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SUMMARY

The high-level waste (HLW) vitrification plant at the Hanford Site was being designed
to immobilize transuranic and high-level radioactive waste in borosilicate glass. This
document describes the statistical procedure to be used in verifying compliance with
requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS,
USDOE 1993). WAPS 1.3 is a specification for "product consistency," as measured by the
Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium,

and boron.

Properties of a process batch and the resulting glass are largely determined by the
composition of the feed material. Empirical models are being developed to estimate some
property values, including PCT results, from data on feed composition. These r;lodels will be
used in conjunction with measurements of feed composition to control the HLW vitrification

process and produét.

Due to various uncertainties inherent in the HLW vitrification process, data, and
models, the procedure used to verify WAPS 1.3 compliance must be statistical in nature.
WAPS 1.3 does not prescribe any specific statistical approach, but it does provide some
guidance on the characteristics of the statistical procedure. The interpretation of WAPS 1.3 in
the context of the Hanford HL'W vitrification process is discussed in some detail. The
approach recommended for checking WAPS 1.3 compliance has both "during" and "after"
aspects. Specifically, each process batch will be checked for compliance individually during
production, and, after all batches in a waste type have been processed, compliance of the

entire population of batches in this waste type will be verified.

Each process batch will be checked for compliance with WAPS 1.3 using a confidence
interval on the mean PCT result for each element. Details of constructing these confidence

intervals, including proper estimation of uncertainty, are given.

Compliance with WAPS 1.3 for all batches in a given waste type will be verified by

using tolerance intervals for the population of PCT results (for each element) in this waste




type. During production, a “running” tolerance interval (one based on the current batch and
all previous batches in the same waste type) will be used to ensure that process batches are
similar enough that final, post-production verification of WAPS 1.3 compliance will be
possible. This post-production verification of WAPS 1.3 Compliance will also be achieved
using tolerance interval methodology. Details of constructing these tolerance intervals,

including proper estimation of uncertainty, are given.

Also discussed are related earlier work and some issues (removal of nuisance
uncertainties; the role of normality) that should be revisited when more data and information
are available on the final HLW vitrification process. Appendixes furnish technical
terminology, notation, derivations, and computer code for calculating statistical multipliers

and associated statistical characteristics.
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GLOSSARY

Acceptable—A batch or composition for which all applicable requirements will be met (with
some degree of statistical confidence, as discussed in the body of the document).

Analytical uncertainty--Uncertainty among analytical results from the same sample. This is a
composite form of uncertainty, made up of variability induced during sample preparation and
the inherent error of the measurement process itself.

Batch--A discrete quantity of material (waste, frit, recycle, or a combination of the three) to
be processed by the Hanford high-level waste (HLW) vitrification plant.

Batch-to-batch variability--Heterogeneity between batches made from the same waste type.

Bias—-Consistent departures of measured or estimated quantities from the true value (see also
error).

Components of covariance--Covariance matrices representing hierarchical levels of
uncertainty for multivariate data.

Components of variance-Variances represénting hierarchical levels of uncertainty in
univariate data.

Composition--The proportions of each chemical species in a batch of material to be processed
by the HLW vitrification plant; usually expressed as mass fractions of nine major oxides
(Si0,, B,0,, Na,0, Li,0, CaO, MgO, Fe,0;, AlL,O,, ZrO,) and a catchall tenth category,
"Others." In some cases, individual species normally included in "Others" may be segregated.

Composition uncertainty--Uncertainty in measured or estimated quantities stemming from
variability in material and/or sampling and analytical error.

Compositional data--A type of multivariate data in which the numerical values in each datum
are the proportions (or percentages) of the individual components of the material or

characteristic being represented by the datum. From their nature as proportions (percentages),
these numerical values must lie between 0 and 1 (0 and 100%), inclusive, and they must sum -
to 1 (100%).

Confidence--A measure of the long-run performance of a statistical procedure, expressed as
the probability that the procedure produces the advertised result. For example, the procedure
for producing a 95% confidence interval for the mean of a population has a 95% chance of
producing an interval that traps the mean. Note that confidence pertains to the procedure and
not to any particular result.




Confidence interval--A type of statistical interval designed to trap, with specified confidence,
a single fixed true value, such as the mean of a random variable.

Correlation--A standardized covariance which must lie between -1 and 1, correlation is
computed by dividing the covariance between two random variables by the product of the
standard deviations of the two variables.

Correlation matrix--A standardized representation of the interrelationships between individual
quantities that make up a multivariate datum, the correlation matrix is a symmetric matrix
with 1’s on the diagonal and the pairwise correlations in the off-diagonal positions.

Covariance--A measure of the tendency of two random quantities to vary together, covariance
is defined as the expected value of the product of the deviations of the two random quantities
from their respective means, i.e., Covariance(X,Y) = E(X - ux)(Y - Hy). Positive covariance
indicates that the two quantities tend to increase or decrease together. Negative covariance
indicates that one quantity tends to increase while the other decreases (or vice versa).
Covariance can be estimated from a sample of n pairs (X;,Y)), i = 1, ..., n, with the formula

Cov(X,Y) = Hi;fz (x:~X)(v:-7)

iw)
Covariance components--See components of covariance.

Covariance matrix--A representation of the uncertainties and interrelationships between
individual quantities that make up a multivariate datum, the covariance matrix is a symmetric
matrix with the variances of the individual quantities on the diagonal and the pairwise
covariances in the off-diagonal positions.

Direct constraints--Requirements and constraints on HLW material (feed composition, melt,
and glass) that pertain directly to measured quantities (e.g., oxide mass fractions) or to known
functions of these measured quantities. :

E()--See expected value.

Error--The random deviation of a measured or estimated quantity from the true value, related
to the imperfection of the sampling or analytical procedure. ’

Expectation—-See expected value.

Expected value--The éverage value of a random quanﬁty; in general, given a function, h(X),
of a random variable X, the expected value (or expectation) of h(X) is defined as

E(R(X)) = | h(x) dF(x) = | h(x) £f(x)dx.
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Feed--A generic term used to refer to any material béing processed in the HLW vitrification
plant, upstream of the melter itself (see also melr).

Long-term variability—-Heterogeneity in material over waste types.

Mean—A statistical measure of the average or central tendency of a random quaﬁtity; the
mean, y, of a random variable X is simply the expected value of X, i.e., p = E(X). The mean
can be estimated from a sample, X;, i = 1, ..., n, with the formula

X= 12}{

1-1

Melt--Material being processed by the HLW vitrification plant in the melter or before it has
cooled and solidified into glass. Before reaching the melter, this material will be referred to
as feed.

Model uncertainty—Uncertainty in an estimated property value stemming from imperfection of
the model used to relate feed composition to the property.

Modelled properties—-Properties of feed, melt, or glass for which statistical models are being
developed to relate feed composition to the property valies.

Moments--The expected values of powers of a random variable, X. The first moment, é‘(‘{)
is the mean, p. Central moments are expected values of powers of the deference between X
and its mean; the second central moment, E(X-p)?, is the variance.

Multiple-batch requirement or constraint--A requirement or constraint imposed over a set of
batches to be processed by the HLW vitrification plant; e.g., a property for which the
requirement is imposed on an entire waste type, rather than on the individual batches
constituting the waste type. See also single-batch requirement or constraint.

Nuisance uncertainty—An uncertainty that may be quantified and removed from a statistical
procedure in order to increase the efficiency of the procedure.

Prediction interval--A type of statistical interval designed to trap, with specified confidence, a
single random true value, such as a new observation of a random variable.

Relative standard deviation—The ratio of the standard deviation to the mean; estimated by
SX.

S--See standard deviation.

S?*--See variance.
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Sampling uncertainty—-See within-batch uncertainty.

