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1.0 Introduction

Strontium-90 (Sr-90) is a contaminant of concern in groundwater and surface water at both F-Area and H-
Area Seepage Basins. This contaminant was disposed of, along with other heavy metals and radionuclides,
into a series of unlined seepage basins from 1955 until 1988. The acidity of the wastewater increased Sr-90
mobility from the basin soil through the vadose zone and into the Upper Aquifer Zone (UAZ), creating a
groundwater plume that discharges into wetlands areas and a local stream called Fourmile Branch.

In the UAZ, Sr-90 retention is thought to be minimal as the groundwater pH remains highly acidic. However,
Denham et al. (2021) evaluated historical monitoring data for wells close to the basins and suggested some
Sr-90 sorption could occur in the acidic environment if high cation exchange capacity clays, such as
smectite, are present. Besides the UAZ, there is also downward migration of Sr-90 through the Tan Clay
Confining Zone (TCCZ) into the Lower Aquifer Zone (LAZ) as the TCCZ is discontinuous across the area
and has leaky zones. It is suggested that the vertical migration of Sr-90 into the LAZ started as soon as the
acidic pH gradient passed through the TCCZ and into the LAZ. Once in the LAZ, Sr-90 may be attenuated
by an increasing pH gradient with increasing depth and higher content of clay minerals, including smectite.
Lastly, the wetlands have been sequestering Sr-90 for many years, but the attenuation mechanisms are still
unknown.

The current remediation of Sr-90 is through groundwater pH manipulation within the gates of a funnel-and-
gate system and beneath the wetland areas as a result of periodic base injections to enhance its attenuation.
These base injections will be required until there is no threat of Sr-90 remobilization within the treatment
zones. To achieve this, injections must be continued until Sr-90 decays naturally and poses no further threat
of remobilization. Therefore, a full understanding of the attenuation mechanisms of Sr-90 is critical to
operation of the current remediation and acceptance of monitored natural attenuation (MNA) as the final
remedy.

2.0 Purpose

In 2021, a joint effort by Lawrence Berkeley National Laboratory (LBNL), Savannah River National
Laboratory (SRNL), and Panoramic Environmental Consulting, LLC was started to investigate the
attenuation mechanisms and minerals involved in the sorption of Sr-90 at the F-Area and H-Area Seepage
Basins. Denham et al. (2021) began by performing simulations of Sr-90 sorption on single mineral systems
identified in the F-Area Seepage Basins. He found kaolinite, goethite, and quartz cannot explain Sr-90
behavior in the base injection treatment zones; so, he hypothesized that the treatment zone monitoring data
that showed a protective pH of 5.5 could be explained by the presence of an exchangeable clay, such as
illite or smectite, which are known to exist in the aquifer system. To support this hypothesis, SRNL has
been conducting characterization studies of F-Area aquifer sediments and lab experiments to firmly
establish the protective pH for the gate treatment zones and to parameterize a reactive transport model of
Sr-90 behavior at the Savannah River Site (SRS) that will allow better understanding of Sr-90 behavior
from basins to wetlands.

The purpose of this document is to summarize the results obtained from the characterization of F-Area
aquifer sediments performed at the University of Georgia (UGA). These analyses ultimately help to support
strontium adsorption modeling through gaining a better understanding of the adsorption/ion exchange
behavior of strontium on aquifer sediments from the SRS’s F-Area, which is not well characterized.
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3.0 Methods

Through a service subcontract with SRNL, UGA completed several experiments to better inform sorption
experiments. Analyses include: 1) clay mineral analysis to identify the presence and relative amounts of
different minerals in these soils; including smectite, illite, goethite, and kaolinite, 2) measurements of the
cation exchange capacity (CEC) of the bulk soil samples, and 3) anion exchange measurements for the
sediments. The results of these analyses are summarized in this report.

3.1.1.1 Sample collection

For the characterization study, F-Area aquifer sediments were collected from soil cores stored in the SRS
Core Facility at discrete depths representing the UAZ, LAZ, and TCCZ (Figure 3-2). Two core samples
(FSB-78A and FAW-05) were selected from locations downgradient of the seepage basins along the plume
centerline that has been exposed to the acidic groundwater plume for decades. The other core sample (FSB-
76A) has not been exposed to the groundwater plume and is used for comparison (Figure 3-1). Each of the
cores was sampled at discrete depths, and subsamples of the bulk sediments were provided to UGA for clay
mineral analysis, as well as CEC and anion exchange capacity (AEC) measurements.

