T aomﬁ.%w//?“‘[

SONDG - p8#2 e

Proving Refinement Transformations Using
Extended Denotational Semantics

Victor L. Winter*
Intelligent Systems and Robotics Center
Sandia National Laboratories
Dept 9622, P.O. Box 5800
Albuquerque, NM 87185-0660, U.S.A.
vlwinte@sandia. gov

James M. Boyle
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, U.S.A.

boyle@mcs.anl.gov -

Abstract

TAMPR is a fully automatic transformation system based on syn-
tactic rewrites. Our approach in a correctness proof is to map the
transformation into an axiomatized mathematical domain where for-
mal (and automated) reasoning can be performed. This mapping is
accomplished via an extended denoctational semantic paradigm.

In this approach, the abstract notion of a program stafe is dis-
tributed between an environment function and a store function. Such
a distribution introduces properties that go beyond the abstract state
that is being modeled. The reasoning framework needs to be aware of
these properties in order to successfuly complete a correctness proof.

This paper discusses some of our experiences in proving the cor-
rectness of TAMPR transformations.

*This work was supported by the United States Department of Energy under Contract
DE-AC04-94A1.85000.

tThis work was supported in part by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Computational and Technology Re-
search, U.S. Department of Energy, under Contract W-31-109-Eng-38, and in part by the
BM/C3 directorate, Ballistic Missle Defense Organization, U.S. Department of Defense.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
a

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

1 Denotational Semantic Paradigm

Denotational semantics is an approach that is used to give formal semantics
to a language whose syntax is defined in terms of a context free grammar.
Given a language L(G), one constructs a set of valuation functions that map
elements of L(G) to ezpressions belonging to some mathematical language
L, whose semantics is assumed to be known.

In denotational semantics an element, p € L(G), is represented in terms
of its syntaz derivation tree (SDT). This SDT shows, in a graphical form,
the grammar productions that were used to generate p, and it is this SDT
that is given a semantics (i.e., defined) through valuation functions.

The standard description of valuation functions is that they “define the
meaning of an SDT, having root n, in terms of an expression consisting
of (1) elements of Lps and (2) valuation functions for the nodes that are
the immediate descendents of n”. Since the relationship between n and its
immediate descendants has a one-to-one correspondence with a grammar
production, another way to view valuation functions is as follows:

1. Given a grammar production of the from: <S> — <A> b <C>. where
b is a terminal symbol.

2. Ve input_sdt. A other_inputs. e({Vg[[<A>]] z),(V[[]] v))-
Here V is a valuation function for the set of SD'T’s having <S> as the
root and <A> b <C'> as its immediate descendants. The definition of
Vs is given in terms of a A-Calculus expression. The first parameter
of this expression represents the SDT whose semantics is being defined
by the valuation function V.

Generally, the semantics of an SDT will itself be a function. In this
case, the semantics is a function from other_inputs to the “type of
the expression e€”. The expression e consists of objects (e.g., constants
and functions) from £ in addition to (V4 [[<A>]] z) and (V,[[]]
y) which themselves are valuation functions. The function V, has a
signature similar to V5 (i.e., it takes an input sdt and other_inputs)
and is passed <A> and z as its actual parameters. The notational
convention is that SDT’s are surrounded in “double square brackets”
to remind the reader that the object is a syntax derivation tree an not
just a “flat” string. Hence we write (V,[[<A>]] z) instead of (V,<A>

When defining the semantics of a language L(G) using denotational se-
mantics, one begins with (selects) a mathematical foundation £ys and con-

structs valuation functions that assign meanings to the nonterminal/terminal
symbols in G. The goal is to construct a valuation function, Cprog, that
can be used to determine the meaning of entire programs (i.e., elements of
L(G)).

Programs in most programming languages can be viewed as functions
from states to states. Here state is used in the standard sense and refers
to “variables and the values to which they are bound”. The meaning of a
program then, is the sequence of states it passes through during the course
of its execution. Denotational semantics is used to define programs (i.e., the
execution of programs) in terms of such sequences. This is accomplished
by constructing a mathematical state space, M within £js. Generally, M
will consist of an environment function, &, and a store function, s. The
environment function ¢ maps identifiers to storage locations, and the store
function s maps storage locations to denotable values. A denotable value is
a value that an identifier in the language can represent (e.g., integers, reals,
ete.).