Single-batch requirement or constraint--A requirement or constraint imposed on each
individual batch to be processed by the HLW vitrification plant, with no reference to the
characteristics of preceding or succeeding batches. See also multiple-batch requirement or
constraint.

Standard deviation--Defined as the square root of the variance, the standard deviation is a
measure of uncertainty on the same scale as the original quantity. Roughly, the standard
deviation is the average distance of an observed value from the mean.

Tolerance interval--A statistical procedure designed to trap, with specified confidence, a
specified proportion of the distribution of a random variable. The proportion of the
distribution to be trapped is termed the content of the tolerance interval. For example, a
95%/99% tolerance interval traps 99% of the distribution with 95% confidence.
Uncertainty--A general term used to refer to any of several measures of the random behavior
of some quantity; for example, see composition uncertainty, model uncertainty, variability,
and error.

Variability—Uncertainty related to heterogeneity in material under examination; for example,
see batch-to-batch variability.

Variance--A statistical measure of the random behavior of some quantity, variance is defined
as the expected value of the squared deviation of a random variable; X, from its mean, y, i.e.,
Variance(X) = E(X - p)®>. Variance can be estimated from a sample, X;, i = 1, ..., n, with the
formula

n

S* = %Z (2%

i=l

Variance components--See components of variance.

Variance-covariance matrix--See covariance matrix.

WAPS properties and requirements—-Properties of and requirements on.glass produced by the
HLW vitrification plant, as detailed in the Waste Acceptance Product Specifications (WAPS,
USDOE 1993). These properties and requirements are related to the performance of the glass
in the repository.

Waste type--A relatively homogeneous stream of waste to be processed by the HLW
vitrification plant. Several to many batches will be made from a single waste stream.
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Within-batch uncertainty--Uncertainty among samples from the same process batch; this is a
composite form of uncertainty, made up of variability (heterogeneity) in the process batch and
the inherent error of the sampling process itself.

X--See mean.







ACRONYMS
ANOVA--Analysis of variance
CVS--Composition Variability Study
DWPF--Defense Waste Processing Facility
EA--Environmental Assessment
HLW--High-Level Waste
[ID--Independent and identically distributed
LTL-~Lower tolerance limit
MEM--Measurement Error Model
PCT--Product Consistency Test
PVTD--Pacific Northwest Laboratory (PNL) Vitrification Technology Development
PPMD--Process/Product Model Development ‘
RSD--Relative standard deviation
UCL--Upper confidence limit
UTL--Upper tolerapce limit
WAPS-Waste‘ Acceptance Product'Speciﬁcations
WCP--Waste Form Compliance Plan
WQR--Waste Form Qualification Report.

WVDP--West Valley Demonstration Project
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1.0 INTRODUCTION

The high-level waste (HLW) vitrification plant at the Hanford Site was being designed
to immobilize transuranic and high-level radioactive waste in borosilicate glass. Each batch
of plant feed material must meet certain requirements related to plant performance, and the
resulting glass must meet requirements imposed by the Waste Acceptance Product
Specifications (WAPS, USDOE 1993). Similar vitrification operations will be performed in
the befense Waste Processing Facility (DWPF) at the Savannah River Site: DWPF has
developed a Product Composition Control System for controlling feed composition and for
checking and documenting product quality (Postles and Brown 1991, WSRC 1993). The
HWYVP Project Waste Form Qualification Program Plan (Randklev 1993) calls for the
" development of a product composition control-type system to perform these functions for the

Hanford HLW vitrification plant.

The -objectives of the Process/Product Model Development (PPMD) cost account of
the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project
include developing and testing methods and algorithms for the Hanford HLW vitrification
process/product control system. Various aspects of these methods and algonthrns are
discussed by Bryan and Piepel (1993), Bryan and Piepel (1994), and Bryan, Piepel, and
Simpson (1994). Due to uncertainties in the data and models to be used in controlling HLW
vitrification operations and product quality, these methods and algorithms must be statistical
in nature. For each process batch, the algorithms will: 1) choose a target feed composition,
2) estimate the actual feed composition by reconciling various process measurements, 3) use
the estimated feed composition to estimate, check, and document various batch and product
characteristics, and 4) recommend remediation strategies for process batches that do not meet

requirements.




Attributes® of 2 process batch and the resuiting glass are largely determined by the
composition of the feed material. In addition, remediation options are limited once material
reaches the melter. Therefore, the relationships between "upstream” feed composition and
"downstream" batch and glass properties will be exploited to ensure acceptable batch and

glass properties and to perform any required remediation before material enters the melter.

Development of empirical models relating feed composition to important batch and
glass properties is one objective of the ongoing Composition Variability Study (CVS; Hrma,
Piepel, et al. 1992, 1994). The Hanford HLW process/product control system will use these

models to estimate batch and glass properties as functions of feed composition.®

Two general types of uncertainty are important in HLW vitrification process/product
control: composition uncertainty® and model uncertainty. Composition uncertainty is the
uncertainty inherent in estimates of feed composition. This type of uncertainty may stem
from heterogeneity in material, imperfection of measurement processes, or both. Composition
uncertainty must be taken into account when estimating and checking any. batch or glass
attribute. Three components of composition uncertainty will play a role in estimating and

checking batch and glass attributes:

(a) Established usage reserves the word property for characteristics of the melt and glass
(which will usually be estimated via models based on feed composition), but
requirements and constraints will also be imposed on feed composition (oxide mass
fractions and functions thereof). To avoid confusion, the word attribute is used here to
refer to any characteristic of HLW vitrification material (feed, melt, and glass).

(b) The general forms of the CVS models are discussed in Section A.5. As noted there,
- several of the CVS models actually predict functions of property values, rather than
the raw property values. For example, the models used to demonstrate WAPS 1.3
compliance predict the natural logarithm of the relevant properties.

(c) Composition uncertainty might also be called data uncertainty, since it exists to some
degree in virtually any process used to collect data. However, the main type of data
to be used in HLW vitrification process/product control will be compositional data, so
the more specific term is used here. This term should be understood to include
uncertainties in other types of data (e.g:, tank level measurements) employed in HLW
vitrification process/product control.



. Batch-to-batch variability — Heterogeneity between process batches made from
the same waste type and frit. This type of heterogeneity might also be called
between-batch variability or within-waste type variability.

. Within-batch uncertainty -- A combination of heterogeneity within a single
process batch and any imperfections in the sampling process. This type of
uncertainty might also be called sampling uncertainty.

. Analytical uncertainty - A combination of heterogeneity within a sample,
variability induced during sample preparation, and any imperfections in the
analytical process.

Model uncertainty derives from the use of empirical models to calculate batch and
glass properties. This uncertainty must be taken into account when estimating and checking
modelled properties. Estimating this type of uncertainty is another objective of the CVS and

therefore is not discussgd in this document.

The main focus of this document is checking and demonstrating compliance of glass
produced by the HLW vitrification proc.:ess with the WAPS 1.3 specification. Some methods
and issues dealt with in this document are similar to those treated in two documents
developed for the West Valley Demonstration Project (WVDP): Anderson, Eggett, and Piepel
(1992), and Eggett and Piepel (1991). The major topics covered by this document are

*  types of statistical intervals and their use in demonstrating compliance with
specifications (Section 2);

. interpretation of the WAPS 1.3 specification (Section 3);

. methods for checking and documenting compliance with WAPS 1.3
(Section 4); and

. related work and issues (Set;tion 5).

Appendix A presents the statistical background and notation used in this document. Appendix
. B establishes the relationship between the noncentral t-distribution and statistical multipliers
required for constructing tolerance linﬁts. Appendix C contains a computer program that
calculates best tolerance limits and related statistical characteristics. Appendix D discusses

estimating and manipulating components of uncertainty for the HLW vitrification process.