Samples collected include:
e FSB-78
o TCCZ: at 108 ft and 118 ft (about 10 ft below the other TCCZ sample)
o LAZ: just below the Tan Clay at 124 ft and about 10 ft below the other LAZ sample at
134 ft
e FSB-76
o TCCZ: at 108 ft
o LAZ: just below the Tan Clay at 114 ft and about 10 ft below the other LAZ sample at
124 ft
e FAW-05
o Upper UAZ: at 49 f
o Mid UAZ: at 59 ft
o Lower UAZ: at 68 ft
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Figure 3-1. Soil core sampling locations
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Figure 3-2. F-Area aquifer sediment collected from UAZ, TCCZ, and LAZ

3.2 Cation Exchange Capacity (CEC) and Anion Exchange Capacity (AEC)

CEC refers to the capacity of a mass of soil material to retain cations on charged surfaces in the colloid
fraction of the soil. It describes the number of negatively charged sites on a soil material. This is typically
determined by displacing adsorbed cations like calcium, magnesium, sodium, potassium, and aluminum
with a neutral salt, such as barium dichloride, and measuring the displaced cations using atomic absorption
(AA) or inductively coupled plasma (ICP) spectroscopy. Altematively, a cation such as ammonium may be
used to fully saturate the exchange sites of a sample, then displaced and measured as an estimate of CEC.
AEC, or the number of positive sites, can also be measured in this method by determining retention of an
associated anion such as nitrate or chloride. Anion concentrations are determined by IC or colorimetry.
CEC and AEC are important surface chemical properties related to nutrient status and contaminant behavior
in soil/sediment systems. In our study, UGA followed a batch procedure that is described in detail the
sections below.

3.2.1 Reagents

e (.01 M Potassium Chloride
e (0.5 M Sodium Nitrate
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3.2.2 Procedure

3.2.2.1 Exchanging (entrained solution)

Label and weigh each empty 50-mL centrifuge tube to 0.001 g
e Place 5 g of air-dried, milled soil into each 50-mL prelabeled and pre-weighed centrifuge tube
e Add 40 ml of 1 M Potassium Chloride (KCI) and shake (124.5 rpm) overnight (at least 15 hours)
using a reciprocal shaker
e Centrifuge and discard the supernatant
e Wash five times with 30-40 mL of 0.01 M KCI and discard.
o At the final washing, centrifuge and decant the final supematant, but retain for K" and CI’
determination (C1)
o Note: The supematant from each centrifugation should be clear. Don’t lose any soil
particles during this decanting.
e Weigh the tubes to obtain the volume (V1) of entrained solution in the sediment in order to
determine entrained K" and CI'. It is assumed that the concentrations of the entrained K" and CI
are equal to those of the final washing solution.

3.2.2.2 Displacement

Wash 4 times with 25 ml of 0.5 M Sodium Nitrate (NaNOs) to displace the adsorbed K" and CI".
e Centrifuge and decant the exchanging solution into a 100-mL volumetric flask (V2) that is brought
to volume and subsequently analyzed for K™ and CI" (C2)

e Calculate the CEC (K"; Equation 1) and the AEC (CI'; Equation 2) as centimoles of charge per

kilogram
e Weigh a separate amount of each soil and dry at 105 degrees Celsius to get the ratio of dry soil
weight/wet soil weight
CEC (Cr:;l) =3 (czrgz;/mm) .............................................................................. Equation 1
where:
C1 = concentrations (mg/L) of K+ and Cl- in final washing solution of 0.01 M KCl
C2 = concentrations (mg/L) of K+ and Cl- in the displacing solution of 0.5 M NaNO3
V1 = volume (ml) of the solution entrained in sediments after the final washing of 0.01 M KCl
V2 = total volume (ml) of the displacing of 0.5 M NaNO3,
39 = atomic weight of K+
W = weight (g) of oven-dried soil sample at 105 degrees Celsius
ABC (Z200) = SLEERCN, | Equation 2

where:
C1 = concentrations (mg/L) of K+ and Cl- in final washing solution of 0.01 M KCl,
C2 = concentrations (mg/L) of K+ and Cl- in the displacing solution of 0.5 M NaNO3
V1 = volume (ml) of the solution entrained in sediments after the final washing of 0.01 M KCI
V2 = total volume (ml) of the displacing of 0.5 M NaNO3
35.5 = atomic weight of CI-, and
W = weight (g) of oven-dried soil sample at 105 degrees Celsius

