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Outline

* Introduction
— Mori-Zwanzig (MZ) projection-operator formalism for building reduced-order/coarse-grained dynamical models

* Regression analysis
— Regression is a projection
— A principled way of extracting MZ operators for regression-based projection operators

* Numerical experiments

— Work in progress on data-driven closure of dislocation density evolution: Our attempt to make connection to modeling in
materials science

* Summary
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Introduction to Mori-Zwanzig (MZ) formalism

Context

Non-equilibrium statistical physics, for coarse graining/model reduction/reduced-order modeling
Problem

* A dynamical system with a many degrees of freedom D

* One only cares about the evolution of a small set (M < D) of resolved/coarse-grained variables
(observables, descriptors, dynamic variables: functions of the system'’s state)

* Also for partially-observed dynamical system

Example

* Models describing biomolecules with many atoms: the dynamics of the “rough” molecular conformation

* Models describing materials: meso/macroscopic features, e.g. dislocation density

* Complex fluid-dynamical models: the dynamics of the mesoscopic features: e.g., large eddies/coherent structures
Key challenge

How to evolve M variables under the 1nfluence of unresolved degrees of freedom?

Unresolved variables >< >< >< ><

Resolved/CG variables

» Time
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Projection

Projection operator

Suppose the system’s state ¢p € RP is fully characterized by

* Resolved/CG observables g,.: R? —» RM and
e Unresolved observables g,,;: R? - RP~™

Given an state ¢p € RP, the CG and unresolved observations are g.-(¢) and g, (¢).

The projection operator P maps any function f of the resolved and under-resolved observations to another function Pf
that depends only on the resolved observation:

£ @),
f(gr(¢): gu(¢)) ~ (Pf)(gr(qb)) Vo € RP

This allows us to write a closed reduced-order dynamics in terms of the resolved observables only.

We will denote g = g, when appropriate.
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Projection operators

Existing projection operators include

* Mori’s [Mori65, Lin21b] linear functional projection operator: (Pf)(g,) = (f,8+), - (& gl")p_1 - 8,
with inner product space (f, g), = fﬂ f(d)g(e) p(¢) do, with a density p induced by the dynamics

* Finite-rank projection: orthonormal components of g, under the induced density p, (Pf)(g,) = (f,8+), - &~

e Zwanzig's [Zwanzig73] conditional expectation projection:

(fPf)(h) - IIE:p [f(gr(¢)r gu(¢))|gr(¢) - h] - j_l(h)f(gr(qb): gu(¢)) p(¢) d¢o
8r

* Truncations [Durasaimi,Stinis19,Stinis21]: sending g,,(¢p) — 0
* Wiener projection [Lin21a]: delay embedding but with infinite delay to augment state space; no MZ memory kernel

Mori’s linear P

Computationally OK , Zwanzig's nonlinear P
but with unsatisfactory Optimal yet computationally infeasible
predictions [Lin21b] Question: can we gradationally fill the gap?
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Mori-Zwanzig (MZ) formalism

We consider an autonomous and deterministic dynamical system:

where R: RP? — RP is the locally Lipschitz vector field.

Suppose we always observe at discrete timi

() Unresolved * A > & > & : : . .
XXX, - Q©®  Markov
» > > ® > 7
t

The discrete-time Mori-Zwanzig formalism Resolved/CG _ . _ . z
the Generalized Langevin Equation: ; ; : :
Present _
) n " + i ./;l(m. Memory=1
8n+1 é:7(Agzz:ﬂ °8not+ Wy,

+ Q3 Memory=2
QO = PICL[(1 — PYK,] / . \
o—— _ n+1 i > @ > @ R

W, = [(1 :P):K‘A] 8 -+ w, \ Orthogonal

where K, is the finite-time (A) Koopman operator.

Yen Ting Lin (CCS-3, LANL) 4/12/2023, LA-UR-22-24323



Generalized Fluctuation-Dissipation Relation

8.1 2 HKNE=Y70 Q@ og ,+ W, (Generalized Langevin Equation)
Q®) = PICA[(1 — P)KA]® (€ = 0: Markov, £ > 0: memory kernel)
W, =W, =[(1-P)Kx]""g (orthogonal dynamics, PW, = 0)

Importantly, the operators are related by the Generalized Fluctuation-Dissipation Relation:

QM =PW,_,oF), n=>1
which relates the nth memory kernel to the (n — 1)th orthogonal dynamics.

It is challenging to compute Q™ and W,, analytically.

