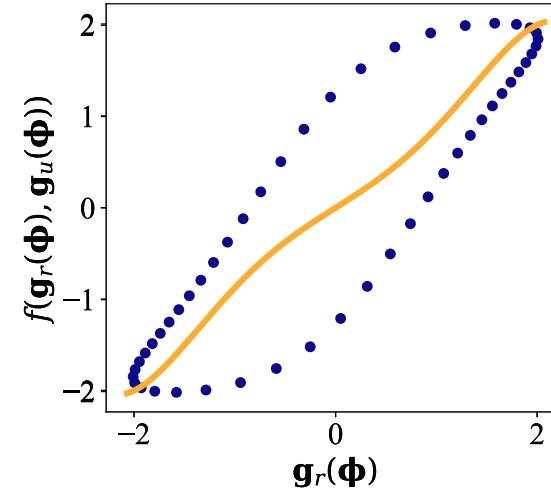
We propose to use statistical regression as a projection operator

$f_{\theta}: \mathbb{R}^M \rightarrow \mathbb{R}$ a family of functions parametrized by θ to approximate $f \left(\mathbf{g}_r(\boldsymbol{\phi}^{[i]}), \mathbf{g}_u(\boldsymbol{\phi}^{[i]}) \right)$

Cost/Risk/loss/Negative log-likelihood $C \left(\theta; \text{observed data} = \left\{ \mathbf{g}_r(\boldsymbol{\phi}^{[i]}), f \left(\mathbf{g}_r(\boldsymbol{\phi}^{[i]}), \mathbf{g}_u(\boldsymbol{\phi}^{[i]}) \right) \right\}_i \right)$

Best-fit parameter: $\theta_* = \operatorname{argmin}_{\theta} C(\theta; \text{observed data})$

In dynamics, f is just resolved part of the dynamics in the future!



Learning the memory kernels and orthogonal dynamics

Generalized Langevin Equation (GLE): $W_n \equiv \mathbf{g}_{n+1} - \sum_{\ell=0}^n \Omega^{(\ell)}(\mathbf{g}_{n-\ell})$

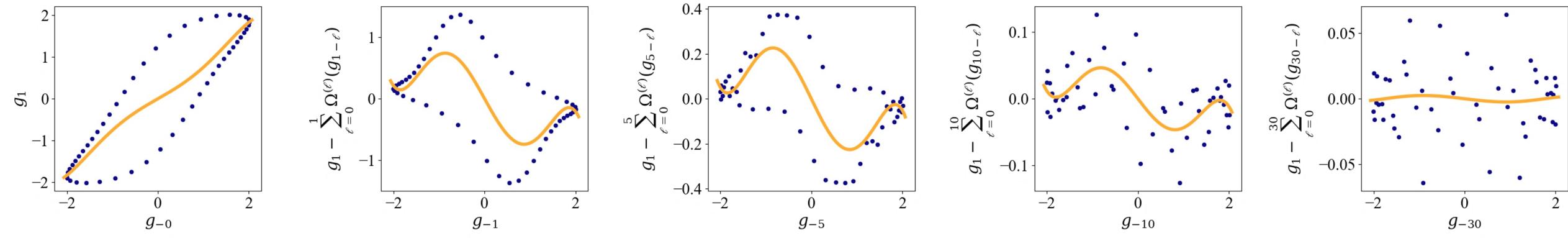
Key idea: W_n is the *residual* of the regression model, which can be computed

Generalized Fluctuation-Dissipation relation (GFD): $\Omega^{(n)} = \mathcal{P}(W_{n-1} \circ F)$

$\Omega^{(0)} := \mathcal{P}\mathcal{K}_\Delta$ is just a regression of \mathbf{g}_1 on \mathbf{g}_0 : Many talks are about this Markov operator!

We can learn $\Omega^{(n+1)}$ and W_n if $\Omega^{(0)}, \dots, \Omega^{(n)}$ and \mathbf{g}_{n+1} are given.

Operationally an intuitive iterative procedure (statistical boosting) :



Mori's linear \mathcal{P}
(Linear regression)

Polynomial regression

Spline regression

Neural network

Zwanzig's nonlinear \mathcal{P}
(Conditional expectation)

Clarification

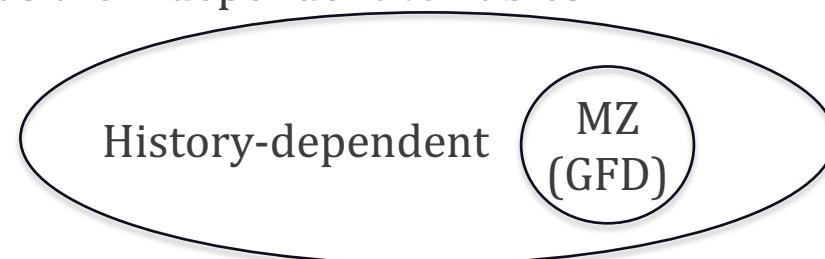
Our proposition:

1. [Crucial decision!] Define a set of resolved/CG variables
2. [Crucial decision!] Define a projection operator: a model and a regression-based parametrization scheme
3. Use ***Generalized Fluctuation Dissipation*** to recursively ***extract*** the memory kernels and the orthogonal dynamics
(The kernels and the orthogonal dynamics depends on the choices of CG variables and projection operators)
 - a. Solve for the the best-fit function
 - b. Compute the residual
 - c. Assign the residual as the dependent variable and an earlier snapshots as the independent variables
 - d. Repeat

What our proposition is *not*:

1. Motivated by Mori-Zwanzig's memory-dependent dynamics
2. Postulate a memory-dependent dynamics (e.g., delay-embedded dynamics; Recurrent Neural Network with Long Short-Term Memory; time-embedded Transformer)
3. Use the data to fit a memory kernel without enforcing or checking ***Generalized Fluctuation Dissipation***

➤ Logical fallacy: MZ is memory dependent, but not all memory-dependent dynamics is MZ.