3.3 X-Ray Diffraction (XRD)

The sediment samples (bulk and clay fraction (<2 pm)) were characterized using X-Ray Diffraction (XRD),
which is a nondestructive technique that allows identification of minerals in the sample based on the
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crystallographic structures present. Additional information can be obtained if very detailed XRD is done.
For the mineral characterization, a Bruker D8 Advance X-ray Diffractometer instrument was used for the
analysis. The XRD instrument was set up with a 250 cm goniometer radius, a 0.6 mm divergent slit, and
Bragg-Bentano geometry.

Approximately 15 grams of each wet sample were taken for bulk mineralogy and dried in an oven at 65°C
overnight. A corundum mortar was then used to manually grind about 7 g of the dried sample. To further
reduce the powder's particle size to an average of 5 to 10 um, 10 ml of ethyl alcohol (EG) was added to the
powder and processed in a McCrone micronizing mill for 10 minutes. Samples were backfilled against a
square plate glass into a 2.5 x 2.5 cm aluminum holder after being dried to eliminate alcohol in a 65°C oven
overnight. To create a flat, self-supporting mount, the powder was compressed at 400 psi. The goal was to
retain the sample geometry tangential to the instrument-focusing circle and reduce sample transparency
before it is placed within the instrument.

To reduce low-angle dispersion into the position-sensitive Lynx-Eye® detector, a knife edge blade was put
2 mm over the sample's surface. To reduce Kb radiation, an iron filter was utilized in conjunction with a
cobalt radiation source (Kal = 1.7890A and Ka2 = 1.7928A) that was operated at 35 kV and 40 mA. To
verify alignment and calibration within 0.01° 2-theta tolerance of the certificate value for the brightest
reflection peak position, an external NIST Reference standard SRM1976b corundum (a-Al203) was used.
Using a locked-coupled continuous scan mode with a step size of 0.01° 20 and a count rate of 0.2 seconds
per step, the scan range was enhanced from 2 to 70° 26. The Bruker Eva® program presents raw data and
graphs known as diffractograms with patterns and peak positions identified. The raw data was then Ko2
stripped. Peak locations were compared to information from the powder diffraction file (PDF) database of
the International Centre for Diffraction Data (ICDD).

Eva software was used with the 2022-PDF database to identify the best-fit phases for mineral identification.
A structure file containing the unit cell lattice parameters, atom types, and atomic positions was exported
for each phase found. Semi-quantitative models of samples were analyzed using TOPAS® software. The
Rietveld refining method is the basis of this program. Using kinematic diffraction theory, this method
determines the theoretical diffraction pattern for each phase. The disparity between observed XRD data and
predicted patterns is then reduced using optimization techniques. The TOPAS software has choices for
optimizing structure file data and other factors, including preferred orientation, crystal planes, and mean
coherent scattering domain size. Additionally, the procedure enhances total XRD intensity, which is
associated with abundance and explains the weighted profile R-factor (Rwp), which was used to assess the
goodness-of-fit of each modification. For semi-quantitative analysis, model solutions with Rwp 15 are
typically acceptable. It is significant to highlight that mixed-layer structures cannot be considered in the
TOPAS® software calculations. As a result, despite additional optimization attempts in some circumstances,
adequate Rwp values were not obtained. Despite this restriction, consistent procedures were employed to
maintain model parameters with comparable ranges of values to enable inter-sample comparison of relative
abundances.