2.0 STATISTICAL INTERVALS AND HYPOTHESIS TESTING

. The HLW vitrification process/product control system will use statistical tests to verify
compliance with various requirements. The statistical tests to be used by this system are
intimately linked with statistical intervals. In this section, two types of statistical intervals are
discussed, as are the general principles underlying the applicability of each interval type to

the requirements imposed on HLW vitrification material.

A statistical interval is, roughly, a range of values in which an unknown true value is
believed (or expected) to lie. The interval is defined by a lower bound (or limit), an upper
bound, or both. A two-sided stati:stical interval has both a lower bound and an upper bound.
A lower one-sided interval has only a lower bound, and no statement is made about an upper
bound, while an upper one-sided interval has only an upper bound, and no statement is made
about a lower bound. The bounds themselves are often referred to as two-sided or one-sided.
The specifications imposed by WAPS 1.3 on HLW vitrification material are such that only
upper one-sided intervals are fequired. Since an upper one-sided interval is characterized by

the associated upper bound, much of the discussion below refers directly to the upper bound.

Associated with each type of interval discussed here is a quantity known as the
statistical confidence. Confidence is a measure of the success rate of the procedure by which
a statistical interval is constructed, i.e., how often the procedure produces an interval that
actually traps the true value. Confidence is expressed as either a probability (between zero
and one) or a percentage. For example, the procedure to produce a 95% confidence bound
has a 95% chance of producing a bound that traps the unknown true value. Technically, the
conﬁdenée actually rests in the jarocedure used to construct the bound or interval, not in the
bound or interval itself. Confidence refers to the long-run performance of the procedure, not
the performance of any particular calculated interval. As used in HLW vitrification
process/product control, confidence controls the probability of concluding that a particular

requirement or specification is met when in fact it is violated. -



2.1 CONFIDENCE AND TOLERANCE INTERVALS

A confidence interval® is designed to trap a single fixed tru.e value (most often a
population parameter) with specified confidence. For example, a 95% confidence interval for
the mean of a population is designed to trap the mean of the population with 95% confidence.
An upper confidence limit (UCL) is of the form:

UcL =y+t,sh/n, (1)

where y denotes the sample mean, s denotes the sample standard deviation, n denotes the
sample size (number of observations) upon which the estimated mean is based, v denotes the
degrees of freedom® associated with the estimated standard deviation, —7 denotes the
confidence associated with the UCL, and t,, denotes the 100y-th percentile of the central
t-distribution. This t,,, is an example of a statistical multiplier. Such multipliers appear in
many statistical calculations and are chosen to reflect and/or compensate for uncertainties in

estimated quantities that appear in the calculation.

A tolerance interval is designed to capture, with specified confidence, a predefined
proportion of the statistical distribution associated with some population.”’ For example,
consider testing whether a given proportion of process batches have attribute values below a

maximum allowable value. In this application, individual batch attribute values are thought of

(a) This name, though endowed on the procedure by its creator, is unfortunate, in that it
results in a confusing dual usage of the word "confidence." As stated above, some
level of statistical confidence is associated with each type of statistical interval
discussed here. The distinctions among the interval types lies in the nature of the
unknown quantities they are designed to trap.

(b) If the standard deviation s is estimated from a random sample of size n from a normal
population with a single source of variation, v = n-1.

(©) More information on statistical concepts and notation appears in Appendix A.
(d) A tolerance interval can also be thought of as a confidence interval for lower and/or

upper percentiles of the underlying statistical distribution, but this interpretation is not
discussed further here.




as arising at random from an underlying population (the population of all batches that could
have been made from this waste type). A tolerance interval can be used to check whether the
desired proportion of this'underlying population does fall below the maximum allowable

value. ~

The proportion of the population to be captured is termed the content of the tolerance
interval. Two percentages (or probabilities) are usually used to specify a tolerance interval --
the first percentage specifies the confidence associated with the tolerance interval; the second
specifies the content of the tolerance interval. For example, a 95%/99% tolerance interval is

one designed to capture 99% of the underlying population with 95% confidence.

An upper tolerance limit (UTL) is of the form:

UTL =y+k,. s (2)

aNyps !

where v denotes the degrees of freedom associated with the estimated standard deviation (s), ¥
and p denote the confidence and content (respectively) associated with the UTL, and k,,,, is

the statistical multiplier required to construct the tolerance limit.®

The simple forms of Equations (1) and (2) (and the statistical multipliers therein) rest
on the assumption that the sample mean (y) and standard deviation (s) are derived from the
same data set, one assumed to be adequately modelled as a simple random sample of size n
from a normal population subject to a single source of uncertainty.® Several complications

will arise in applying these methods to HLW vitrification process/product control.

Data collected as part of HLW vitrification process/product control will be subject to
several sources of uncertainty (e.g., batch-to-batch, within-batch, analytical, and model
uncertainties). As discussed.in Section 4 and Appendix D, these sources of uncertainty and

the associated degrees of freedom must be properly combined to estimate the standard

(a) . The value of k,,,, can be obtained from the noncentral t-distribution; this relationship
is detailed in Appendix B.

) This simple case of estimating the population mean and uncertainty (standard
deviation) is treated in Appendix A.



deviation (s) and degrees of freedom (V) used to construct the UCL and/or UTL. Also, the
UCL and UTL are affected by the sample size (n) associated with the particular mean (y)
under consideration. In the case of data subject to several sources of uncertainty, the simple
relationship between the degrees of freedom associated with Fhe ungertaiﬁty estimate and the
sample size associated with the mean (i.e., Vv = n-1) may break down. This relationship may
also break down when uncertainty estimation takes advantage of data not used in estimating

the mean.® This issue is addressed in Appendix D.

Although compositional data cannot be strictly normally distributed, statistical theory
suggests that functions of such data (such as the CVS models used to predict various
melt/glass properties) should be more closely approximated by normal distributions than are
the underlying compositions, and that, a fortiori, means of such functions should be even
more closely approximated by normal distributions. Preliminary Monte Carlo invesﬁgaﬁons
bear out the suggestion that statistical methods based on the assumption of normality will
perform quite well in HLW vitrification process/product control. When ;iata become

available for the HLW vitrification process, this issue should be revisited.

2.2 APPLICATION OF STATISTICAL INTERVALS TO ACCEPTANCE TESTING

Given the inevitable uncertainties in process measurements, models, and other
elements of the HLW vitrification process/product control system, statistical acceptance
testing must be used to verify compliance of HLW vitrification material with requirements or
specifications. Confidence and tolerance intervals (and the associated bounds or limits) can
be used in acceptance testing, as follows. Suppose that an attribute, Y, of a population (e.g.,
a single process batch, or a group of batches from a single waste type) is required to be less
than some maximum acceptable value, U, and that n measurements or observations, ¥,
i=1, ...n, are available from this population. From these data, y and s can be used to

construct either the UCL for the mean or the UTL for some “proportion of the distribution of

(a) This would be the case if, for example, uncertainty estimates used for statistical
inference on the current process batch took into account data on previous batches or
on vitrification operations at another site (e.g., the DWPF at Savannah River).
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Y. If the UCL or UTL is less than U, the population is deemed accéptable; otherwise, .the

population is deemed unacceptable.

 The choice between using the UCL or the UTL in the acceptance test depends on the
form of the specification and on knowledge or assumptions about the uncertainties associated
with the data. The UCL is appropriate if there is a single, fixed true value of Y in the
population and all (or most) of the uncertainty in the observed values is extrinsic (i.e.,
induced in the sampling and analysis process). The UTL is appropriate if there is intrinsic

variability in Y, i.e., if the true value of Y varies in the population.