Clarification: comparison between MZ and delay embedding

MZ is more less expressive due to its structure:

f : Same regression family of functions parametrized by θ

$$g(\phi(n+1)) = \mathbf{f}(\phi(n); \theta_0) + \mathbf{f}(\phi(n-1); \theta_1) + \mathbf{f}(\phi(n); \theta_2) + \dots$$

Delay embedding is more expressive (may be even more data-hungry):

$$g(\phi(n+1)) = h(\phi(n), \phi(n-1), \phi(n-2) \dots; \theta)$$

They are not exclusive: possible to apply MZ to DE with finite-embedding:

$$\begin{aligned} g(\phi(n+1)) = & h(\phi(n), \phi(n-1), \phi(n-2); \theta_0) \\ & + h(\phi(n-1), \phi(n-2), \phi(n-3); \theta_1) \\ & + h(\phi(n-2), \phi(n-3), \phi(n-4); \theta_2) \\ & + h(\phi(n-3), \phi(n-4), \phi(n-5); \theta_3) \\ & + \dots \end{aligned}$$

Making predictions

How well do these “trained” model (truncated H) predict?

In prediction, we truncated the memory by the threshold and provided a finite history for the GLE to propagate:

$$\mathbf{g}_1 \leftarrow \sum_{\ell=0}^H \boldsymbol{\Omega}^{(\ell)} \circ \mathbf{g}_{-\ell}$$

Assuming negligible, $\mathbf{W}_H \approx 0$. We iteratively used the predicted observables again assuming $\mathbf{W}_{H+1} = 0$, e.g.,

$$\mathbf{g}_2 \leftarrow \sum_{\ell=0}^L \boldsymbol{\Omega}^{(\ell)} \circ \mathbf{g}_{1-\ell}$$

A technical/nuanced detail: Take two polynomial features for example, $[\phi, \phi^2]$:

- Linear projection: $\phi(t = 1) = \kappa_{11} \phi(t = 0) + \kappa_{12} \phi^2(t = 0)$ and $\phi^2(t = 1) = \kappa_{21} \phi(t = 0) + \kappa_{22} \phi^2(t = 0)$
- Nonlinear projection: $\phi(t = 1) = \kappa_{11} \phi(t = 0) + \kappa_{12} \phi^2(t = 0)$ and $\phi^2(t = 1) = [\kappa_{11} \phi(t = 0) + \kappa_{12} \phi^2(t = 0)]^2$

Linear projection scheme is commonly used in approximate Koopman, the resulting DS is linear.

Nonlinear projection scheme is commonly used in modeling; the resulting DS can be nonlinear.