For the fine clay fraction, 10 g of dried sample were added to a centrifuge tube containing 38 g of sodium
hexametaphosphate and 8 g of sodium carbonate in 1 L of deionized water. The mixture was stirred for
about 1 minute using a Branson Sonifier Cell Disrupter 350. After that, samples were sieved to remove
particles > 63 um (230 mesh) to eliminate the sand fraction. Using conventional centrifugation methods,
the silt fraction, which is 63 pm in size, was separated from the 2-micron clay fraction. Following this
procedure, the resulting slurry was deemed to be Na-saturated. For Mg-saturated samples, this process was
repeated, and samples were prepared by exchanging in 0.1 M MgCla solutions. The slurry was centrifuged
to settle all the particles with adequate velocity and duration. Solution renewal and centrifugation processes
were repeated until full saturation was achieved. The slurry was given deionized water, and additional
centrifugation was used to eliminate extra salt. This fine fraction was mixed with 25 to 30 mL of deionized
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water, pipetted onto a glass petrographic slide (25 mm X% 40 mm), and airdried overnight. The sample was
kept in EG overnight in a closed EG atmosphere and heated in the oven for an hour at 110°C, 350°C, and
550°C. During the drying process, orientated particles are produced, which improve the phyllosilicate/clay
minerals' basal reflections.

Semi-quantitative analysis was performed using the Mg-saturated EG samples and the TOPAS® Rietveld
software. Bias was given to the basal reflections of the phyllosilicates, to accommodate their oriented state
of sample mounting.

4.0 Results

4.1 XRD

Clay mineral analysis results allow for the determination of minerals dominating strontium sorption and
will inform contaminant behavior for use in fate and transport modeling efforts. Determining the minerals
that dominate strontium sorption in F-Area aquifer sediments is an important component for characterizing
strontium behavior and designing effective treatment strategies for this contaminant. Minerals of particular
interest in the aquifer sediments include smectite, illite, goethite, quartz, and kaolinite. The mineralogy of
the aquifer sediments will impact contaminant behavior, reactivity, and transport in these systems.
Mineralogy analysis is accomplished through specialized sample preparation and XRD analysis. Resulting
diffraction pattemns are unique to each clay mineral type and can be used to distinguish between them and
quantify each fraction.

XRD bulk and XRD clay analyses are summarized in Table 4-1 (Figure 4-3) and Table 4-2, respectively.
Raw XRD spectra are also included in the Attachments section of this report (Figure 6-1 through Figure
6-39).

Bulk XRD analyses indicate, on average, that quartz is the dominant mineral, ranging from 36 to 94 wt. %.
Quartz is the most prevalent mineral, particularly in the UAZ and LAZ samples, as expected. Quartz
composed the largest fraction of the following sediments: FAW-05 (UAZ 49 ft), FAW-05 (UAZ 59 ft),
FSB-76A (LAZ 114 ft), FSB-76A (LAZ 124 ft), FSB-78A (LAZ 134 ft), and FSB-78A (TCCZ, 118 ft).
This is in good agreement with previous characterization of SRS F-Area sediments that confirmed that they
are primarily composed of quartz sand (Dong et al., 2012).

For all other sediments, kaolinite is the primary mineral, including FAW-05 (UAZ, 68 ft), FSB-76 A (TCCZ,
108 ft), FSB-78 A (LAZ, 124 ft), and FSB-78 A (TCCZ, 108 ft). Kaolinite, a secondary mineral, is the second
most abundant mineral overall, ranging from 2 to 52 wt.%. ‘Secondary’ in this text designates minerals that
were formed by the alteration of original minerals that were deposited in the formation. For example,
microcline (feldspar) dissolves incongruently leaving kaolinite. This high kaolinite content also mirrors
previous analysis of F-Area sediments where goethite and kaolinite were identified as the major mineral
components of the fine fractions (Dong et al., 2012). Goethite ranges from 1 to 14 wt.%, while illite (or
degraded micas) ranges in abundance from 2 to 19 wt.%. Illite is an exchanging clay that has been shown
to play a role in contaminant migration of radionuclides like Sr°, by promoting cation sorption (Missana et
al., 2008). Bulk XRD analysis does not distinguish vermiculite from smectite, hence quantitation was
grouped as expandable 2:1 clays. Content of 2:1 expandable clay ranged from 0 to 6 wt.%. Microcline
ranged from 0 to 4 wt.%.