> Research question: Can we learn the operators Q™ and observables W,, from snapshots (time series) of g,,(¢,) out
of exact simulations of the full system, with sufficiently many samples of ¢,?
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Regression as a projection operator

We propose to use statistical regression as a projection operator

fo: RM = R a family of functions parametrized by 0 to approximate f (gr(qb[i]), g, (¢[i]))

Cost/Risk/loss/Negative log-likelihood C (0; observed data = {gr (qb[i]), f (gr(qb[i]),gu(qb[i]))}_)
l
Best-fit parameter: 8, = argming C(0; observed data)

In dynamics, f is just resolved part of the dynamics in the future!

f(1)
Orbit: f'-2(1-f2)f'+f=0 2

ettt 21 . **°’7| Advantages:

. o 1. — Zwanzig’s
. . P=regression

. 2. NN-based ML

flg(P), gu(d))
flgr(P), gu(d))

K | . 3. Modeling

Van der Pol oscillator
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Learning the memory kernels and orthogonal dynamics

Generalized Langevin Equation (GLE): W, = g,,; — Y%, 2% (g,_,)
Key idea: W, is the residual of the regression model, which can be computed

Generalized Fluctuation-Dissipation relation (GFD): Q™ = P(W,_, o F)

Q) := PJC, is just a regression of g, on g,: Many talks are about this Markov operator!

We can learn QD and W, if Q(©),... @™ and g,, , , are given.

Operationally an intuitive iterative procedure (statistical boosting)

s

g1 — E Q9(gy-,)

o.\’..

g1 — 2 Q9(gs-,)

10

g1 — E Q9(g10-,)

0.11

0

30
g1 — E Q9(gs0-,)

13

0.051

0.001

—0.051
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[llustration: data-driven closure of dislocation density

o
w

Modeling dislocation density: Akhondzadeh et al. J. Mech. Phys. Solids (2020)

©
I

Fully resolved: Discrete Dislocation Dynamics simulation
Target: predicting future p;(t), with slip system indexi = 1...12

1. CG variables: Dislocation density p; and strain y;

2. “Regression-based projection operator”

a) Model: Kocks—-Mecking model structure p; = y; ( [aiipj — ,Bpi)

Standardized/normalized p,[k]
o o
N w

©
=

&d Modification 1: discretization of time: ﬁi[kH] = pl.[kﬂ] + }'/i[k] < aijp][.k] — ,Bpi[k]

> 0 20 40 60 80 100 120

&d Modification 2: use delay-embedding to estimate )'/i[k] ~ Yooq 0y yl.[k_{’)]

3
~lk+1 k k—¢ k k
P41 g, o1 4 (Z o] 1)( o~ 0.1
=1

b) Risk function: mean square error of one-step prediction.

i A 2
¢ (60, Ly ) kz [ = a1
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[llustration: data-driven closure of dislocation density

[k
Pi[ + le—5

M4 (133497 + 0,01y H-13.45y ) ( ayp — 2.23p[k]> 4.08]

=1.01p

i [ i i i i

0 2 4 6 8
Memory length
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Clarification

Our proposition:

1. [Crucial decision!] Define a set of resolved /CG variables

2. [Crucial decision!] Define a projection operator: a model and a regression-based parametrization scheme

3. Use Generalized Fluctuation Dissipation to recursively extract the memory kernels and the orthogonal dynamics
(The kernels and the orthogonal dynamics depends on the choices of CG variables and projection operators)

a. Solve for the the best-fit function
Compute the residual

b
c. Assign the residual as the dependent variable and an earlier snapshots as the independent variables
d. Repeat

What our proposition is not:

1. Motivated by Mori-Zwanzig’'s memory-dependent dynamics

2. Postulate a memory-dependent dynamics (e.g., delay-embedded dynamics; Recurrent Neural Network with Long
Short-Term Memory; time-embedded Transformer)

3. Use the data to fit a memory kernel without enforcing or checking Generalized Fluctuation Dissipation
» Logical fallacy: MZ is memory dependent, but not all memory-dependent dynamics is MZ.
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Numerical experiment 1: Lorenz 63

¢1 =10 (¢2 — ¢1)