Numerical experiment 1: Lorenz '63

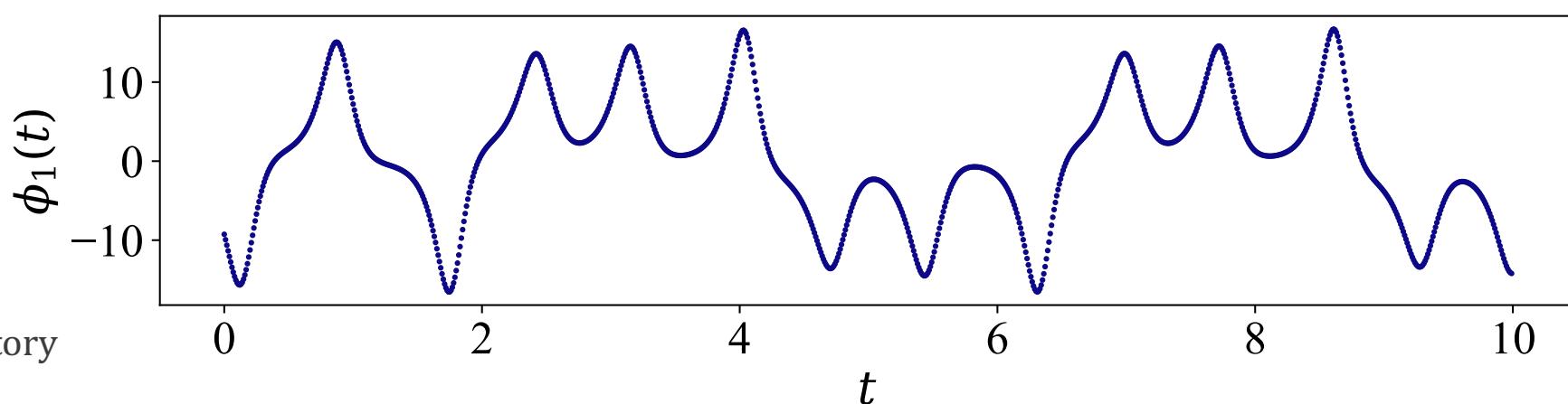
$$\dot{\phi}_1 = 10(\phi_2 - \phi_1)$$

$$\dot{\phi}_2 = \phi_1(28 - \phi_3) - \phi_2$$

$$\dot{\phi}_3 = \phi_1\phi_2 - \frac{8}{3}\phi_3$$

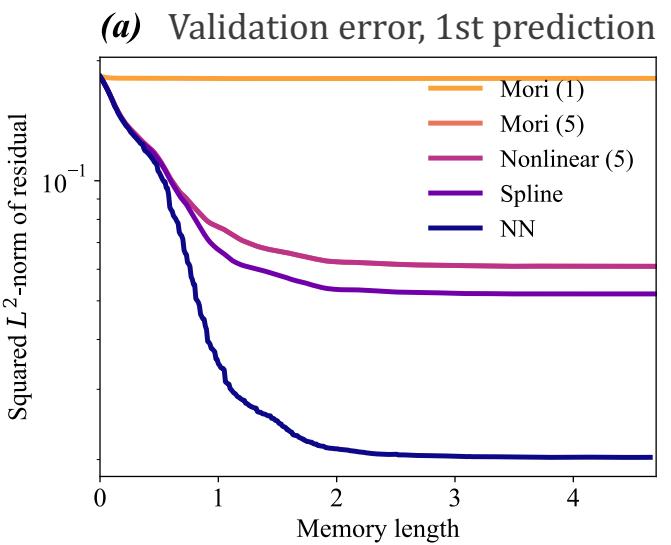
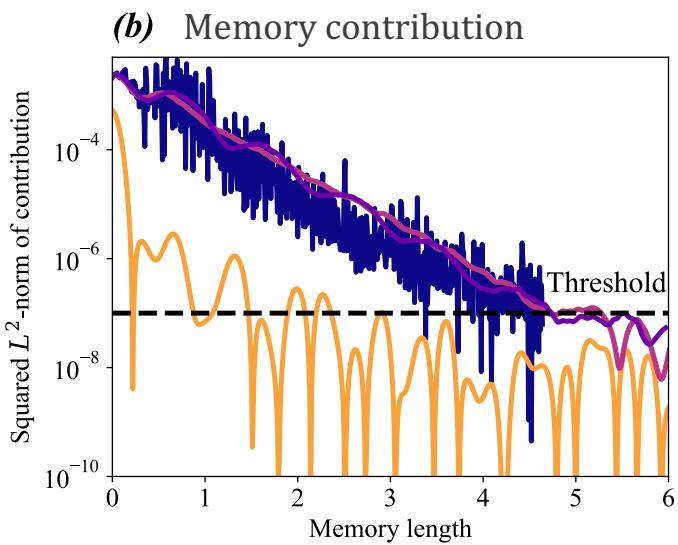
Only $\phi_1(n\Delta)$ is observed, $\Delta = 0.01$

$N = 10^6$ data points along a long trajectory

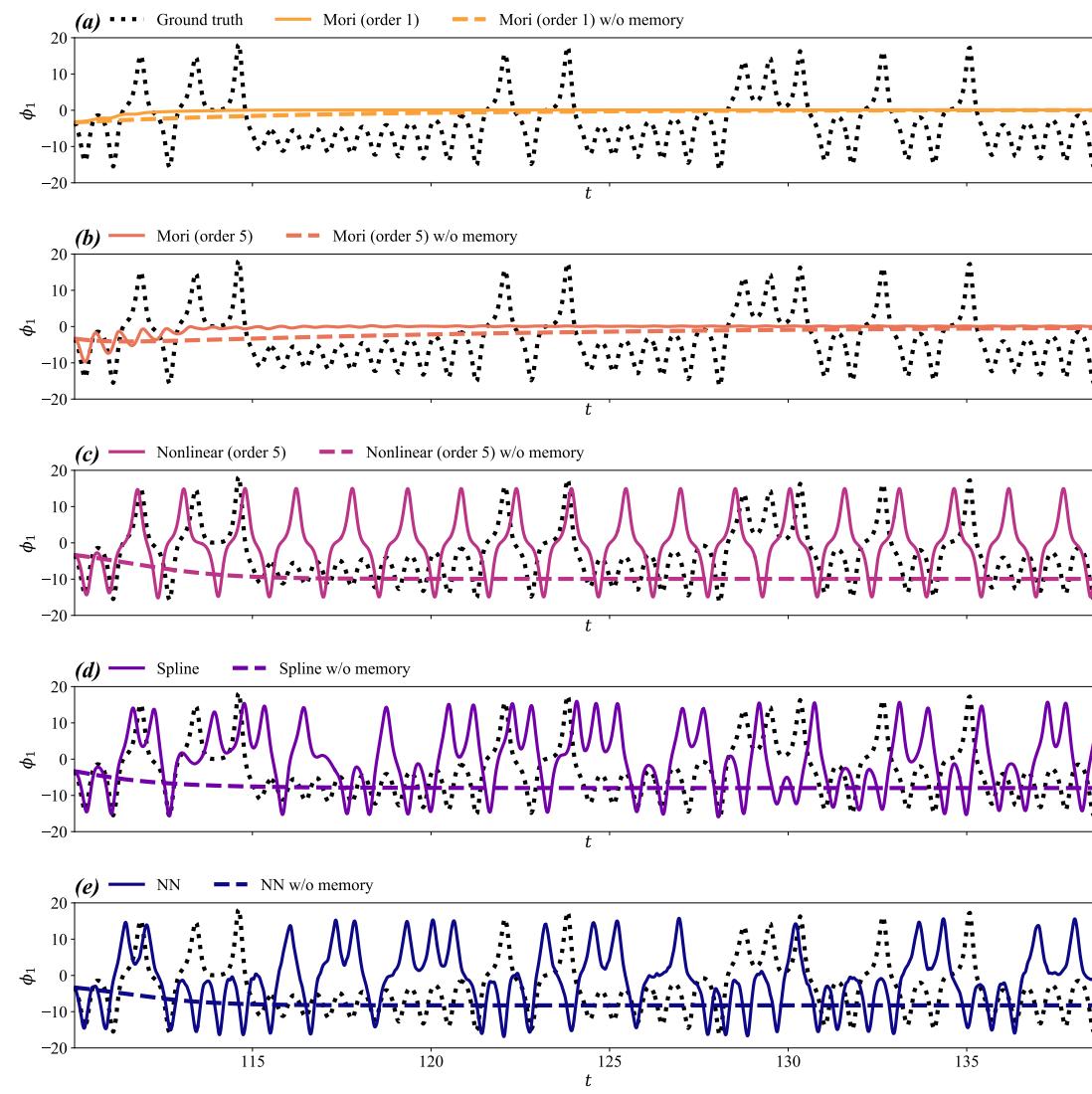


Regression models:

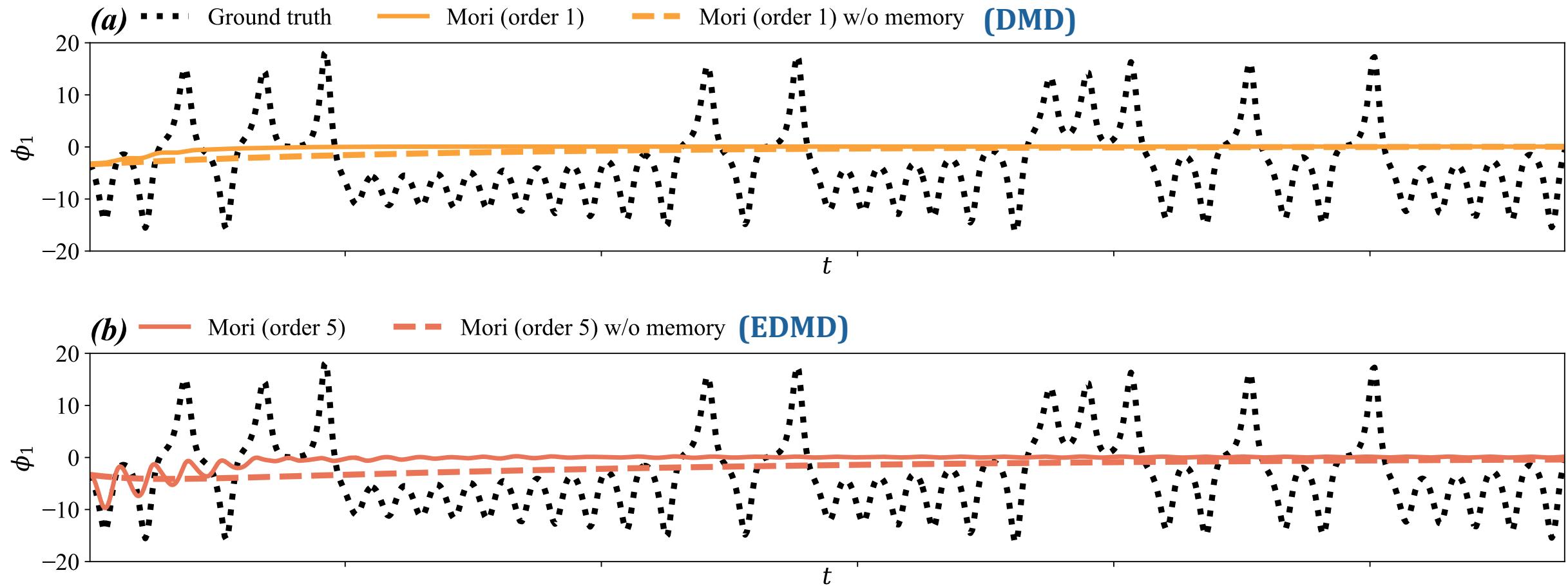
- Mori (1): linear regression on ϕ_1^0, ϕ_1^1 (DMD)
- Mori (5): polynomial regression on $\phi_1^0 \dots \phi_1^5$ (EDMD)
- Nonlinear: 5th order polynomial regression on ϕ_1
 - Identical to Mori (5) only in the first step of prediction
- Spline regression
- Fully-connected Feedforward Neural Network