A minor phase occurred in three samples, which produced a weak peak in the diffractogram (Appendix A).
Assignment of that peak was tentatively made to garnet; however, the certainty of that assignment

is weak. Nevertheless, the presence of gamet in the samples is reasonable because the original source rocks
for all of the samples include metamorphic rocks that contain gamet.
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Bulk XRD results also give information about the change in mineral composition with depth. The vertical
profiles of these values (Figure 4-1) show that quartz dominates the mineral composition (> 85%) in the
upper and middle part of the UAZ. But as the lower part of the UAZ is approached and then the TCCZ is
reached, quartz composition is reduced to ~30% (except FSB78A 118 ft which has 69%). In the LAZ,
quartz increases again to ~60% of the total bulk fraction. The opposite trend to quartz is seen in kaolinite
concentrations. In the upper and middle portion of the UAZ, kaolinite represents only ~ 6%. The kaolinite
fraction is highest in the lower part of the UAZ and TCCZ, then decreases in the LAZ (except for FSB-78 A
124 ft). As the bottom of the UAZ and TCCZ are approached, kaolinite presence is increased to 40-50%,
but then decreases to between 3-38% in the LAZ. Goethite content (1-3%) in the bulk sediment is fairly
similar in the UAZ, TCCZ, and LAZ, with its content only increasing (14%) in the bottom part of the UAZ.
Other mineral contents in the bulk sediments generally do not change much between the different aquifer
zones.

Table 4-1. Bulk XRD Analyses of F-area Aquifer Sediments.

Bulk XRD weight percent (error + 10% of values listed)

Sample ID Quartz Garnet Microline | Kaolinite | Illite | Smectite | Goethite
FAW-05-UAZ 49 94 1 0 2 2 0 2
FAW-05-UAZ 59 86 1 0 6 4 0 3
FAW-05-UAZ 68 29 0 0 40 17 0 14

FSB-76A-TCCZ 108 28 0 3 52 12 3 2
FSB-76A-LAZ 114 66 0 0 25 8 1 2
FSB-76A-LAZ 124 88 1 0 3 8 0 1

FSB-78A-TCCZ 108 36 0 2 41 13 5 3

FSB-78A-TCCZ 118 69 0 4 17 6 3 2
FSB-78A-LAZ 124 36 0 3 38 14 6 2
FSB-78A-LAZ 134 60 0 2 26 8 4 1

Note: Red columns considered primary minerals, while green columns considered secondary minerals.
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Figure 4-1. Mineral composition depth profile for bulk sediment samples a) FAW-05 and FSB-76
and b) FAW-05 and FAB-78

The clay fraction analysis of the samples in Mg-saturated states (air-dried, EG, 110°C, 350°C, and 550°C)
allowed for more detail identification of fine phases (Table 4-2). Kaolinite is confirmed by collapse of its
structure at ~7.1A upon heating to 550°C. Goethite is confirmed by collapse of its structure at 4.14A at
350°C. The occurrence of peaks at ~17A shifting to larger d-spacings from air-dried to EG (under EG
solvation) and collapse to 10A upon hearing indicated the presences of expandable 2:1 structures. All
samples were Mg-saturated, which is an ion that has a high valance and hydration energy. Samples that
expanded to 17A are listed as smectite clays.

Fine fraction XRD analyses display different trends than those seen in bulk analysis results (Figure 4-2). In
the fine fractions (< 2 um), kaolinite and smectite tend to dominate the mineral composition of most samples
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(Table 4-2). Kaolinite is highest in the UAZ sediments, ranging between 67 and 91 weight percent. But in
the TCCZ and LAZ sediments, kaolinite decreases and smectite becomes the most abundant mineral (36-
89%). Goethite content is highest at the bottom of the UAZ, as seen in the bulk sediment analysis results.
Illite content is high in the upper part of the UAZ (26 wt. %), drops down to < 2 wt. % in the middle/lower
UAZ and LAZ. In the FSB-78 sample, illite content increases to a maximum in the TCCZ (47 wt. % at 118
ft), but this trend is not seen in FSB-76 results. Quartz content is minimal in the fines fractions for all
sediments throughout all zones, as expected; 3-7 wt. % in FSB-78, 2-4 wt. % in FAW-05, and 1-2 wt. % in
FSB-76.

Table 4-2. XRD Analyses of F-area Aquifer Sediment Fine Fractions.

