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INTRODUCTION

Austenitic stainless steels are structural materials
utilized in trittum gas pressure boundaries since they are
resistant to hydrogen isotope embrittlement [1-3]. However,
exposure to tritium over long periods of time leads to tritium
uptake which decays to result in helium ingrowth. This
helium ingrowth results in further embrittlement effects
which are synergistic with that from the hydrogen isotope [4].
Therefore, it is important for tritium facilities to understand
the material limitations of stainless steel in this environment.
The Savannah River National Laboratory (SRNL) has
available a large experimental data set of austenitic stainless
steels which have been exposed to tritium environments for
various lengths of time. With the availability of this data set,
machine learning (ML) algorithms provide an opportunity to
model the embrittlement of stainless steel due to the
algorithm’s ability to identify patterns in data sets that are
difficult and costly to identify in other manners [5].
Ultimately, the amount and quality of the available data is
one defining force in the ability of a ML model to accurately
predict the desired outputs. The models developed herein
will illustrate the ability for the various algorithms to predict
the change in fracture toughness in stainless steels due to
hydrogen-isotope embrittlement.

Methodology

Over the past two and a half decades SRNL has
maintained hydrogen- and ftritium-charged samples with
various hold times ranging from zero days to 5 years [2,6-15].
These samples correspond to 215 separate datapoints and
include as-received, hydrogen-charged and tritium-charged
samples. For each sample the information obtained included
steel type, alloying element content, charging isotope (none,
hydrogen, tritium), exposure temperature, exposure over-
pressure, age time, age temperature, hydrogen content,
trittum content, helium content, initial yield strength, and
initial tensile strength. Figures 1 illustrates the experimental
data obtained from two of the reports and show the influence
of He content on the fracture toughness [9]. Table I provides
a full list of the variables considered in this study and
provides the approximate range of each variable. It is
important to note that some variables, like the alloying
element contents, are being processed over a very limited
range. This can reduce the effectiveness of the machine
learning model to learn the influence of the given parameter
on the resultant fracture toughness.
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Fig. 1. Fracture Toughness vs Helium Content obtained
from [9] showing some of the experimental datapoints in
utilized in this study.

TABLE I. Variables of interest and their approximate range.

Variable Value Range

Cr 0-21 wt.%

Ni 6-13 wt.%

Mn 0.5-10 wt.%

Mo 0-3 wt.%

C 0-0.05 wt.%

Si 0.3-0.7 wt.%

Cu 0-0.015 wt.%

P 0-0.03 wt.%

S 0.001-0.007 wt.%
N 0-0.3 wt.%

Co 0-0.07 wt.%

O 0-0.005 wt.%

Al 0-0.03 wt.%
YSo 296-722.57 MPa
TSo 510-961.13 MPa
H Content 0-6300 appm

T Content 0-5560 appm
He Content 0-1450 appm

A Random Forest (RF) machine learning algorithm was
developed to predict the fracture toughness of stainless steels
after hydrogen-isotope embrittlement. The RF model was
developed using the scikit-learn Python library (version
1.0.2). Figure 2 below illustrates the comparison of training
dataset size and average percent error.
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Fig. 2. Training dataset size vs Average percent error with
trend lines for both testing error and training error for the
RF regression model.

From Figure 2 it can be shown that for the RF model the
average percent error for both the test and training datasets
decrease as the size of the training dataset increases. The full
embrittlement database was divided into a training dataset, a
testing dataset, and a validation dataset. The training dataset
comprised 80% of the full database while the testing and
validation datasets each comprised 10% of the full database.
The 80% size was chosen due to Figure 2 where it was
identified as the point where the average percent error
approached a constant value. The RF model was then
optimized using the built-in function RandomizedSearchCV
on the training dataset. This function utilizes a search space
defined by the user to identify the optimal model
hyperparameters for the desired algorithm. The optimized
hyperparameters were then used as inputs to the Random
Forest Regression algorithm provided by scikit-learn. The
model was trained on 10 different sets of optimized
hyperparameters with each set of hyperparameters being
trained and tested on 10 different training and testing splits.
The resultant error analysis was performed for each split and
averaged across all 10 splits. After training and testing the
final, best model was used to predict the fracture toughness
for a validation dataset. The results of the model are
discussed in the next section.

RESULTS

Once the hyperparameters were optimized the models
were used to predict the fracture toughness of the training
dataset. These results were used to develop plots of actual
fracture toughness vs predicted fracture toughness. Figure 3
illustrates the initial results for the RF model where the solid
green line identifies the optimal prediction. If the model was
100% accurate then all of the data points would fall on the
green optimal line. Figure 3 shows that the RF model is
capable of accurately predicting the fracture toughness of
various stainless steels both with and without the inclusion of
the As-Received data in the dataset. These As-Received data
are all datapoints in the embrittlement database that have
undergone no hydrogen-isotope charging.
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Fig. 3. Actual vs Predicted fracture toughness plots for the
RF model both with (A) and without (B) the inclusion of the
as-received datapoints.