After a suitable M has been created, denotational definitions can now
be constructed that define the execution semantics of a program in terms of
state sequences in M.

2 The Semantics of Schemas

2.1 Overview

The objective of this work is to use denotational semantics as a vehicle to
enable reasoning about the correctness of refinement transformations. In
particular, we are interested in proving the correctness of TAMPR transfor-
mations [1][2].
In general, refinement transformations can be viewed as rewrite rules
having the form:
1Epar.tter'n, = treplacement

In TAMPR, the patterns and replacements of refinement transformations
are viewed in terms of SDT’s, whose roots referred to as their dominating
symbols. Furthermore, these SDT’s, which in this context we refer to as
schemas, are generally incomplete in the sense that they contain nonterminal
symbols as leaf elements. A nonterminal symbol in a leaf position is referred
to as a schema variable. A schema variable will “match” (i.e., unify with) all
SDT’s having the same dominating symbol. It is through schema variables,
that schemas have the ability to match more than one SDT, and it is through

this matching ability that a transformation whose pattern contains one or
more schema variables will have general applicability.

Unfortunately, standard denotational semantics is not concerned with
the semantics of schema variables. Standard valuation functions are not
defined in cases where they encounter a nonterminal symbol having no sub-
trees. Since schemas often contain such nonterminals (i.e., schema vari-
ables), the semantics of schemas are also undefined. This needs to be reme-
died if one wishes to use the denotational semantics of a language as a basis
for reasoning about the correctness of transformations.

2.2 Delta-Functions

Fortunately, the denotational semantics of a language provides enough in-
formation to allow the semantics for nonterminals (i.e., schema variables) to
be determined. For example, consider the following partial grammar:

<ezpr> — <id> | ...
<id> —z|yl|z

A continuation semantics of <ezpr> and <id> might be:

eapr[[<id>]] E A e. As. A k. Eyl[<id>] e s k
[[:v]] Ef N e Xs Ak k(s(e()
Eullyl] & Xe. X s. A k. k(s(<(y)
Eialle]] &' X e. X 5. A k. k(s(e(2))

)
)
)
Here k is a traditional continuation function having the signature:

k : denotable_value — store

For more on continuations see [5].
Using the denotational semantic definitions given above we consider the
semantics of the following three SDT’s:

(a) (b) (c)

Three SDT’s

In this example, the SDT (a) evaluates to a denotable value that is bound to
the identifier z. SDT (b) has a schema variable as its leaf, and so does SDT
(c). What can we say about the semantics of (b) and (c)? Well, we know
that k is the continuation for both SDT’s. We also know that k expects an
input of type denotable value. Thus we conclude that SDT (b) and SDT (c)
both will ultimately evaluate to a denotable value (actually, evaluation to an
undefined value is also possible but that is beyond the scope of this paper).
With respect to the above example we cannot pin down the semantics of (b)
and (c) any tighter. In summary then, the meaning of any syntax derivation
tree having <ezpr> as its root will be an element belonging to the set of
denotable values.

What else can one say about the denotable value corresponding to an
SDT having <ezpr> as its dominating symbol? Consider an occurrence,
in an actual program p, of an SDT e;, having <ezpr> as its dominating
symbol. Consider a point in the execution of p when the SDT e; is evaluated
(i.e., e1 is executed). The evaluation of e; will take place with respect to a
specific environment and store. In particular the evaluation of e; is génerally

dependent upon (i.e., a function of) the environment and store in which it is
evaluated. Thus one thing that we know about the schema variable <ezpr>,
is that the semantics of every SDT having this root is of the form:

)‘ (57 S). A‘U(57 S)
Where A, is a semantic function having the signature:

A, : environment x store — denotable value.

A similar result holds for the schema variable <id>.

Exploring this idea further, let us consider the nonterminal <assign>
denoting the set of assignment statements for a side-effect free Pascal-like
language. For such a language, executing an instantiation of <assign> will
result in a (single) change to the store. If the denotational semantics of the
language under consideration defines assignments as “commands that take
an environment and a store as input and produce a store as output”, then
the corresponding delta-function for <assign> will be:

A (g,8). Agle, 8)
Where A; is a semantic function having the signature:
Ag: environment X store — store.

Similarly, execution of an arbitrary declaration will result in a change to
the environment (i.e., A).