Fine fraction (<2 pm) weight percent
Sample ID Quartz Kaolinite Smectite Illite Goethite | CarFap
FAW-05-UAZ 49 3 67 0 26 4 0
FAW-05-UAZ 59 2 91 0 2 5 0
FAW-05-UAZ 68 4 81 0 2 14 0
FSB-76A-TCCZ 108 1 1 97 0 0 0
FSB-76A-LAZ 114 2 3 94 1 1 0
FSB-76A-LAZ 124 2 5 90 2 1 0
FSB-78A-TCCZ 108 6 14 54 25 0 1
FSB-78A-TCCZ 118 7 10 36 47 0 0
FSB-78A-LAZ 124 7 1 91 1 0 0
FSB-78A-LAZ 134 3 0 89 0 7

CarFap = carbonate fluorapatite. Illite includes degraded mica.
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Figure 4-2. Mineral composition depth profile for fine fractions of sediment samples a) FAW-05
and FSB-76 and b) FAW-05 and FAB-78
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Figure 4-3. XRD Analyses of Bulk F-area Aquifer Sediments

4.2 CEC and AEC

Table 4-3 compares measured CEC and AEC values for each sediment. As expected, quantified CEC values
are higher than AEC values for all aquifer sediments. CEC values ranged from 0.09 cmol/kg to 21.02
cmol/kg, while AEC values ranged from below detection (< 0.03 cmol/kg) to 0.35 cmol/kg.

FSB-78A samples had higher overall CEC values than FAW-05 and FSB-76A sediments. Samples
collected from the TCCZ also typically had higher CECs than those from the LAZ for both FSB-78A and
FSB-76A (with the exception of FSB-78 A collected at 118 ft). This can possibly be attributed to the mineral
composition of the sediments. FSB-78 A sediments have higher clay contents than the other soils on average,
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which would increase the CEC values. A higher clay content, particularly when composed of smectite and
other mixed clays, results in higher CEC values because clays have a higher surface area than quartz grains
and smectite has a higher CEC compared to other clay; thus, making them more likely to contribute to the
sorption of cations like strontium.

FSB-76A samples have not been exposed to contamination (or were exposed to very little), while the other

two samples have been exposed for decades. However, the CEC of FSB-76A and FAW-05 are comparable,
supporting that the acidic groundwater plume likely did not impact that sorptive property.

Table 4-3. CEC and AEC Analyses of F-area Aquifer Sediments.

Sample ID CEC (cmol/kg) AEC (cmol/kg)
FAW-05-UAZ 49 7.7 0.09
FAW-05-UAZ 59 0.09 0.06
FAW-05-UAZ 68 5.04 0.35

FSB-76A-TCCZ 108 6.87 0.07
FSB-76A-LAZ 114 3.01 0.03
FSB-76A-LAZ 124 1.26 0.03
FSB-78A-TCCZ 108 21.02 0.26
FSB-78A-TCCZ 118 4.22 0.03
FSB-78A-LAZ 124 12.34 0.03
FSB-78A-LAZ 134 8.59 0.03

The vertical profile for the CEC values for the FAWO05/FSB76A system is very similar to kaolinite and
illite patterns for the bulk mineral composition (Figure 4-4). This could indicate that these two minerals
dominate the cation exchange of those sediments. In the case of FAWO005/FSB78A, it is likely that illite
and smectite dominate the cation exchange capacity since the CEC vertical profile is similar to the fine
fraction.

AEC did not exhibit any trends and was low in all samples, especially compared to reported CEC values.
FAW-05 had a higher AEC than the other two sediments, with the highest capacity for FAW-05 at 68 ft.
AEC values may also be correlated with mineralogy. For instance, the sample with highest AEC is also that
with the highest goethite concentration. A possible correlation (R* = 0.701) between AEC and goethite
weight percent was found (Figure 4-5). This comparison plot assumes AEC values below the detection limit
were assigned a value of half the minimum (i.e., 0.01 cmol/kg). The positive correlation is consistent with
the notion that goethite has AEC at circum-neutral pH condition.