3.0 THE WAPS 1.3 SPECIFICATION

The WAPS 1.3 specification that appears in USDOE (1993) is:®
"1.3 SPECIFICATION FOR PRODUCT CONSISTENCY

The producer shall demonstrate control of waste form production by comparing, either
directly or indirectly, production samples to the Environmental Assessment (EA)
benchmark glass [2]. The producer shall describe the method for demonstrating
compliance in the WCP and shall provide verification in the Production Records. The
producer shall demonstrate the ability to comply with the specification in the WQR.

1.3.1 Acceptance Criterion

The consistency of the waste form shall be demonstrated using the Product
Consistency Test (PCT) [3]. For acceptance, the mean concentrations of
lithium, sodium and boron in the leachate, after normalizing for the
concentrations in the glass, shall each be less that those of the benchmark glass
described in the Environmental Assessment for selection of the DWPF waste
form [4]. The measured or projected mean PCT results for lithium, sodium
and boron shall be provided in the Production Records. The producer shall
define the statistical significance of the reported data in the WQR. One
acceptable method of demonstrating that the acceptance criterion is met, would
be to ensure that the mean PCT results for each waste type are at least two
standard deviations below the mean PCT results of the EA glass.

1.3.2 Method of Compliance

The capability of the waste form tq meet this s;peciﬁcation shall be derived
from production glass samples and/or process control information.

Production Records shall contain data derived from production samples, or
process control information used for verification, separately or in combination.
When using process control information to project PCT results, the producer
shall demonstrate in the WQR that the method used will provide information
equivalent to the testing of samples of actual production glass."

(a) In the quoted text, WCP refers to the Waste Form Compliance Plan; WQR refers to
the Waste Form Qualification Report; and References [2], [3], and [4] are USDOE
(1982), Jantzen (1992b), and Jantzen (1992a), respectively.
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The Product Consistency Test (PCT, Jantzen 1992b) measures the quantities of
elements leached from ground glass in deionized water. WAPS 1.3 réquires that "the mean
concentrations of lithium, sodium and boron in the leachate ... shall each be less than those of
the" Environmental Assessment (EA) benchmark glass, described in Jantzen (1992a). Note
that WAPS 1.3 does not explicitly state upper limits on PCT results.. Limits based on PCT
testihg of the EA glass by the Savannah River Technology Center (WSRC 1993) appear in
Table 1. ‘

The HLW process/product control strategy will treat lithium, sodium, and boron
separately; i.e., WAPS 1.3 will be interpreted as establishing three separate requirements on
HLW vitrification material. In addition, it is envisioned that these limits will be applied to
lithium, sodium, and boron PCT releases -as calculated both from models for quenched glass
and from models for canister centerline cooled glass. Therefore, WAPS 1.3 requirements will

be applied to six glass properties.

Table 1. WAPS 1.3 Requirements for Lithium, Sodium, and Boron

Property Allohv:rI:;;:n \l;r';ue(“’
PCT for Li 4.8 g/m?
PCT for Na 6.6 g/m®
PCT for B 8.2 g/m?

(a) WAPS does not explicitly specify limits.
These limits are based on PCT testing of
the EA glass by the Savannah River
Technology Center (WSRC 1993).
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WAPS 1.3 allows either direct or indirect comparison with the EA benchmark glass,
using information from "production glass samples and/or process control information."®
The HLW process/product control system will employ an indirect method of comparison (via
empirical models developed from the CVS database), using process control information (feed
composition), for demonstrating compliance with WAPS 1.3. This implies that the statistical

comparisons must take into account both composition uncertainty and model uncertainty.

The current version of WAPS 1.3 gives an example of "one acceptable method" of
demonstrating compliancé: "ensurfing] that the mean PCT results for each waste type aré at
least two standard deviations below the mean PCT results of the EA glass." The basis and
justification for this suggested method are questionable (as discussed below), but the method
itself and consideration of its shortcomings give some guidance useful in developing a
compliance strategy based on sound statistical principles. For example, the suggested method
implies that the "mean PCT results" to be used in demonstrating compliance are means taken
over a given waste type. On the other hand, the standard deviation to be used in the
suggested method could reésonably be interpreted either as the standard deviation associated
with the underlying data (resulting in a compliance strategy based on tolerance intervals) or as
the standard deviation of the mean (resulting in a compliance strategy based on confidence
intervals). .In addition, data from the HLW vitrification process are subject to several sources
of uncertainty. The suggested method gives no guidance on which sources of uncertainty
should be included in the standard deviation. There are other ambiguities in the suggested
method and other parts of the current WAPS 1.3 specification. These ambiguities must be

examined and resolved in order to develop a well-founded compliance strategy.

Examining the motivation for the suggested method may provide some guidance for
formulating a compliance strategy. Pefhaps the suggestion is based on the fact that the two-

sided interval p £+ 26 = (p-20, p+20) contains just over 95% of a normal distribution with

(a) WAPS 1.3 also requires demonstration of the equivalence of a method based on
process control information (e.g., feed composition) to one based on testing of samples
of actual production glass. Model validation and verification performed as part of the
CVS work will serve to meet this requirement.
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(true) mean W and (true) variance o®. This suggests that the authors of the current WAPS 1.3
specification had 95% in mind for some characteristic of the statistical procedure. However, '
there are at least two problems with this motivation (and with the suggested method itself):
. The true mean and standard deviation of each glass property will be unknown

and must be estimated with the data-based quantities, y and s. The interval

Y = 2s = (y-2s, y+2s) is the data-based analogue of p & 26. This data-based

interval resembles a two-sided tolerance interval, with k., replaced by the

constant 2. The confidence and content of such an interval are functions of the

sample size; for small samples, at least one of these two characteristics will be

quite low.® A well-founded compliance strategy should establish some

minimum confidence and content for all sample sizes, which requires retaining
control of the statistical multiplier used to construct the interval.

. Since WAPS 1.3 implies a maximum allowable value, but not a minimum

value, for each property, two-sided intervals like (y-2s, y+2s) are inappropriate.

As discussed in Section 2, an upper one-sided interval (or the associated upper

limit) is appropriate in this situation.

Finally, the statement tﬁat “the producer shall define the statistical significance of the
reported data" is confusing -- "statistical significance” is usually associated with a decision or
result based on a statistical procedure, not with the data used in the procedure. (A given set
of data can usually be used in several different statistical procedures to address several
different questions, so the "significance” of data is not uniquely defined.) The "significance”
ofa staﬁstlcal result is (roughly) a measure of the quality of the result. Even this rather loose
definition of "statistical 51gmﬁcance" leads to problems interpreting WAPS 1.3. The current
text reqmres‘only reporting of the statistical significance; therefore, simply reporting a
decision and the associated significance level would ‘satisfy this portion of the specification,
even if .the significance level indicates that the decision ;'s unsupported by the data. A better
approach to controlling the quality of the statistical result is to control the qualipy of the

(a) It should also be noted that using a fixed statistical multiplier (e.g., 2) effectively
penalizes large samples -- either the confidence or the content (or both) associated
with a fixed statistical multiplier is greater for large samples than for small samples.
Therefore, using a fixed statistical muitiplier in acceptance testing essentially requires
higher confidence and/or content for larger sample sizes.
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statistical procedure, by requiring demonstration of compliance at some minimum confidence
level (e.g., 95%).