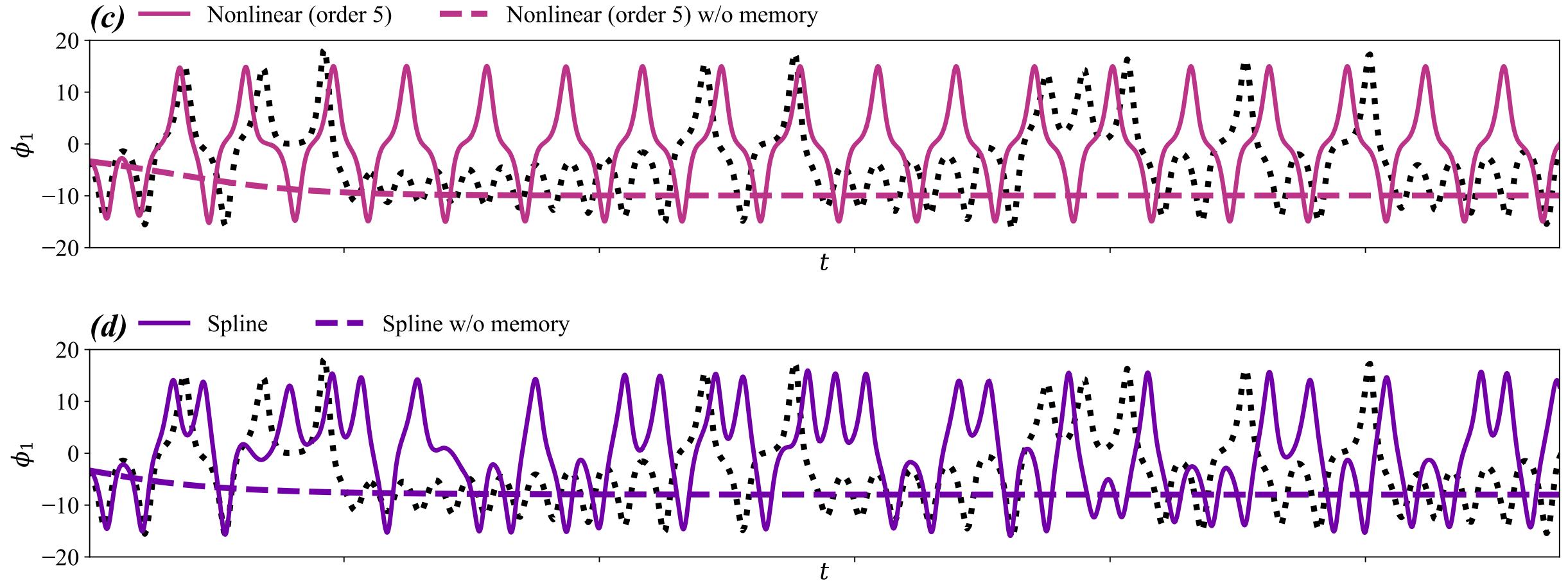
Numerical experiment 1: Lorenz '63



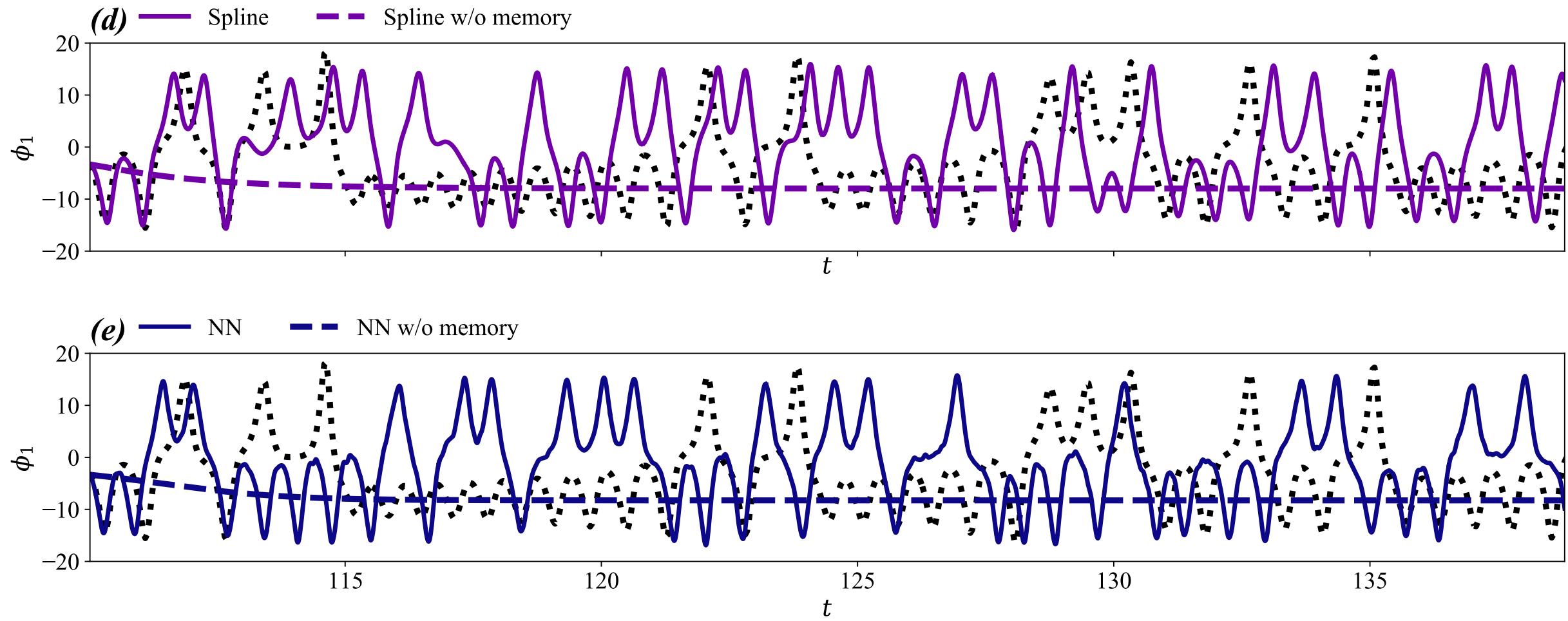
Numerical experiment 1: Lorenz '63



Numerical experiment 1: Lorenz '63



Numerical experiment 1: Lorenz '63



Numerical experiment 2: 1D Kuramoto–Sivashinsky Equation

$$\partial_t u(x, t) + \partial_x [\lambda(x) \partial_x u(x, t)] + \partial_{xxxx} u(x, t) + \frac{1}{2} [\partial_x u(x, t)]^2$$
$$x \in [0, 16\pi], \quad \text{periodic boundary condition.}$$

Ground truth: spatially discretized as 128 points

Integration step $\delta = 0.001$, observe every 1,000 steps ($\Delta = 1$)