13
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Figure 4-4. Cation exchange capacity and anion exchange capacity values for a) FAW-05 and FSB-
76 and b) FAW-05 and FAB-78
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Using the assumptions in Table 4-4, Figure 4-6 is a plot of measured CEC values versus the combined illite
and smectite content (wt. %) in the bulk samples. A generally positive correlation exists between the two
independent measures. This supports the notion that the clay minerals are responsible for CEC response
measured, with a further idea that a nominal amount of expanding clay can have a large impact on the CEC
properties of a sample.
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Figure 4-6. Measured CEC versus clay (illite and smectite) content from bulk XRD mineralogy
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Table 44. Sum of primary (red) and clay minerals (green).
Sum % N Weighted CEC Weighted CEC kg
Sample ID primary Sun.l 0GRy <2 pm clay/kg sample
q minerals
minerals
FAW-05-UAZ 49 94.3 3.9 13.4 0.5
FAW-05-UAZ 59 86.8 10.5 9.8 1.0
FAW-05-UAZ 68 28.7 57.4 9.0 5.2
FSB-76A-LAZ 114 65.8 33.6 47.5 15.9
FSB-76A-LAZ 124 89.2 10.2 46.2 4.7
FSB-76A-TCCZ 108 31.2 66.9 48.7 32.6
FSB-78A-LAZ 124 39.8 58.2 46.1 26.8
FSB-78A-LAZ 134 61.6 37.5 44.9 16.8
FSB-78A-TCCZ 108 38.5 58.1 34.4 20.0
FSB-78A-TCCZ 118 73 25.5 30.8 7.8
Quartz Kaolinite | Smectite (2:1) | Illite Goethite CarFap
Assumed CEC
(cmol/kg) 1 10 50 25 3 1

Note: Weighted sums of CEC were calculated using assumed CEC values for individual mineral
(gray row) and mineral abundances in the < 2 pm fine fraction. Weighted CEC values for each
sample were normalized by the relative abundance of clay minerals in the bulk samples.

5.0 Conclusions

e Quartz, microline, and gamet were identified as primary minerals, while kaolinite, illite, smectite,
and goethite were identified as secondary clay minerals, by XRD analysis.

e Quartz was found to be the most abundant mineral in the majority of aquifer sediment samples,
ranging from 36 to 94 wt. %. For all other sediments, kaolinite is the primary mineral (2 to 52
wt.%).

e CEC values ranged from 0.09 cmol/kg to 21.02 cmol/kg, while AEC values ranged from below
detection (< 0.03 cmol/kg) to 0.35 cmol/kg

e CEC/AEC values may be correlated with the mineral composition of the sediments. This is
supported by a somewhat high (R*= 0.7) correlation between goethite content and CEC, as well as
a generally positive correlation between measured CEC values and the weighted XRD CEC values
determined.

6.0 References

Denham et al (2021) Conceptual Model of Sr-90 Behavior in Groundwater of the F- and H-Area Seepage
Basins, Savannah River Site: Potential Attenuation Mechanism, Panoramic Environmental Consulting,
LLC, PanEnv-2021-002.

Dong et al. (2012) Uranium (VI) Adsorption and Surface Complexation Modeling onto Background
Sediments from the F-Area Savannah River Site, Environmental Science & Technology, 46, 1565-1571.

Missana et al. (2008) Sorption of Strontium onto Illite/Smectite Mixed Clays, Physics and Chemistry of the
Earth, Parts A/B/C, 33 (1) 156-162.

16



SRNL-STI-2023-00481
Revision 0

Appendix A. XRD Spectra
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Figure 6-1. Bulk XRD diffraction pattern: FAW-05, UAZ, 49 ft
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Figure 6-2. Zoomed bulk XRD diffraction pattern: FAW-05, UAZ, 49 ft
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Figure 6-3. Bulk XRD identification and semi-quantification: FAW-05, UAZ, 49 ft

A-20



FAW_05 UAZ_ 49 AD (Coupled TwoTheta/Theta)

SRNL-STI-2023-00481
Revision 0

| FAW 05_UAZ_43_ AD
| FAW_D5_UAZ 48 _EG
| FAW 05 UAZ 48 110
ﬁ | FAVV_05_UAZ_49 3850
I | FAW_0S_UAZ 43 550
| Ii
I >
b:'?‘ 1R 2
N L
Vi |' i
A Pt
; L
- _u-.-h*' o Ir I . " o
!
I H ilru |||
il |
e . I[-II I. w Ly
pe ke g J |' Ill‘ ....... i, W)
I \w!‘
] a4 ol = ] ] A
i 1 i
200 /) [
Y "."".""."" st L J{-‘Irﬂr{ 14.,'"' aluian il
v T iy PLrOT . el dansprr ol g,
1,000 |
A,
- . N WBSR—E | SPFROE U e, - ZYTT i
o
' T T T | T T ' !
10 20 a0 40