A well-founded statistical approach to demonstrating compliance with WAPS 1.3 must
,address all the issues discussed above. The Hanford HLW vitrification process/product
control system will demonstrate with at least 95% confidence.that lithium, sodium, and boron
releases are below the corresponding maximum allowable values. The PCT releases will be
calculated from measured feed composition, using the CVS models. Compliance will be
demonstrated in two ways: 1) for each individual process batch, and 2) over all batches in a
waste type. For each process batch, 95% UCLs will be used to compare the calculated
releases to the maximum allowable values. For all batches in a given waste type, 95%/95%
UTLs will be used to compare the calculated releases to the maximum allowable values. The
details of constructing these UCLs and UTLs, including. propér estimation of the associated

uncertainties, are given in Section 4 and Appendix D.
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4.0 VERIFYING COMPLIANCE WITH THE WAPS 1.3 SPECIFICATION

The HLW vitrification process/product control system will employ a dual strategy for
verifying compliance with the WAPS I3 specification. Compliance will be verified for each
process batch individually- (the single-batch approach), and it will be verified over all process
batches in a given waste type (the multiple-batch approach). This dual strategy for checking
WAPS 1.3 requirements adds conservatism and allows checking of WAPS 1.3 prop.erties both
during and after processing of a waste type. The general mechanics of these two types of
compliance checks are similar; the similarities are discussed in Section 4.1. The specifics of
the single-batch approach are discussed in Section 4.2, and the specifics of the multiple-batch
approach are discussed in Section 4.3. Applying the multiple-batch check for each process
batch (in addition to its application after _process'mg of all batches in a waste type) is
discussed in Section 4.4. Best tolerance hm1ts and associated statistical characteristics are
discussed in Section 4.5. Technical details and justifications for much of what appears in

Section 4 are given in Appendix D.

As discussed in Section 3, each type of compliance check will be appliéd separately to
six different PCT releases (PCT release for lithium, sodium, and boron, using CVS models for
both quenched glass and canister centerline cooled glass). In order to simplify the discussion
below, reference is made only to a siﬂgle t};pe of PCT reléase; it should be understood that

this discussion applies to each of the six different types of PCT release.

As noted in Section 1, the CVS PCT models actually predict the natural logarithm of
PCT [In(PCT)], rather than raw PCT values. This presents no difficulty for the WAPS 1.3
compliance strategy. The means, uncertainties, confidence limits, and tolerance limits will be
estimated f(;r In(PCT). Once the UCLs and UTLs have been produced, either 1) the UCLs
and 1U'I'Ls will be.compared to the natural logarithm of the maximum allowable values, or
- 2) the UCLs and UTLs will be transformed to the original PCT scale (by exponentiation)
before comparison with the maximum allowable values. This minor complication is ignored
below. References to PCT values (units, etc.j estimated from CVS models should be

understood to be In(PCT) values (units, etc.).
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The model and underlying assumptions to be used for HLW vitrification
process/product control are as follows. Yy, represents the (natural logarithm of) PCT value
estimated from the k-th analysis of the j-th sample from the i-th batch. Y, is subject to
model uncertainty and to three sources of composition uncertainty (batch-to-batch variability,
within-batch uncertainty, and analytical uncertainty). Model uncertainty will be estimated
separately and then combined with composition uncertainty, as discussed in Sections 4.2, 4.3,
D.5, and D.6. Composition uncertainty (and its components) will be estimated using the

following model:

Yf/’k=u+Bl+ml]+a,7k1 (3)

where B; ~ (0,647, @; ~ (0,0,2), Oy ~ (0,0,2), and all the random: variables are uncorrelated.
In this model, 0',,2 represents batch-to-batch variability, 6,2 represents within-batch
uncertainty, and ©, represents analytical uncertainty.” In addition, b denotes the number of
batches in a single waste type, w; denotes the number of samples taken from the i-th

batch,” and a;; denotes the number of analyses performed on the j-th sample from the i-th
batch. If w; = w for all i, and a; = a for all i and j, the data are said to be balanced.
Otherwise, the data are said to be unbalanced. The discussion below focuses on the case of
balanced data; extensions to unbalanced data are discussed in Appendix D. General statistical

concepts and notation are covered in Appendix A.

(@)  The B;, @y, and oy, are known as random effects. The quantities 6%, 6,7, and o,° (and
estimates of these quantities) are known as variance components (or components of
variance).

(b) It may seem more intuitive to use s; for the number of samples taken from the i-th
batch. However, the letter s (and subscripted versions thereof) is reserved in this
document for denoting a standard deviation. Therefore, w; is used to denote the
number of samples within a batch.
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4.1 GENERAL PROCEDURE FOR CHECKING WAPS 1.3 COMPLIANCE

For both the single-bétch approach and the multiple-batch approach, the general

procedure for checking compliance with the WAPS 1.3 requirement consists of six steps:
D Estimate the mean PCT reléase.

2) Estimate (univariate) compositio;l uncertainty.

3) Combine estimated composition uncertainty with any prior information.

4) iSstimate model uncertainty.

5)  Combine composition and model uncertainties and estimate the associated
strength of belief (degrees of freedom).

6)  Use the mean PCT value and the combined uncertainty estimate to carry out the
statistical test, e.g., by constructing either the UCL or the UTL and comparing it to the
specified limit.

The specific forms of the means and uncertainties depend upon the type of compliance check
(single-batch or multiple-batch). These forms and other specific aspects of the statistical

procedures are discussed in Sections 4.2, 4.3, D.2, and D.3. The more general aspects of

each of these steps are discussed below.

Two types of means are of interest in HLW vitrification process/product control:
1) the batch mean, for checking WAPS 1.3 compliance on a single-batch basis, and 2) the
multible-batch mean, for checking WAPS 1.3 compliance on a multiple-batch basis. Since
PCT results will be predicted from composition data using CVS models, two methods are
available for calculating these means: 1) by using the CVS model to predict mean PCT from
the mean of the observed compositions (the "estimate-transform" method), and 2) by using the
CVs ﬁodel to predict a PCT result for each observed composition and then calculating the
mean of these pfedicted PCT results (the "transform-estimate" method). In the latter method,
the.problem is first transformed from multivariate composition space into univariate property

(PCT) space, and estimation takes place in the univariate space.
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At this time, there is no compelling reason to favor one method over the other. (In
fact, for a first-order PCT model, the two methods should yield identical results.) Since the
notation attending the "transform-estimate" method is somewhat simpler (in that it avoids the
complexities of multivariate data), and since the transformation from multivariate composition
space to univariate property space is used below in uncertainty estimation, the "transform-
estimate” method is assumed here. Note however that batch mean compositions are required
in propagation of model uncertainty (as described in Sections 4.2 and 4.3). These mean

compositions are not routinely computed in the "transform-estimate” method.

Since inference is to be carried out for both batch mean PCT and multiple-batch mean
PCT, an uncertainty estimate is required for each of these means. Just as for estimating the
means, there are two options for calculating these uncertainty estimates: 1) perform
(multivariate) uncertainty estimation in composition space and then propagate these results
into univariate property (PCT) units (the "estimate-transform” method), and 2) transform
multivariate compositions into univariate PCT results (using a CVS model) and then perform
univariate uncértainty estimation (the "transform-estimate" method). Again, there is at this
time no compelling reason to choose between these two options. The relative statistical
optimality properties are unknown. Another basis for choosing between the two is the
relative computational burden. Roughly, the "transform-estimate" method is likely to be more
efficient unless the number of the number of properties to be examined is much greater than
the number of oxides in each composition.”” Since the number of properties involved in
HLW vitrification process/product control is roughly equal to the number of oxides in each

composition, the "transform-estimate" method is assumed here.

(a) The "estimate-transform" method requires calculating multivariate uncertainties for
compositions. The "transform-estimate" method requires calculating univariate
uncertainties for each property. The number of quantities in a multivariate
uncertainty estimate (covariance matrix) increases as the square of the number of
elements in the data vector (e.g., the number of oxides in each composition).
Therefore, the "transform-estimate" probably enjoys a computational advantage unless
the number of properties is much larger than the number of oxides in each
composition.
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For HLW vitrification process/product control, composition uncertainties will be
estimated from an accumulating database of results for the current waste type. It is
anticipated that ANOVA estimation methods (Section D.4) will be employed to yield
estimates of variance components. If necessary, Lhese variance components will be combined
" to yield estimates of the contribution of composition uncertainty to overall uncertainty in
batch and multiple-batch means. The strength of belief in these combined estimates of
_ uncertainty will be quantified by the associated degrees of freedom, calculated using the

Satterthwaite approximation (Section D.6).

