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INTRODUCTION 

Austenitic stainless steels are structural materials 

utilized in tritium gas pressure boundaries since they are 

resistant to hydrogen isotope embrittlement [1-3].  However, 

exposure to tritium over long periods of time leads to tritium 

uptake which decays to result in helium ingrowth.  This 

helium ingrowth results in further embrittlement effects 

which are synergistic with that from the hydrogen isotope [4].  

Therefore, it is important for tritium facilities to understand 

the material limitations of stainless steel in this environment.  

The Savannah River National Laboratory (SRNL) has 

available a large experimental data set of austenitic stainless 

steels which have been exposed to tritium environments for 

various lengths of time. With the availability of this data set, 

machine learning (ML) algorithms provide an opportunity to 

model the embrittlement of stainless steel due to the 

algorithm’s ability to identify patterns in data sets that are 

difficult and costly to identify in other manners [5].  

Ultimately, the amount and quality of the available data is 

one defining force in the ability of a ML model to accurately 

predict the desired outputs.  The models developed herein 

will illustrate the ability for the various algorithms to predict 

the change in fracture toughness in stainless steels due to 

hydrogen-isotope embrittlement. 

 

Methodology 

Over the past two and a half decades SRNL has 

maintained hydrogen- and tritium-charged samples with 

various hold times ranging from zero days to 5 years [2,6-15].  

These samples correspond to 215 separate datapoints and 

include as-received, hydrogen-charged and tritium-charged 

samples.  For each sample the information obtained included 

steel type, alloying element content, charging isotope (none, 

hydrogen, tritium), exposure temperature, exposure over-

pressure, age time, age temperature, hydrogen content, 

tritium content, helium content, initial yield strength, and 

initial tensile strength.  Figures 1 illustrates the experimental 

data obtained from two of the reports and show the influence 

of He content on the fracture toughness [9]. Table I provides 

a full list of the variables considered in this study and 

provides the approximate range of each variable.  It is 

important to note that some variables, like the alloying 

element contents, are being processed over a very limited 

range.  This can reduce the effectiveness of the machine 

learning model to learn the influence of the given parameter 

on the resultant fracture toughness. 

 

 
Fig. 1. Fracture Toughness vs Helium Content obtained 

from [9] showing some of the experimental datapoints in 

utilized in this study. 

 

TABLE I. Variables of interest and their approximate range. 

Variable Value Range 

Cr 0-21 wt.% 

Ni 6-13 wt.% 

Mn 0.5-10 wt.% 

Mo 0-3 wt.% 

C 0-0.05 wt.% 

Si 0.3-0.7 wt.% 

Cu 0-0.015 wt.% 

P 0-0.03 wt.% 

S 0.001-0.007 wt.% 

N 0-0.3 wt.% 

Co 0-0.07 wt.% 

O 0-0.005 wt.% 

Al 0-0.03 wt.% 

YS0 296-722.57 MPa 

TS0 510-961.13 MPa 

H Content 0-6300 appm 

T Content 0-5560 appm 

He Content 0-1450 appm 

 

A Random Forest (RF) machine learning algorithm was 

developed to predict the fracture toughness of stainless steels 

after hydrogen-isotope embrittlement.  The RF model was 

developed using the scikit-learn Python library (version 

1.0.2).  Figure 2 below illustrates the comparison of training 

dataset size and average percent error. 

 



 
Fig. 2. Training dataset size vs Average percent error with 

trend lines for both testing error and training error for the 

RF regression model. 

 

From Figure 2 it can be shown that for the RF model the 

average percent error for both the test and training datasets 

decrease as the size of the training dataset increases.  The full 

embrittlement database was divided into a training dataset, a 

testing dataset, and a validation dataset. The training dataset 

comprised 80% of the full database while the testing and 

validation datasets each comprised 10% of the full database.  

The 80% size was chosen due to Figure 2 where it was 

identified as the point where the average percent error 

approached a constant value.  The RF model was then 

optimized using the built-in function RandomizedSearchCV 

on the training dataset.  This function utilizes a search space 

defined by the user to identify the optimal model 

hyperparameters for the desired algorithm.  The optimized 

hyperparameters were then used as inputs to the Random 

Forest Regression algorithm provided by scikit-learn.  The 

model was trained on 10 different sets of optimized 

hyperparameters with each set of hyperparameters being 

trained and tested on 10 different training and testing splits.  