2Theta (Coupled TwoTheta/Theta) WL=1.78897

Figure 6-4. Clay fraction XRD diffraction pattern: FAW-05, UAZ, 49 ft
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Figure 6-5. Bulk XRD diffraction pattern: FAW-05, UAZ, 59 ft
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Figure 6-6. Zoomed bulk XRD diffraction pattern: FAW-05, UAZ, 59 ft
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Figure 6-7. Bulk XRD identification and semi-quantification: FAW-05, UAZ, 59 ft
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Figure 6-8. Clay fraction XRD diffraction pattern: FAW-05, UAZ, 59 ft
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Figure 6-9. Bulk XRD diffraction pattern: FAW-05, UAZ, 68 ft
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Figure 6-10. Zoomed bulk XRD diffraction pattern: FAW-05, UAZ, 68 ft
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Figure 6-11. Bulk XRD identification and semi-quantification: FAW-05, UAZ, 68 ft
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Figure 6-12. Bulk XRD diffraction pattern: FSB-76A, LAZ, 114 ft
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Figure 6-13. Zoomed bulk XRD diffraction pattern: FSB-76A, LAZ, 114 ft
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Figure 6-14. Bulk XRD identification and semi-quantification: FSB-76A, LAZ, 114 ft
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Figure 6-15. Clay fraction XRD diffraction pattern: FSB-76A, LAZ, 114 ft
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Figure 6-16. Bulk XRD diffraction pattern: FSB-76A, LAZ, 124 ft
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Figure 6-17. Zoomed bulk XRD diffraction pattern: FSB-76A, LAZ, 124 ft
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Figure 6-18. Bulk XRD identification and semi-quantification: FSB-76A, LAZ, 124 ft
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Figure 6-19. Clay fraction XRD diffraction pattern: FSB-76A, LAZ, 124 ft
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Figure 6-20. Bulk XRD diffraction pattern: FSB-76A, TCCZ, 108 ft
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Figure 6-21. Zoomed bulk XRD diffraction pattern: FSB-76A, TCCZ, 108 ft
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Figure 6-22. Bulk XRD identification and semi-quantification: FSB-76A, TCCZ, 108 ft
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Figure 6-23. Clay fraction XRD diffraction pattern: FSB-76A, TCCZ, 108 ft
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Figure 6-24. Bulk XRD diffraction pattern: FSB-78A, LAZ, 124 ft
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Figure 6-25. Zoomed bulk XRD diffraction pattern: FSB-78A, LAZ, 124 ft
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Figure 6-27. Clay fraction XRD diffraction pattern: FSB-78A, LAZ, 124 ft
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Figure 6-28. Bulk XRD diffraction pattern: FSB-78A, LAZ, 134 ft
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Figure 6-29. Zoomed bulk XRD diffraction pattern: FSB-78A, LAZ, 134 ft
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Figure 6-30. Bulk XRD identification and semi-quantification: FSB-78A, LAZ, 134 ft
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Figure 6-31. Clay fraction XRD diffraction pattern: FSB-78A, LAZ, 134 ft
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Figure 6-32. Bulk XRD diffraction pattern: FSB-78A, TCCZ, 108 ft
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Figure 6-33. Zoomed bulk XRD diffraction pattern: FSB-78A, TCCZ, 108 ft
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Figure 6-34. Bulk XRD identification and semi-quantification: FSB-78A, TCCZ, 108 ft
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Figure 6-35. Clay fraction XRD diffraction pattern: FSB-78A, TCCZ, 108 ft
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Figure 6-36. Bulk XRD diffraction pattern: FSB-78A, TCCZ, 118 ft
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Figure 6-37. Zoomed bulk XRD diffraction pattern: FSB-78A, TCCZ, 118 ft
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Figure 6-38. Bulk XRD identification and semi-quantification: FSB-78A, TCCZ, 118 ft
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Figure 6-39. Clay fraction XRD diffraction pattern: FSB-78A, TCCZ, 118 ft
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