It may be necessérj of advantageous to combine uncertainty estimates derived directly
from HLW vitrification data with information on composition uncertainty derived from other
sources (e.g., from DWPF or WVDP operations). If the external information is not in a form
suitable for the type of uncertainty estimation used for HLW vitrification data (i.e., ANOVA
estimation), it will be necessary to employ some method of updating the external sources of
information with the information contained in HLW vitrification data. This topic is addressed
in Section D.7.

CVS will provide estimated model uncertainties in the form of a covariance matrix for
the estimated parameters of each model. These multivariate uncertainty estimates must be
propagated through the CVS model to provide a univariate estimate of the contribution of
model uncertainty to overall uncertainty in the predicted PCT result. Propagating multivariate

uncertainties is covered in Section D.5.

Finally, composition and model uncertainties (in PCT units) must be combined to yield
-an overall estimate of uncertainty. The strength of belief in this overall uncertainty estimate
will be quantified by the associated degrees of freedom, calculated using the Satterthwaite
approximation (Section D.6). This overall uncertainty estimate will be used to construct

statistical limits and to conduct the cc;mpliance checks, as described in Sections 4.2 and 4.3.
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4.2 VERIFYING WAPS 1.3 COMPLIANCE FOR A SINGLE PROCESS BATCH

Verifying compliance with the WAPS 1.3 maximum allowable PCT release for a
single process batch is an example of checking a single-batch requirement for a modelled
property. The procedure assumes that most or all of the uncertainty in feed composition for a
single process batch is the result of nuisance uncertainties (i.e., random errors in the sampling
and analytical processes). In this case, a single fixed true feed composition, and therefore a
single fixed true PCT release (for each element), exi.st for each process batch. As discussed
in Section 2, when inference is required for a single fixed true quantity, an UCL for this
quantity (PCT release) is appropriate. A modified version of Equation (1) of Section 2.1 will
be used to calculate this UCL:

UCL = Y, +t,0055/\W , (4)

where Y. is the batch mean (defined and discussed in Section D.2), Ses 1 an estimate of
combined uncertainty in the within-sample means upon which the batch mean is based, w is
the number of samples taken from the i-th batch, t, s is the 95-th percentile of the central
t-distribution with v degrees of freedom, and v represe.nts the degrees of freedom associated

with the estimate of combined uncertainty in the within-sample means.

Calculation of s and v is outlined in Section 4.1, and the technical details and
procedures are discussed in Appendix D. Briefly, the combined uncertainty estimate will
include any available prior information and analytical, within-batch, and model
uncertainties.” The analytical and within-batch uncertainties (and the appropriate
combination thereof) will be estimated (as discussed in Section D.4) from a database of PCT

results for all batches processed using the same.-sampling and analysis procedures.®” Model

(a) It is possible, and may be desirable, to eliminate nuisance uncertainties from the
statistical comparison. Elimination of nuisance uncertainties and the effects on the
precision and confidence of the procedure are discussed in Section 5.

(b) In order to maintain consistency with the procedure used to estimate uncertainty
associated with multiple-batch means, this database may be restricted to include only
batches from the same waste type as the current batch.
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uncertainty will be calculated by propagating the batch mean composition through the CVS
model (Section D.5). The Satterthwaite approximation (Section D.6) will be used to estimate
v. If uncertainty information is available from processes other than the Hanford HLW
vitrification process (e.g., DWPF or WVDP), the methods of Section D.7 will be used to
combine this information with that available from the Hanford HLW vitrification process.

4.3 VERIFYING WAPS 1.3 COMPLIANCE OVER AN ENTIRE WASTE TYPE

Verifying compliance with the WAPS 1.3 maximum allowable PCT release over a
group of process batches (e.g., over an entire waste type) is an example of checking a
multiple-batch requirement for a modelled property. The procedure assumes that much of the
uncertainty in feed composition between batches derives from true variability in the process
(as opposed to the nuisance uncertainties introduced by random errors in the sampling and
‘analytical processes). In this case, the quantity of interest (true PCT release in each process
baich) is a random variable, and interest lies in demonstrating with high confidence that a
large proportion of the population (i.e., of the statistical distribution associated with this
random variable) falls below the maximum allowable value. As discussed in Section 2, when
inference is required for a proportion of a population, an UTL for the random quantity- (PCT
release) is appropriate. A modified version .of Equation (2) of Section 2.1 will be used to
calculate this UTL: .

UTL = ?-—+kbv09509555b’ (5)

where Y. is the multiple-batch mean (defined and discussed in Section D.3), s, is an

‘estimate, of combined uncertainty in the batch means upon which the multiple-batch mean is

limit, b is the number of batches processed to date from the current waste type, and v
represents the degrees of freedom associated with the estimate of combined uncertainty in the

batch means.

Calculation of .scb and v is outlined in Section 4.1, and the technical details and

procedures are discussed in Appendix D. Briefly, the combined uncertainty estimate will
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include composition uncertainties,”> model uncertainty, and any available prior information.
The composition uncertainties will be estimated (as discussed in Section D.4) from a database
of PCT results for all batches processed to date from the current waste type.® Model
uncertainty will be calculated by propagating each batch mean compositic‘m through the CVS
model (Section D.5) and calculating an average model uncertainty for this group of process
batches.® The Satterthwaite approximation (Section D.6) will be used to estimate v. If
uncertainty information is availablé from processes other than the Hanford HLW vitrification
process (e.g., DWPF or WVDP), the methods of Section D.7 will be used to combine this

. information with that available from the Hanford HLW vitrification process.

4.4 APPLYING WAPS 1.3 TO INTERMEDIATE BATCHES

True feed composition will vary somewhét am‘ong batches in the same waste type, and
therefore true PCT values will also vary. This variability (6,%) must be controlled in order to
preclude its growing large enough to weaken the ability to statistically demonstrate
compliance over the entire waste type. Therefore, the multiple-batch WAPS 1.3 compliance
check will be applied to each intermediate batch in a given waste type, as well as after

processing of all batches in the waste type. Specifically, a running UTL will be calculated

(a) The proper estimate of composition uncertainty to be used in constructing an UTL for
batch means may require more investigation. The estimate recommended in Sections
D.3 and D.4 includes analytical and sampling uncertainties, which, in this context,
could be considered nuisance uncertainties. As discussed in Section 5, it is possible,
and may be desirable, to eliminate nuisance uncertainties from the statistical
comparison.

(b) In order to maintain consistency with the procedure used to estimate uncertainty
associated with batch means, this database may be restricted to include only batches
subject to the same sampling and analytical procedures as the current batch.

(c) An alternative would be to calculate the model uncertainty associated with the mean
feed composition over all the process batches in the current group. This alternative
was rejected because model uncertainty is a function of batch composition. Under the
model given in Equation (3), the true batch compositions vary. Therefore, both the
true PCT results and the model uncertainties associated with the calculated PCT results
also vary.

21




for each batch, as follows. A record will be kept of the calculated PCT value, the estimated
model uncertainty, and the feed composition for each process batch in the waste type. The
calculated values for the current batch will be temporarily added to the database and used to
compute a running mean and standard deviation for this property to date; these running
estimates will be used to construct an UTL and to carry out a WAPS 1.3 compliance test as if
the current batch were the last batch in the waste type. If compliance is verified, the current
batch will be deemed acceptable with respect to this requirement. If the batch is deemed
acceptable with respect to all other attributes as well, the data for this batch will be added

permanently to the database for this waste type.