Note that the abstract semantics of a nonterminal like <assign> can be
described in terms of a function that takes an environment and a store as
input and returns a new “changed” store. Because many nonterminals have
an abstract semantics that can be described in terms of such a “change”,
we have coined the term delta-function to describe an abstract valuation
function that gives the semantics of a nonterminal. In general, we think of
delta-functions as describing the “change in meaning” across a nonterminal.

2.3 The Importance of Delta-Functions

We would like to point out that delta-functions, in the semantics of schemas,
play a role similar to that played by variables in standard algebraic expres-
sions. However it would be incorrect to simply use generic variables in place
of delta-functions. Consider the following transformation which replaces “if
<be> then <stmi>q else <stmi>y;<stmit_tail>1” with “<stmt>1;<stmi_tail>".

(<stmi_tail>{ if <be> then <stmt>; else <stmt>1;
<stmt._tail>1}

t
LE! >
<stmt._tail>{<stmt>q;
<stmi_tail>,
\ }

Given the standard semantics for the if-then-else construct, one might con-
clude that this transformation is correct. However, the correctness of this
transformation not only depends upon the semantics of the if-then-else con-
struct, but also upon whether the evaluation of boolean expressions, in the
language under consideration, can cause side-effects. When using delta-
function semantics for the nonterminal <be> this constraint becomes ex-
plicit, and a correctness proof will not “go through” for languages where
such side-effects are possible. In contrast, when using a generic variable in
place of <be> this information will not be present and must be accounted
for by some other means.

2.4 Theoretical Considerations

It should be noted that there are many factors that determine just how
specific a delta-function can be. For example, in a language that supports
parallel assignments, the most general delta-function for a <parallel_assign>
can only say that one or more identifiers will be assigned new values. Con-
trast this with an assignment statement in a sequential language where a
side-effect free assignment will change the value of exactly one identifier.

Also, the examples we have considered above are quite simple. Non-
trivial valuation functions and continuations can exist within a denotational
semantics. For some of these, it is not immediately obvious what the appro-
priate and relevant delta-functions are.

Finally, in addition to inherent properties of the language, properties
established by preceding transformations can also have an effect on delta-
functions. Note that, applying a sequence of transformations to a speci-
fication/program s will result in a program p having certain syntactic and
semantic properties deriving from the canonical forms achieved by the trans-
formations in the sequence. For example, a program can be transformed
into a cannonical form where evaluation of boolean expressions in condi-
tional statements will not cause side-effects regardless of the general policy
regarding side-effects that is supported by the language. To see this consider

the following transformation:

(<stmit_tail>{z = <be> ;
if zthen <stmt> else <stmt>q;
<stmi tail>

LE! = }

<stmt-tasl>{z := <be> ;
<stmi>1;
<stmt._tail>

\ }

This transformation can be applied in general, because it provides the con-
text for its application—namely that the boolean expression of a conditional
test consist of a single variable. However, suppose a transformation sequence
has been applied to a program so that this property holds for all conditional
statements within the program. For such a program the transformation 7;
given earlier is correct! The explaination of this comes from the realization
that transformation sequences can alter the semantics of delta-functions.

In general, the properties established by preceding transformations can
impact the semantics of delta-functions of future transformations that are
used to further refine p. In the presence of such properties, one can think of
a nonterminal as having a family of delta-functions: a most general delta-
function which results from the semantics of the language, and other more
specific ones that incorporate properties established by prior transforma-
tions.

We have found that for many transformations, using the most general
delta-function, which can usually be determined by inspection, is sufficient
to permit a correctness proof to be obtained. However, because of the the-
oretical subtleties in determining the exact semantics of delta-functions (as
mentioned above), we are developing an automated procedure for determin-
ing the semantics of delta-functions with respect to a given set of denota-
tional semantic definitions. We are also looking into how transformations
can effect delta-functions.

3 The Refinement Relation in M

3.1 Motivation

The objective of TAMPR transformations is to introduce and restructure
computation in a manner consistent with the notion of refinement. In gen-
eral, refinement can have two possible effects on the precondition (initial
state) and postcondition (final state) of a code segment, ¢, corresponding to
a schema: refinement may logically weaken the precondition of ¢, or refine-
ment may logically strengthen the postcondition of c.