In Figure 3 sections can be seen where the predicted fracture
toughness is nearly the same, but the actual fracture
toughness varies greatly. These sections can be identified as
vertical stacks of points. When comparing these points to the
experimental data in the embrittlement database it was
identified that these points have the same input values but the
resultant fracture toughness changes. This can be explained
by the fact that fracture toughness measurements may not
result in the same value for two samples due to the variability
of the initial samples. In order to alleviate this issue each of
the datapoints was categorized based on the values of the
input variables. For each set of datapoints the fracture
toughness values were overwritten using a weighted average.
This means that for any two datapoints with the same input
values the fracture toughness would be the same. This
procedure was then performed on the embrittlement database
before being used to optimize and train a secondary RF
model. The results of the new model, termed the RFw model,
were used to develop new actual vs predicted plots that are
illustrated in Figure 4. In Figure 4, it can be seen that the
model retains its ability to accurately predict the fracture
toughness, but the vertical stacks of points can no longer be
seen. However, it is important to note that by performing this
weighted average procedure the number of unique datapoints
has been reduced.
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Fig. 4. Actual vs Predicted fracture toughness plots for the
RFw model both with (A) and without (B) the inclusion of
the as-received datapoints.

TABLE II. Comparison of the error analysis values for
various metrics for the four scenarios.

Metric RF RF RFw RFw

As-

Received? No Yes No Yes
R2 0.9628 | 0.9588 | 09872 | 0.9953
MAE
Train 190.696 | 368.204 | 77.017 | 103.144
(Ibs/in)

MAPE

Train (v | 16820 | 18181 | 8816 | 10362

MAE Test | »cc 500 | 527.246 | 216.516 | 157.207
(Ibs/in)

MAPE

Test (% | 28154 | 44765 | 20842 | 16414
MAE

Validate | 288.469 | 382.467 | 116.332 | 226.221
(Ibs/in)

MAPE

Validate | 32.213 | 23.729 | 19.690 | 20.312
(%)

The error analysis performed here is provided in Table II
below. From Table II it can be seen that both models perform
very well with high R? values and low MAPE and MAE
scores. As expected, the training MAE and MAPE scores are
also lower than the test scores for all cases. However, the

MAE and MAPE scores for the validation set were identified
as being higher than the testing scores for some of the models
meaning overfitting may be an issue in the model
Furthermore, it is important to note that the error analysis
results for all scenarios indicate that the model may be
overfitting the training dataset. This overfitting could be due
to the limited number of training data utilized in this study.
Therefore, a utilizing a larger dataset for future results is
paramount to be able to identify the true ability of the RF
model for predicting fracture toughness. Meanwhile, Figures
5 and 6 provide four plots in which the RFw model was used
to predict the fracture toughness for samples obtained from a
singular reference. This was done to provide a comparison
of the predicted value with the trends seen in the
experimental data. Figure 5 compares the predicted fracture
toughness vs H content trend line to experimental results for
the F97, H94, F9 and 98 samples obtained from [6].
Furthermore, Figure 6 compares the predicted fracture
toughness vs He content trend line to experimental results for
the same samples obtained from [6]. The red points and stars
correspond to the model’s fracture toughness for a fictional
H-charged sample and T-charged sample at the same
charging (i.e. same appm). This was done to identify if the
model is capable of discerning a difference between the H-
charged samples and the T-charged samples (without He
content).
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Fig. 5. Fracture toughness vs H-content plots comparing the

prediction obtained from the RFw model to the experimental

data obtained from [6].



1200

1000
1500 | o

800

10 tssiin

1000

1 sy

0 100 200 300 400 SO0 600 700 80O
H

2000{ § n
[

]
n of H=2420 appm
n of

1500 T = 2420 appm

z150{ ®
5

10 tsfin)

S 1000
= 2000

0 100 200 300 490 500 600 790 8GO0 0 100
He Content tappm)

Fig. 6. Fracture toughness vs He-content plots comparing
the prediction obtained from the RFw model to the
experimental data obtained from [7].
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From Figures 5 and 6 it can be seen that the RFw model tends
to overestimate the fracture toughness values for the H-
content plots while this overestimation is not seen in the He-
content plots. However, in all plots the model is able to
accurately predict the fracture toughness for most of the
experimental datapoints. One possible explanation for this is
that the RFw model is currently overfitting the data. This can
occur due to the limited size of the current embrittlement
dataset and can be rectified by increasing the data available.

In conclusion, a Random Forest regression
algorithm was developed to predict the resultant fracture
toughness of various hydrogen-isotope embrittled stainless
steels. Decades worth of experimental data on tritium
charged stainless steels was obtained from the Savannah
River National Laboratory. The data was combined into a
singular repository of approximately 215 data points for
which 80% were used as a training set, 10% were used as a
testing set and 10% were used as a validation set. Two
preprocess techniques were utilized to optimize the database
for use in the RF model. The error analysis performed herein
illustrated that the RF model was capable of predicting
fracture toughness. However, the error analysis also
illustrated that the data obtained herein was insufficient to
satisfy the null hypothesis and as such more data is required
it also. Ultimately, the results presented herein are
preliminary results obtained from the implementation of a
Random Forest model to a limited embrittlement database
and future work will be required to identify the full
capabilities of the model and to overcome the difficulties with
overfitting that have been seen.

NOMENCLATURE

SRNL = Savannah River National Laboratory
T = Tritium

ML = Machine Learning

RF = Random Forest

YSo = Initial Yield Strength

TSy = Initial Tensile Strength

RFw = Random Forest using Weighted Data
MAE = Mean Absolute Error

MAPE = Mean Absolute Percent Error
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