Integrator: Exponential Time-Derivative 4th order Runge–Kutta

Reduced-order observables: observation **every 4 points**

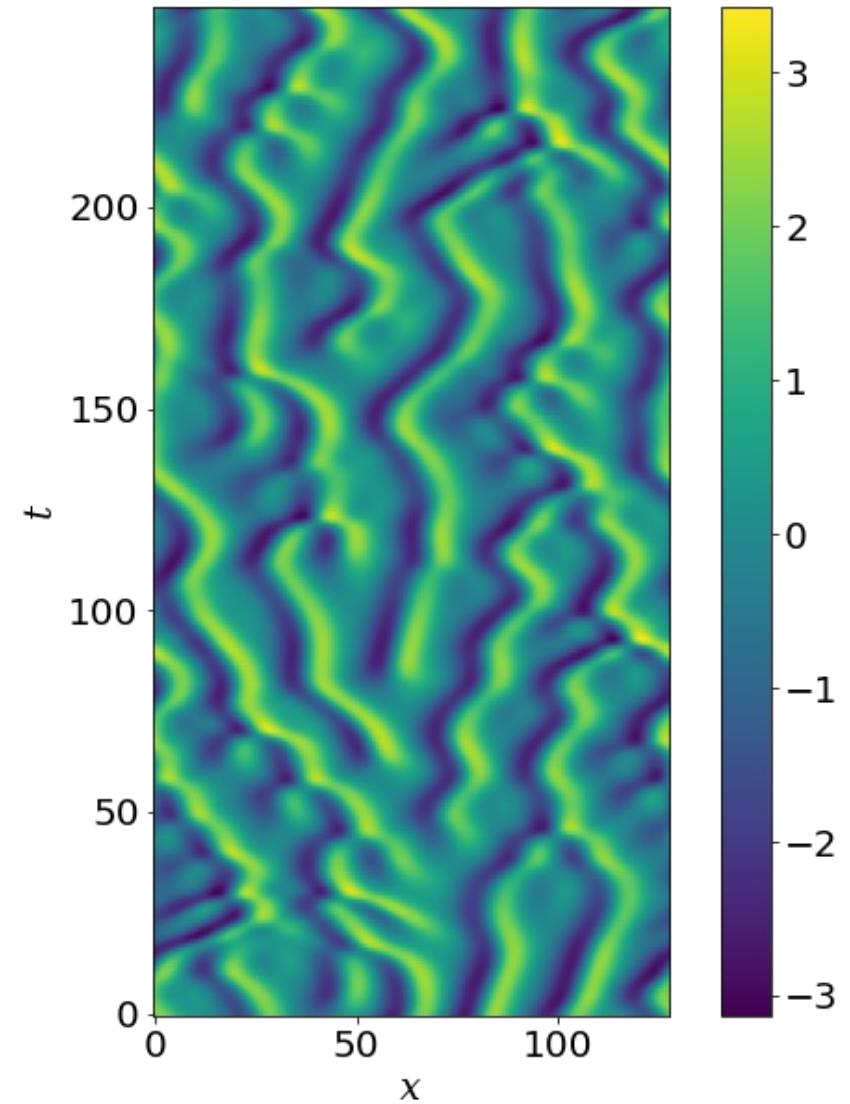
Total number of observations: 10^5

Data-augmentation by translational symmetry + PBC

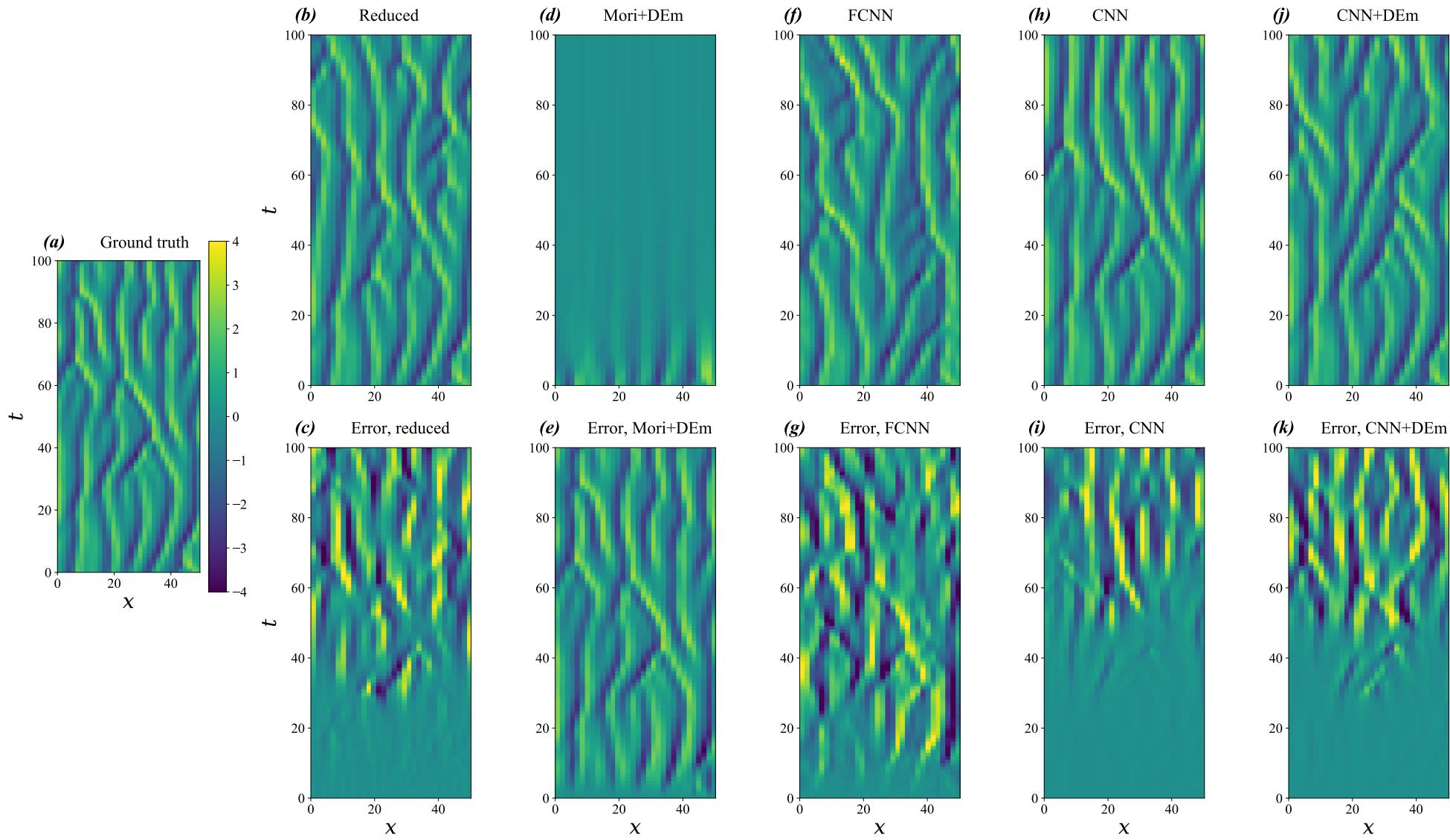
Baseline: Reduced-order simulation (as if a 32-point system)