To prove the general correctness of a refinement transformation, one
must prove that any code segment matching the pattern of the transforma-
tion will be refined by the correspondingly instantiated replacement schema.
In our paradigm, this is accomplished by demonstrating that the replace-
ment schema will, for all possible instantiations, produce an (abstract) state
that is a refinement of the (abstract) state produced by the correspondingly
instantiated pattern.

The previous paragraph motivates the need for reasoning about abstract
states. In our denotational semantics, abstract state is captured by M.
Therefore we need to be able to reason about refinement relationships within

M.

3.2 The State Space of a Denotationally Defined Computa-
tion

To give a full and correct description of the scope of identifiers, the state
space M, for most denotationally defined languages is represented by the
cross product of an environment function, e, and a store function, s (and
possibly some additional constructs such as counters). Note that in this rep-
resentation, obtaining the value corresponding to an identifier requires two
steps: the environment function maps the identifier to a storage location,
and the store function maps that storage location to a denotable value.
For example, consider the following code segment:

5;
T

x:
Yy +3;

Let (g1, s1) denote the environment and store tuple that exist at the
point in the program before the execution of the above code segment. After
the code segment has been executed, the following environment-store tuple

(22, s2) will be produced. Here 1 = &2, and sz is a store that is identical
to s; except that the storage locations corresponding to « and y will have
the values 5 and 8 respectively. From this example, one can see that, when
taken together, the environment and store functions provide the (abstract)
state information of a program.

The abstract state is important because it provides a basis for verifica-
tion. In traditional verification of programs, a code segment is proved to be
correct by showing that if the execution of the code segment is begun in an
abstract state satisfying a given precondition, then it will terminate in an
abstract state satisfying a given postcondition.

The transformational perspective is somewhat different, but neverthe-
less related. In an application of a transformation of the form tpattern =
treplacement, @ fragment of code matching ¢pastern is replaced with the frag-
ment of code corresponding to trepiacement- If the semantics of the program-
ming language allow us to conclude that the execution of any fragment of
code corresponding t0 treplacement Will Tesult in an abstract state that is a
refinement of the abstract state produced by executing the fragment of code
matched by tpastern, then we can conclude that the substitution (i.e., the
transformation) is correctness preserving. It is easy to show that correct-
ness preservation is simply a projection of the traditional notions of program
correctness onto program substitution (i.e., transformation).

3.3 Refinement Properties in ¢ X s

The domain M % ¢ x s forms a refinement lattice with m 1 def (e1,81)

being the bottom element and mt &f (eT,sT) denoting the top element.
The components of m; and mT are defined as follows:

er ¥ 2z L)
s1 ¥z 1)
er & (Az. T)

st Az. T)

Since one of the purposes of the environment and the store is to capture
the notion of state, we generally consider environment and store functions
in pairs. That is, we only consider a function to be an environment function
(or a store function) when it is part of a tuple belonging to M. For example,
when we mention the store s;, the implication is that this store is part of

def . . def .
m1 = (e1,51), similarly € is part of m < (g, s). From here on out, we will use

10

the terms “element of M” and “state” interchangeably. We make explicit
only that portion of the state that is necessary to facilitate understanding.
Before discussing refinement on € X s we begin with a few definitions.

Definition 1 (Function Alteration.) Let ¢ denote an arbitrary envi-
ronment function. The notation [x — ale denotes an environment having
the same mapping as € for all identifiers except x. For [z v ale the storage
location (i.e., the output of the function) associated with x is a. For more
on this notation see [5].

Definition 2 General refinement on functions. Given any two functions f
and g such that f : D1 — Ds and g : Dy — Ds.

fCg¥vreDy, f(z) Cgla)
Definition 3 f=g< (FCgAgT f)

Definition 4 General refinement on tuples.

(f1,01) C (f2r92) € (L C f2) A (01 T g2).-

Note that the preceding definition gives the standard definition of refine-
ment for tuples [4], which is applicable to all tuples.

In contrast, environment and store functions enjoy special properties
with respect to refinement that are not shared by other functions. These
properties are important for proving the correctness of transformations, be-
cause they enable proofs in cases that could not be proved from the general
definition of refinement alone. To emphasize the difference between general
refinement for functions and refinement for the domain M, we introduce a
the symbol, ™ to denote the refinement relation as it manifests itself in
M. The semantics of CM is given below.

For states, definition 4 should be weakened from an equality to an im-
plication as stated in Axiom 1.