The resultant error analysis was performed for each split and 

averaged across all 10 splits. After training and testing the 

final, best model was used to predict the fracture toughness 

for a validation dataset.  The results of the model are 

discussed in the next section. 

 

RESULTS 

Once the hyperparameters were optimized the models 

were used to predict the fracture toughness of the training 

dataset.  These results were used to develop plots of actual 

fracture toughness vs predicted fracture toughness.  Figure 3 

illustrates the initial results for the RF model where the solid 

green line identifies the optimal prediction.  If the model was 

100% accurate then all of the data points would fall on the 

green optimal line.  Figure 3 shows that the RF model is 

capable of accurately predicting the fracture toughness of 

various stainless steels both with and without the inclusion of 

the As-Received data in the dataset.  These As-Received data 

are all datapoints in the embrittlement database that have 

undergone no hydrogen-isotope charging. 

 
Fig. 3. Actual vs Predicted fracture toughness plots for the 

RF model both with (A) and without (B) the inclusion of the 

as-received datapoints. 

 

In Figure 3 sections can be seen where the predicted fracture 

toughness is nearly the same, but the actual fracture 

toughness varies greatly.  These sections can be identified as 

vertical stacks of points.  When comparing these points to the 

experimental data in the embrittlement database it was 

identified that these points have the same input values but the 

resultant fracture toughness changes.  This can be explained 

by the fact that fracture toughness measurements may not 

result in the same value for two samples due to the variability 

of the initial samples.  In order to alleviate this issue each of 

the datapoints was categorized based on the values of the 

input variables.  For each set of datapoints the fracture 

toughness values were overwritten using a weighted average.  

This means that for any two datapoints with the same input 

values the fracture toughness would be the same. This 

procedure was then performed on the embrittlement database 

before being used to optimize and train a secondary RF 

model.  The results of the new model, termed the RFW model, 

were used to develop new actual vs predicted plots that are 

illustrated in Figure 4.  In Figure 4, it can be seen that the 

model retains its ability to accurately predict the fracture 

toughness, but the vertical stacks of points can no longer be 

seen.  However, it is important to note that by performing this 

weighted average procedure the number of unique datapoints 

has been reduced. 

 



 
Fig. 4. Actual vs Predicted fracture toughness plots for the 

RFW model both with (A) and without (B) the inclusion of 

the as-received datapoints. 

 

TABLE II. Comparison of the error analysis values for 

various metrics for the four scenarios. 

Metric RF RF RFW RFW 

As-

Received? 
No Yes No Yes 

R2 0.9628 0.9588 0.9872 0.9953 

MAE 

Train 

(lbs/in) 

190.696 368.204 77.017 103.144 

MAPE 

Train (%) 
16.820 18.181 8.816 10.362 

MAE Test 

(lbs/in) 
266.209 527.246 216.516 157.207 

MAPE 

Test (%) 
28.154 44.765 20.842 16.414 

MAE 

Validate 

(lbs/in) 

288.469 382.467 116.332 226.221 

MAPE 

Validate 

(%) 

32.213 23.729 19.690 20.312 

 

The error analysis performed here is provided in Table II 

below.  From Table II it can be seen that both models perform 

very well with high R2 values and low MAPE and MAE 

scores.  As expected, the training MAE and MAPE scores are 

also lower than the test scores for all cases.  However, the 

MAE and MAPE scores for the validation set were identified 

as being higher than the testing scores for some of the models 

meaning overfitting may be an issue in the model  

Furthermore, it is important to note that the error analysis 

results for all scenarios indicate that the model may be 

overfitting the training dataset.  This overfitting could be due 

to the limited number of training data utilized in this study.  

Therefore, a utilizing a larger dataset for future results is 

paramount to be able to identify the true ability of the RF 

model for predicting fracture toughness.  Meanwhile, Figures 

5 and 6 provide four plots in which the RFW model was used 

to predict the fracture toughness for samples obtained from a 

singular reference.  This was done to provide a comparison 

of the predicted value with the trends seen in  the 

experimental data. Figure 5 compares the predicted fracture 

toughness vs H content trend line to experimental results for 

the F97, H94, F9 and 98 samples obtained from [6].  

Furthermore, Figure 6 compares the predicted fracture 

toughness vs He content trend line to experimental results for 

the same samples obtained from [6].  The red points and stars 

correspond to the model’s fracture toughness for a fictional 

H-charged sample and T-charged sample at the same 

charging (i.e. same appm).  This was done to identify if the 

model is capable of discerning a difference between the H-

charged samples and the T-charged samples (without He 

content). 