Regression models:

- Mori+Delay Embedding (DEm) = Hankel DMD [Arbabi17]
- FCNN
- CNN
- CNN+DEm



Numerical experiment 2: 1D Kuramoto–Sivashinsky Equation

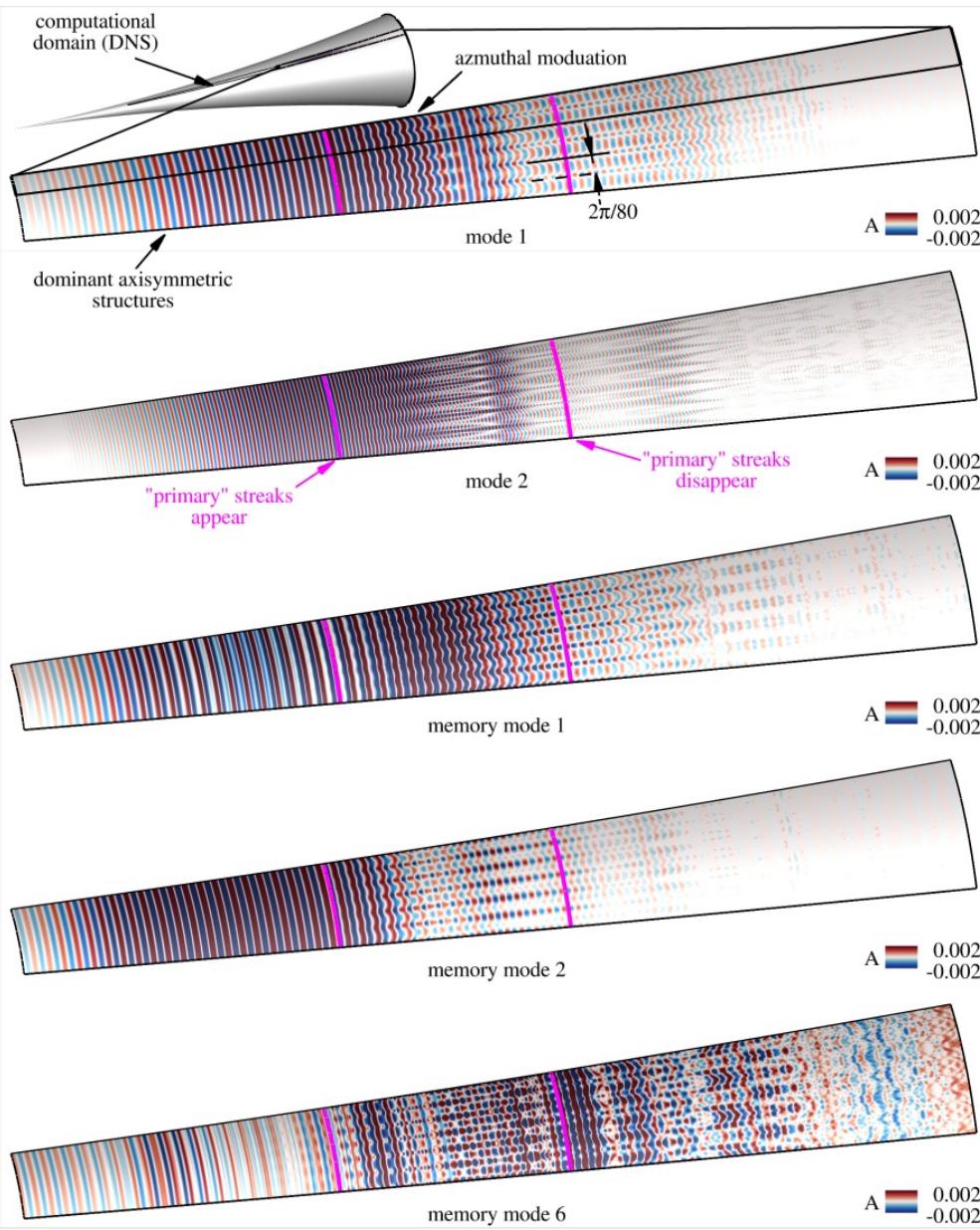


Prediction

Error:=Prediction – GT

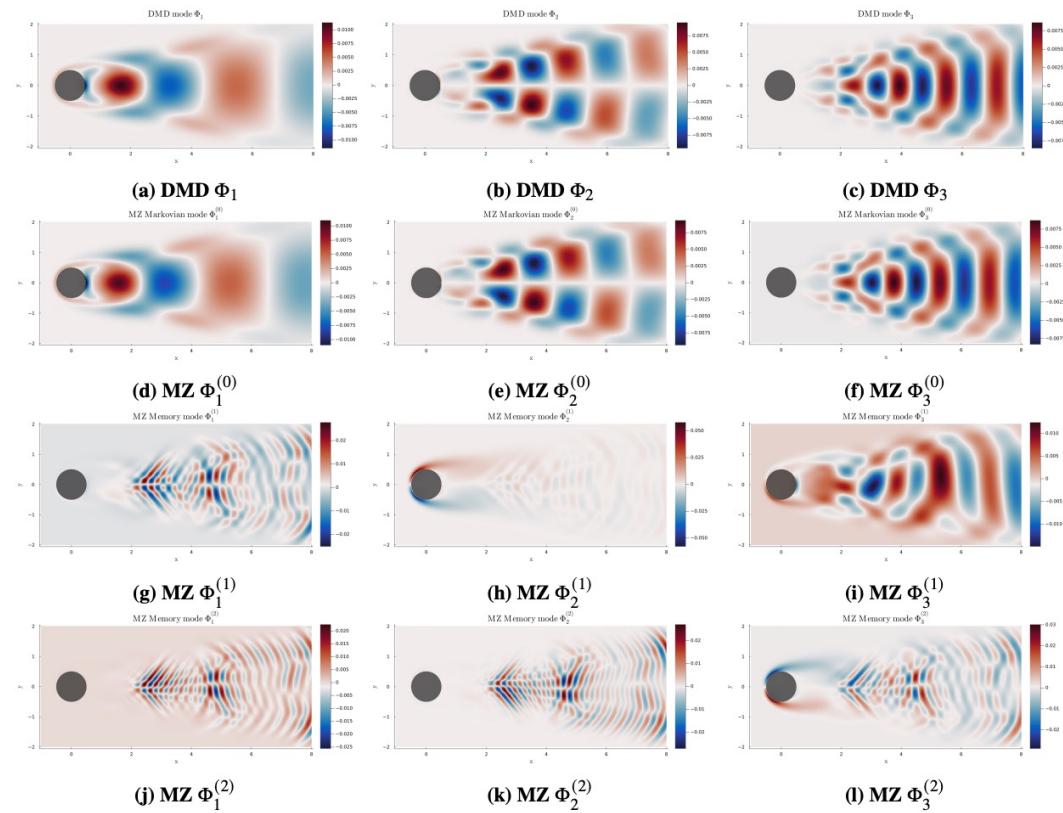
Summary

- **Theoretical contribution:** Regression is a projection operator for learning Mori–Zwanzig formalism
 - Generalize Mori's projection operator, which is already a higher-order generalization of approximate Koopman [Lin21b]
 - Consistent to nonlinear closure schemes, and also other learning frameworks such as SINDy [Brunton16] and Koopman + NN [Li17, Yeung 17, Lusch18]
 - Bridging the gap between Mori's [Mori65] and Zwanzig's [Zwanzig73] projection operators
 - Makes connection to mechanistic models that are parametrized by data
- **Computational Contribution:** A principled way of extracting MZ operators
 - ... that are applicable to regression models with adjustable complexities:
 - Linear regression on nonlinear observables
 - Nonlinear regression on linear observables
 - Non-parametric (spline regression)
 - Neural architectures
 - The reduced-order/coarse-grained model can again be a nonlinear dynamical system (with MZ memory)
 - Finite memory truncation and zero-orthogonal-dynamics seemed to work relatively well
- **Future directions**
 - Applications: isotropic turbulence [Tian21], hypersonic boundary layer transition [Woodward22] and dislocation density evolution
 - “Generalized Mori-Zwanzig”: non-uniform time grid, non-uniform projection operator
 - Beyond zero-orthogonal-dynamics model; modeling by correlated noise



Data-Driven Mori-Zwanzig: Approaching a Reduced Order Model for Hypersonic Boundary Layer Transition

Michael Woodward^{1,2*}, Yifeng Tian², Arvind Mohan², Yen Ting Lin², Christoph Hader³, Hermann Fasel³, Misha Chertkov¹, Daniel Livescu²



Selected References