Axiom 1 (g1 Ceg) A (s1 C 82) = (e1,91) M (€2, 52)
Axiom 2 Refinement within M
(e1,51) M (e2,50) & (Vzeid, ((ealz) =1) = (ea(z) =L1))A

(s1(e1(2)) C sa(ea(2))))-

11

This axiom states that the address that a variable gets mapped to in the
store is not important with respect to our abstract notion of state. Note
that ((ez2(z) =1) = (e1(z) =1)) is critical for most imperative languages.
This expression distinguishes the case where a variable is undefined because
it has not be declared from the case where the variable is undefined because
it has not been assigned a value.

For some languages, program commands can be cleanly partitioned to
those that alter the environment and those that change the store. For this
reason the following two instantiations of Axiom 2 are of special interest.

(81,8) ;M (62,8) = (Vl‘ & ’id, ((Ez(ﬂ?) =..L) = (51(33) =_L))/\
(s(e1(x)) E s(ea(z))))-

o (5,51) EM (e, 82) = (Vz € id, (s1(e(a)) E s2(e(x))))

Axiom 3 For a given a. (—3z € id,e(z) = @) = (¢,8) TM (¢, [a —L]s).

This axiom states that the value of any location in the store that does not
have a corresponding identifier is irrelevant. This axiom is for convenience
more than anything else, for it allows the denotational semantics to omit
“storage cleanup” operations between scope boundaries.

Lemma 1 ((¢,s) CM (¢, [a —1]8)) = ((¢,8) = (&, [a —1]s)).
Axiom 4 z # y = (e(z) =L)V (e(z) £ e(y)). We do not permit aliasing.

Axiom 5 3a € storage_locations,¥a! € storage_locations, (la| < |&/|) =
g(o/) =L. The number of storage locations in an environment is finite.
This is a necessary restriction to enable a constructive realization of the
function new which is defined in Section 4.1.

Lemma 2 (recursive definition of CM)

(Vz €id, e1(z) #L A ex(z) #LA
(s1(e1(z)) E s2(e2(z)))A :
((e1, [er (@) —Ls1) EM (g2, [e2(z) —L]s2)) = (e1,51) TM (e2,52)))

12

4 Refinement on schemas

We can extend the above definition of refinement of states to define re-
finement for transformation schemas. Given a transformation schema ¢ (a
syntactic object), we use the symbol # to denote the expression in the math-
ematical domain (i.e., the semantic object) that corresponds to t according
to our extended denotational semantics.

Definition 5 (general refinement — unconditional correctness)
t1 Tty & Vstate; € M, %i(state;) TM fa(state;)

This is the most general form of refinement on schemas. Also note that
what we have just extended our definition of refinement from a semantic
domain into a syntactic domain. From this point on, it makes sense to talk
about “refinement of schemas”.

4.1 Semantic Properties

In Section 3.3 we discussed (semantic) properties of M. Additional semantic
predicates and functions are often useful for showing that one schema is a
refinement of another. A common predicate is uniqueness (for variables)
and a common function is new (for addresses). These are defined as follows:

Definition 6 unique(z, (&, s)) &f (e(z) =1)

Definition 7 new & (A €. @) such that (—=3z € id, e(z) = a) holds.

Note that the latter definition places a requirement on the storage al-
location and management strategy that it be able to generate an o with
respect to a specific € in accordance with the definition of new.

5 Correctness Proofs

In this section we prove the correctness of a simple TAMPR transformation.
We stress that this transformation is simple and is used for illustrative pur-
poses only. Nevertheless in spite of its simplicity, 77 is interesting because
in other semantic systems this transformation is give as an axiom. This is
in contrast to our semantic framework, where we can prove the correctness

of 7.

13

To date, we have proved the correctness of several practical transforma-
tions, having substantially greater complexity, using this methodology [6].
For a partial grammar of Poly and its denotational semantics see [6]. For
more information on TAMPR and the syntax of transformations see [1].

5.1 A simple transformation

e Declaration Order Interchange. Interchanging the order in which two
variables are declared in a Poly program is a refinement.

<spec stmt>{< standard type >1 z,y}
LES =
<spec stmt>{< standard type >1 y,z}

Theorem 1 (declarations are commutative).