- . .
C 8 ~ 0
B = b1 — 5 3 s \ /M !
: —10+ \1 ¥ ¥
Only ¢ (nA) is observed, A = 0.01 V V
N = 10° data points along a long trajectory 0 2 4 6 8 10
t
RegreSSIOn models: (a) Validation error, 1st prediction (b) Memory contribution
 Mori (1): linear regression on ¢2, ¢1 (DMD) ~ v 5
* Mori (5): linear regression on ¢?--> (EDMD) 2 o Nontinear () £
= = Spline §
* Nonlinear: 5% order polynomial regression on ¢; ¢ — NN 5
: :
> Identical to Mori (5) only in the first step of  « k
prediction § ;]g
 Spline regression d 5
e Fully-connected Feedforward Neural Network 0 i > 3 1
Memory length Memory length
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Numerical experiment 1: Lorenz 63

 Ground truth Mori (order 1) Mori (order 1) w/o memory

(a)---

How well do these “trained” model (truncated H) predict? oY R ' Y DY
-20 :
. . (b) Mori (order 5) Mori (order 5) w/o memo
In prediction, we truncated the memory by the threshold and Wy s PRI
. . . . 10 ” - :'.‘ - -
provided a sufficiently long history for the GLE to propagate: S0l : EASIRE
R VEOY OWVYY VYOV i
H -20 — -
‘F ” (L‘) Nonlinear (order 5) == = Nonlinear (order 5) w/o memory
gleEQ()og—{’-l_WH o . X 3 ] i :
£=0 s 0 AVE N VAT
“101y ¥ -;- (= S|+ A Ay - SR T ol 1 = = e
. . . . . . 20 t
The noise is modelled as negligible, W =~ 0. We iteratively ) S == Saesiomm
used the predicted observables, e.g., 3 2 TV
L s o y S :
? SOLA' L ialalalc- i 4 o ey ek B atel & e i ter i
82 < Z QO ogi_p+Wyyy _20 _ ‘
'€=0 (g) =— NN == = NN w/0 memory
again assuming Wy,, = 0. . . i sl TEENTE
S o L[ W\l \ e A AV A . s
oM TYY . R RSN A VS EEARY A AR e YRS
0 115 120 125 130 135
t
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Numerical experiment 2: 1D Kuramoto-Sivashinsky Equation

Oru(x, t) + 0, [A(x) 0, u(x, t)] + Opprrct (x, t) + % [0, u(x,t)]?

x € [0,16m], periodic boundary condition.

Ground truth: spatially discretized as 128 points 200
Integration step § = 0.001, observe every 1,000 steps (A = 1)

Integrator: Exponential Time-Derivative 4™ order Runge-Kutta
Reduced-order observables: observation every 4 points

Total number of observations: 10° -

Data-augmentation by translational symmetry + PBC 100

Baseline: Reduced-order simulation (as if a 32-point system)

Regression models:

50
* Mori+Delay Embedding (DEm) = Hankel DMD [Arbabil7]
 FCNN
e CNN 0

* CNN+DEm X
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Numerical experiment 2: 1D Kuramoto-Sivashinsky Equation

(a) Ground truth
100

80

60

40

20

) Reduced d) Mori+DEm
100 100

80 80

60 60

40 40

20 20

0
20 40 0 20 40

(c) Error, reduced (e)  Error, Mori+DEm
— 100

80

60

40

20

G)

CNN+DEm

20

40

Prediction

Error:=Prediction— GT
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Summary

* Theoretical contribution: Regression is a projection operator for learning Mori-Zwanzig formalism
— Generalize Mori’s projection operator, which is already a higher-order generalization of approximate Koopman [Lin21b]

— Consistent to nonlinear closure schemes, and also other learning frameworks such as SINDy [Brunton16] and Koopman + NN [Li17,
Yeung 17, Lusch18]

— Bridging the gap between Mori’s [Mori65] and Zwanzig’s [Zwanzig73] projection operators
— Makes connection to mechanistic models that are parametrized by data

* Computational Contribution: A principled way of extracting MZ operators

— ... that are applicable to regression models with adjustable complexities:
» Linear regression on nonlinear observables
» Nonlinear regression on linear observables
» Non-parametric (spline regression)
» Neural architectures

— The reduced-order/coarse-grained model can again be a nonlinear dynamical system (with MZ memory)
— Finite memory truncation and zero-orthogonal-dynamics seemed to work relatively well

* Future directions
— Applications: isotropic turbulence [Tian21], hypersonic boundary layer transition [Woodward22] and dislocation density evolution
— Stochastic systems
— Beyond zero-orthogonal-dynamics model; modeling by correlated noise
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Data-Driven Mori-Zwanzig: Approaching a Reduced Order
Model for Hypersonic Boundary Layer Transition
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