[Mori65] Mori H. *Transport, Collective Motion, and Brownian Motion*. Progress of theoretical physics. 1965

[Zwanzig73] Zwanzig R. *Nonlinear Generalized Langevin Equations*. Journal of Statistical Physics. 1973

[Darve05] Darve E, Solomon J, Kia A. Computing *Generalized Langevin Equations and Generalized Fokker-Planck Equations*. PNAS. 2009

[Schmid10] Schmid PJ. Dynamic Mode Decomposition of Numerical and Experimental Data. Journal of Fluid Mechanics. 2010

[Williams15] Williams MO, Rowley CW, Kevrekidis IG. *A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition*. Journal of Nonlinear Science. 2015

[Brunton16] Brunton SL, Proctor JL, Kutz JN. *Discovering governing equations from data by sparse identification of nonlinear dynamical systems*. PNAS 2016

[Arbabi17] Arbabi H, Mezić I. *Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator*. SIAM Journal on Applied Dynamical Systems. 2017

[Li17] Li Q, Dietrich F, Boltt EM, Kevrekidis IG. *Extended Dynamic Mode Decomposition with Dictionary Learning: A Data-Driven Adaptive Spectral Decomposition of the Koopman Operator*. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2017

[Yeung17] Yeung E, Kundu S, Hodas NO. *Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems*. American Control Conference (ACC). 2019

[Lusch18] Lusch B, Kutz JN, Brunton SL. *Deep Learning for Universal Linear Embeddings of Nonlinear Dynamics*. Nature Communications. 2018

[Lin21a] Lin KK, Lu F. *Data-Driven Model Reduction, Wiener Projections, and the Koopman-Mori-Zwanzig Formalism*. J. Comp. Phys. 2021

[Lin21b] Lin YT, Tian Y, Livescu D, Anghel M. *Data-Driven Learning for the Mori-Zwanzig Formalism: A Generalization of the Koopman Learning Framework*. SIAM Journal on Applied Dynamical Systems. 2021

[Tian21] Tian Y, Lin YT, Anghel M, Livescu D. *Data-Driven Learning of Mori-Zwanzig Operators for Isotropic Turbulence*. Physics of Fluids. 2021