< spec stmt > {< standard type >1 x,y}
£
< spec stmt > {< standard type >1 y,z}

Proof: If we omit some technical details, then the denotational definitions
will map the schema <spec stmt> {<standard type>1 z,y} to the semantic
function

Ales). ([ailly = age, 5)
13 pattern =
where new([y — agle) = a1 A new(e) = o

Similarly, the schema <spec stmt > {declare y,z} will get mapped to

A(e8). (ly = aqllz — agle,)

3 replacement =
where new([z — able) = o] A new(e) = ah

Let (e;, s:) denote a particular but arbitrarily chosen state from the do-
main of states. From this we get

,. ([z = aa]ly — agles, si)
t pattem(5i7 si) =
where new([y — asgle;) = a1 A new(e;) = oo

14

and

(ly = ai]lz = asles; 1)

¢ mplacement(5i7 Si) =
where new([z — able;) = &) A new(e;) = o

Axioms 2 and 3 together with Definition 7 (the definition of new) and
the fact that ¢; C &; gives us

([z = aally = aoles, s:) C™ ([y = o[z = aples, si).
which in turn allows us to conclude that
v(5i7 si) S states, Zgpatter‘n(ffiy Si) ;m f replacement(aia Si)

which leads to
t pattern £t replacement

Q.ED.

6 Conclusions and Future Work

In this paper we identified a deficiency of the traditional denotational se-
mantic paradigm with respect to schema variables. Since schema variables
occur frequently in TAMPR transformations, this motivated our work in
extending the denotational semantic paradigm with delta-functions. Delta-
functions can have a straightforward semantics, however languages and con-
texts within transformation sequences can exist where the semantics of delta-
functions can be quite complex. For these reasons, an automated procedure
for determining the semantics of delta-functions with respect to a given
grammar and its denotational semantics is being developed.

In denotational semantics, a computational state space M is constructed.
This state space generally consists of an environment and a store function.
The execution semantics of programs (syntactic objects) are then defined in
terms of M. The environment and store functions when considered together
capture the notion of the abstract state of a computation. Since information
about the abstract state is spread out over two functions, dependencies are
introduced. These dependencies must be factored out in order to allow
reasoning about the abstract state to proceed. The axioms, definitions, and
lemmas in Section 3.3 permit reasoning with respect to the state space M.

In conclusion, we believe that a properly extended denotational semantic
framework together with a correspondingly modified definition of refinement

15

provide an environment that is well suited for proving the correctness of
refinement transformations such as those used by TAMPR.

References

[1] James M. Boyle. Abstract programming and program transformation —
an approach to reusing programs. In T. J. Biggerstaff and A. Perlis,
editors, Software Reusability, pages 361-413. Addison-Wesley, 1989.

[2] James M. Boyle and Manochar N. Muralidharan. Program Reusability
through program transformation. IFEE Transactions on Software Engi-
neering, (5):574-588, September 1984

{3] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Me-
chanical Theorem Proving. Academic Press, Inc. San Diego, California,
1973.

[4] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill Inc.,
New York, New York, 1974.

[5] David A. Schmidt. Denotational Semantics. Wm. C. Brown Publishers,
Dubuque, Iowa, 1986.

[6] Victor L. Winter. Proving the Correctness of Program Transformations.
Ph.D. dissertation, University of New Mexico, 1994.

7 Biography

Victor L. Winter received his Ph.D. from the University of New Mex-
ico in 1994. His dissertation research focused on proving the correctness of
program transformations. Currently, Dr. Winter is a member of a newly
constructed High Integrity Software (HIS) group at Sandia National Labora-
tories. His research interests include trusted software, formal semantic mod-
els, theory of computation, automated reasoning and robotics. Dr. Winter
can be reached by phone in the United States at (505) 284-2696 or by email
at vlwinte@sandia.gov.

James M. Boyle received his Ph.D. from Northwestern University in 1970.
He has been active in the field of program transformation since writing his

16

dissertation on the initial design of the TAMPR transformation system. He
is a member of the Mathematics and Computer Science Division at Ar-
gonne National Laboratory. Dr. Boyle’s other research interests include
trusted software, parallel processing, and automated reasoning. He is coau-
thor of the books Automated Reasoning—Introduction and Applications and
Portable Programs for Parallel Processors. He can be reached at +1 708-
252-7227 or by email at boyle@mcs.anl.gov

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