This procedure runs a slight risk that a few aberrant batches at the beginning of
processing of a waste type might skew the results for the rest of the waste type. If this
appears to be a problem in testing of the HLW vitrification process/product control system or
during plant operations, there are several possible solutions. Stricter requirements might be
imposed on the first batches in a waste t);pe, process monitoring algorithms might be
designed to scrutinize these batches, and/or a prior estimate of uncertainty might be included
in the estimation of overall.uncertainty. For example, it is anticipated that data from the

DWPF at the Savannah River Site will be used to supply initial uncertainty estimates.

4.5 THE BEST CONFIDENCE/CONTENT APPROACH

The WAPS 1.3 compliance strategy to be used by the HLW vitrification
process/product control system will require demonstration of compliance at the 95%
. confidence level, both for single-batch and mulitiple-batch testing. Multiple-batch testing will
employ UTLs; the content associated with the UTLs used to demonstrate compliance with

. WAPS 1.3 will be set at 95%.” However, it may be possible to demonstrate compliance at

(a) The statistical multiplier (k,,,,) used to construct a 95%/95% UTL is greater than 2
unless the degrees of freedom associated with the estimated standard deviation exceed
65. It is expected that, in many cases, the degrees of freedom associated with the
estimated standard deviation will be less than 65, so the requirement of 95%
confidence and 95% content will be more conservative than the method suggested in
the WAPS 1.3 specification.
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a higher confidence and/or content level. If so, the higher confidence/content should also be
reported. This is called the best confidence/content approach; and the associated tolerance
intervals and limits are called best tolerance intervals and limits. Methods for implementing

this approach are discussed below.

Both UCLs and UTLs are of the form®

- Upper statistical limit = y +cs, (6)
where for an UCL
c= _t’_t . : (7)
Jn
and for an UTL
c= k{,:v'%p. (8)

Once y, s, and the associated degrees of freedom and sample size are known, the maximum

allowable value of ¢ can be calculated:

max

c =Yy ) (9)
s

3

where U represents the maximum allowable PCT value (from Table 1). For an UCL, the
confidence (Y,,,) corresponding to c_,, will be calculated and reported. For an UTL, the
situation is somewhat more complicated, since either confidence (Y) or content (p) (or both)
could be increased to yield c,,,.. The HLW vitrification process/product control system will

calculate three quantities:

(a)  For simplicity of presentation, the simple case (mean and standard deviation estimated
from the same data, a simple random sample of size n from a population with a single
source of variation, so that v = n-1) is assumed. More complicated cases are
discussed in Sections 4.2 and 4.3 and Appendix D.
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. Ymazo the highest confidence level correspondxng to the nominal (95%) content
i.e., Ynx Such that the 100y,,,,%/95% UTL is equal to U;

. Pmax the highest content corresponding to the nominal (95%) confidence level;
i.e., Pma Such that the 95%/100p,,,,% UTL is equal to U; and

. T..x the confidence and content such that: 1) confidence and content are equal,
and 2) the corresponding UTL is equal to U; i.e., T, such that the
100, %100m,,,, % UTL is equal to U.

Methods for calculating these quantities are discussed in Append1x B. A computer program
for calculatmg these quantities appears in Appendix C.
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5.0 RELATED WORK AND ISSUES

Several issues related to demonstrating WAPS 1.3 compliance may need to be
revisited when more is known about the Hanford HLW vitrification process. These issues are
discussed in various sections of this document. For ease of reference, these issues are
recapitulated below. In addition, several topics related to demonstrating compliance with
WAPS 1.3 in the WVDP are discussed by Anderson, Eggett, and Piepel (1992) and Eggett
and Piepel (1991). Some of the issues discussed in those two documents are not relevant to
the Hanford HLW vitrification process (e.g., the WAPS 1.3 specification has been changed

since that work was done), but other issues deserve comment here.

More attention may need to be given to the types of uncertainty included in standard
deviation estimates used to demonstrate compliance with WAPS 1.3. Some of the main types
of uncertainty relevant to HLW vitrification process/product control (e.g., within-batch
uncertainty and analytical uncertainty) include uncertainties that are induced by the sampling
and measurement processes. When present, these nuisance uncertainties can inflate estimated
uncertainties and can decrease the precision of statistical comparisons. As mentioned in
Section 4, it may be possible to isolate and remove nuisance uncertainties from some
" statistical comparisons. Methods for removing nuisance uncertain’t@es are presented by Eggett
and Piepel (1991), Hahn (1982), Jaech (1984), Mee (1984), and Mulrow et al. (1988).
Currently, removal of nuisance uncertainties is not recommended for HLW vitrification
process/product control, for a variety of reasons:

. Obtaining estimates of nuisance uncertainties could significantly expand the

required sampling and analytical data and/or effort. The availability of such
data and the feasibility of this expanded effort are not yet known.

. Preliminary investigations by Eggett and Piepel (1991) indicate that
"subtracting the estimable sources of nuisance uncertainty ... had minimal effect
on the size of the tolerance intervals." Thus, the potential benefit of removing
nuisance uncertainties may not outweigh the increased costs.

. Removing nuisance uncertainties can adversely affect the performance of the
statistical procedures. Jaech (1984) demonstrates that the actual confidence and
content of a 95%/95% tolerance interval can be less than the nominal values if
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nuisance uncertainties are removed. The decrease in actual confidence and
content can be considerable if nuisance uncertainties are large (relative to true
process variability). Unfortunately, this is precisely the case in which it would
seem most desirable to remove nuisance uncertainties. Procedures exist for
evaluating and correcting the perturbations of confidence and content, but these
procedures require information or assumptions that may not be available or
tenable for the HL'W vitrification process.

. Other methods are available for controlling nuisance uncertainties. For

example, if analytical uncertainty is found to be large, consideration should be

given to improving the measurement process. Also, increasing the number of

samples taken from a process batch and the number of analyses run on each

sample decreases the contribution of 6, and G,* to uncertainty in the batch

mean [see Equations (D.14) and (D.16)].

Although removal of nuisance uncertainties is not currently recommended, this issue
should be revisited when more information is available on the HLW vitrification process or if
testing of the process/product control system indicates that increased precision will be

required to demonstrate WAPS 1.3 compliance.

Anderson, Eggett, and Piepel (1992) and Eggett and Piepel (1991) present numerical
results concerning the ability to demonstrate WAPS 1.3 compliémce under various allocations
of sampling effort, assumptions about the underlying uncertainties, and forms of the statistical
procedure. The data used in these investigations, and therefore the conclusions drawn, were
specific to WVDP, but investigations of this type might be beneficial when adequate
information is available about the Hanford HLW vitrification process.

The confidence and tolerance intervals discussed here are based on the assumption that
the underlying data follow a normal (Gaussian) distribution. This assumption should be
evaluated as actual process data become available. In many cases, normal-based methods are
adequate for other underlying distributions. However, this should not be assumed without
investigating the empiricgl data distribution. Procedures exist for statistical intervals for other
" types of data distributions and for nonparametric (distribution-free) tolerance intervals (Hahn
and Meeker 1991). Nonparametric intervals require much larger sample sizes than do

normal-based intervals.
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Under the model used here to estimate property values and uncertainties [Equation (3)
and the assumptions pertaining thereto], true property values are assumed to be independent
across batches in the same waste type. It is possible that true property values may be
correlated or may show trends across batches in the same waste type. If this appears to be
the case in actual HLW vitrification data, the statistical methods recommended in this

document must be modified.