 

 
Fig. 5. Fracture toughness vs H-content plots comparing the 

prediction obtained from the RFW model to the experimental 

data obtained from [6]. 

 



 
Fig. 6. Fracture toughness vs He-content plots comparing 

the prediction obtained from the RFW model to the 

experimental data obtained from [7]. 

 

From Figures 5 and 6 it can be seen that the RFW model tends 

to overestimate the fracture toughness values for the H-

content plots while this overestimation is not seen in the He-

content plots.  However, in all plots the model is able to 

accurately predict the fracture toughness for most of the 

experimental datapoints.  One possible explanation for this is 

that the RFW model is currently overfitting the data.  This can 

occur due to the limited size of the current embrittlement 

dataset and can be rectified by increasing the data available. 

In conclusion, a Random Forest regression 

algorithm was developed to predict the resultant fracture 

toughness of various hydrogen-isotope embrittled stainless 

steels.  Decades worth of experimental data on tritium 

charged stainless steels was obtained from the Savannah 

River National Laboratory.  The data was combined into a 

singular repository of approximately 215 data points for 

which 80% were used as a training set, 10% were used as a 

testing set and 10% were used as a validation set.  Two 

preprocess techniques were utilized to optimize the database 

for use in the RF model.  The error analysis performed herein 

illustrated that the RF model was capable of predicting 

fracture toughness. However, the error analysis also 

illustrated that the data obtained herein was insufficient to 

satisfy the null hypothesis and as such more data is required 

it also. Ultimately, the results presented herein are 

preliminary results obtained from the implementation of a 

Random Forest model to a limited embrittlement database 

and future work will be required to identify the full 

capabilities of the model and to overcome the difficulties with 

overfitting that have been seen. 

 

NOMENCLATURE 

SRNL = Savannah River National Laboratory 

T = Tritium 

ML = Machine Learning 

RF = Random Forest 

YS0  = Initial Yield Strength 

TS0 = Initial Tensile Strength 

RFW = Random Forest using Weighted Data 

MAE = Mean Absolute Error 

MAPE = Mean Absolute Percent Error 

 

REFERENCES 

1. G. Caskey Jr, “Tritium-helium effects in metals,” Fusion 

Technology, 8: 2293-2298 (1985). 

2. M. J. Morgan, M. H. Tosten and S. L. West, WSRC-STI-

2006-00056, Savannah River National Laboratory. 

3. M. J. Morgan, D. A. Hitchcock, T. M. Krentz and S. L. 

West, “Tritium Aging Effects on Fracture Toughness of 

Stainless Steel Weldments,” Fusion Science and Technology, 

76(3): 209-214 (2020). 

4.  T. M. Krentz, J. A. Ronevich, D. K. Balch and C. San 

Marchi, “Tritium embrittlement of austenitic stainless-steel 

tubing at low helium contents,” Fusion Engineering and 

Design 168 (2021). 

5. Q. Zhou, S. Lu, Y. Wu and J. Wang, “Property-Oriented 

Material Design Based on a Data-Driven Machine Learning 

Technique,” Journal of Physical Chemistry Letters 11: 3920-

3927 (2021). 

6. M. J. Morgan, S. L. West and G. K. Chapman, WSRC-TR-

2007-00244, Savannah River National Laboratory. 

7. M. J. Morgan and G. K. Chapman, SRNL-TR-2009-00468, 

Savannah River National Laboratory. 

8. M. J. Morgan and G. K. Chapman, SRNL-STI-2011-

00726, Savannah River National Laboratory. 

9. M. J. Morgan and G. K. Chapman, SRNL-TR-2014-00014, 

Savannah River National Laboratory. 

10. M. J. Morgan, SRNL-STI-2015-00103, Savannah River 

National Laboratory. 

11. M. J. Morgan, SRNL-STI-2016-00060, Savannah River 

National Laboratory. 

12. M. J. Morgan, SRNL-STI-2017-00052, Savannah River 

National Laboratory. 

13. M. J. Morgan, SRNL-STI-2017-00416, Savannah River 

National Laboratory. 

14. M. J. Morgan, D. Hitchcock, T. Krentz, J. McNamara and 

A. Duncan, SRNL-STI-2018-00036, Savannah River 

National Laboratory. 

15. T. M. Krentz and D. A. Hitchcock, SRNL-STI-2020-

00002, Savannah River National Laboratory. 

 

 