Two methods for calculating mean property valu‘es and related uncertainties are
discussed in Section 4.1. The "t;ansfonn—estimate" method seems to be the more efficient of
these two methods for HLW vitrification process/product control. In this method, CVS
models will be used to transform individual measurements of feed composition to estimated
property values, and univariate estimation of means and uncertainties will be employed
separately for each property. In the alternate method, multivariate uncertainties would be
estimated for feed composition, and these multivariate uncertainties would be transformed
(propagated) to univariate uncertainties for each property. The relative efficiency and
optimality of these two methods should be re-examined if tﬁe design and requirements of the

HLW vitrification process are modified.
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APPENDIX A

STATISTICAL BACKGROUND

For precision and brevity in much of the body of this document, it is necessary to
employ some statistical terminology and notation. This appendix introduces the required
.terminology and notation. Full exposition and explanation of this material is beyond. the
scope of this appendix, but can be found in most texts on probability and mathematical
statistics (e.g., Lindgren 1976). This document also uses the concepts and notation of linear
algebra, vectors, and matrices. Some of these concepts and notation are defined below; fuller

coverage of this material can be found in books on linear algebra (e.g, Searle 1982).

Statistics is the art and science of making decisions in the face of uncertainty.
Accordingly, a major task of statistics is the modelling and characterization of uncertainty.
The most common statistical method of modelling uncertainty employs the concept of a
random variable. Intuitively, a random variable is a quantity that cannot be measured exactly
(either because its value is not fixed or because the measurement process is imperfect).
Therefore, the behavior of a random variable is described in terms of the probability that the
true value of the random variable exists in some set of possible values. Random variables are
often denoted by capital letters, e.g., X, while individual values or realizations of a random
variable are often denoted by lower case letters, with a subscript to indicate which
observation is being represented. For example, n observations of the random variable X
might be denoted x,, x,, ..., X,, Or, equivalently, x;, i = 1, ..., n. A group of n observations

may also be represented by a vector, Xx.

Two basic types of random variables exist. A discrete random variable is one for .
which the number of possible values is finite or countably infinite. In many cases, discrete
random variables are counts of the number of occurrences of certain events. For example, the
number of defective items produced by a manufacturing process can range from zero to the

number of items produced. A continuous random variable is one for which the number of
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possible values is uncountably infinite. In many cases, continuous random variables take on
values in an interval of possible values. For example, the value of many measured
characteristics (length, weight, concentration,-viscosity) must lie between some more or less
well known lower and upper bounds, but, at least theoretically, the individual measurements
may take on any value in the interval. Although many of the concepts discussed below apply
to both discrete and continuous random variables, most of the quantities involved in HLW
vitrification process/product control are best modelled by continuous random variables;

therefore, this presentation focuses on continuous random variables.

A.l DISTRIBUTION AND DENSITY FUNCTIONS

Two mathematical functions are useful in describing the behavior of a (continuous)
random variable: the distribution (or distribution function), and the density (or density
function). To each random variable X, there corresponds a distribution function, F(x) =
Pr{X < x},® the probability that the random variable X is less than or equal to the fixed
value x. As a function, F(x) is monotonic and nondecreasing. Since for each fixed x, F(x) is

a probability, F(x) must lie in the interval [0,1].

The density function, f(x), exists for most of the common statistical distributions.
When it exists, the density function is simply the first derivative of the distribution function,
i.e., f(x) = F'(x). The density function characterizes the local behavior of the random

variable. By its nature, f(x) = 0 for all x., and

f_:f(x)dx = 1. (A1)

In order to achieve this unit integral, a density function incorporates a normalizing constant

(usually a function of the parameters of the distribution, which are discussed below).

Many families of random variablés (and the correspo’nding distributions and densities)

have been found useful in statistical applications. For example, the most commonly

(2) The symbol "=" should be read as "is defined to be equal to."

A2



encountered family of statistical distributions is the family of normal (or Gaussian)

distributions. The density function for a normally-distributed random variable X is

f(x) = —1__g-(enleet (A.2)

oy/2n

(1 and o are the parameters of the normal distribution and are discussed further below).

Another important family of random variables is the gamma family. The density

function for a random variable X that follows a gamma distribution is

fX) = —_xETe B, \(x) . (A.3)

I(o)B®

where 0. and  are the parameters of the gamma distribution (discussed below) and I,.(x) is
zero if x < 0 and one otherwise (indicating that a gamma random variable takes on only

positive values).

The members of a family of random variables are distinguished by the values of the
associated parameters. The parameters of a random variable appear in the density function
and are often denoted by lower-case Greek letters. For example, the parameters of the normal
density given above are p and 62, while the parameters of the gamma density given above are
o and . Often, the dependencé of the behavior of a random variable on the associated
parameters is shown by a slight modification of notation: for example, the density of a .
random variable following a normal distribution with parameters p and ¢* may be denoted

f(xlp,0%), and the density of a gamma distribution with parameters o and B may be denoted
f(xlct,B). '

A common statistical shorthand for the phrase "the random variable X follows a
normal distribution with parameters p and 6" is "X ~ N(u1,6%)." The shorthand for "the

random variable X follows a gamma distribution with parameters o and B" is "X ~ I'(c,)."

An important special case of the gamma distribution is the chi-square distribution.

This distribution has a single parameter, f, known as the degrees of freedom, A chi-square
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. distribution with f degrees of freedom [}*(f)] is simply a gamma distribution with parameters
£/2 and 2, i.e., the I'(f/2,2) distribution. '

A2 MEAN AND VARIANCE

The expectation of a function, h(X), of the random variable X is defined as:

E(h(X) = f:_h(x) dF(x) = f:h(x) f(x)dx (A4)

(the last expression makes sense only if the density function exists). Several such functions
are important enough to warrant specific names. The mean of a random variable X is defined

as:

i = EX) = f:x dF(x). (A.5)

The mean of a random variable is a measure of the central value (or central tendency) of the
random variable. The most common measures of dispersion about this central value are the

variance:

= E(X-,)? f (X-L)? dF(X) (A.6)

and the closely related standard deviation:

o= | . . (A7)

(When the meaning is clear from context, the subscripts on iy, Gy, and G, may be omitted.)
Due to the simple relationship between variance and standard deviation, much of the
discussion (though not, of course, the equations) in this appendix could be framed in terms of

either quantity, and shifts between variance and standard deviation go unremarked henceforth. .

The mean and variance are examples of moments of a distribution. Moments are

simply expectations of powers of the random variable (often centered by subtracting the
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mean). The moments of a distribution convey information on the location ;md shape of the
distribution and hence on the behavior of the random variable. The first moment of a
distribution is the mean and, as mentioned above, is a measure of the central value (location)
of the distribution. The second (central) moment is the variance and hence is a measure of
the spread (scale) of the distribution. The third moment measures the skewness of the
distribution, and the fourth moment measures kurtosis (how "heavy-tailed" and peaked the
distribution is).

The moments of a distribution are not usually the parameters of the distribution. The
exception is the normal distribution, for which the parameters p and ¢ are indeed the mean
and variance, respectively. The mean and variance of many distributions are simple functions
of the parameters. For example, the mean and variance of a I'(t,8) distribution are ot} and
of?, respectively; the mean and variance of a chi-square distribution with f degrees of -

freedom are f and 2f, respectively.

In some cases, it is useful to specify only the mean and variance of a random variable,
without ascribing to it a distributional form (such as normal or gamma). In this case, an
adaptation of the shorthand above is employed ~ "X ~ (11,6°)" means that X is a random

variable with mean p and variance 62

A3 MULTIVARIATE DATA, COVARIANCE, AND CORRELATION

The discussion of random variables above concentrated on the univariate situation, i.e.,
the modelling of a single quantity (even though many measurements or observations of that
quantity may be available). However, in many situations, the simultaneous behavior of
several different quantities is of interest. This is the multivariate situation. The obvious
example here is the composition of a vitrification process batch. For use in melt/glass
pro'perty models, batch composition is usually expressed as mass fractions (proportions or
percentages) of nine individual oxides (SiO,, B,0;, Na,0, Li,O, CaO, MgO, Fe,0,, Al,O,,
ZrO,) and a catchall tenth category, "Others.” Since these mass fractions must sum to one,
they are obviously not independent of one another; hence their simultaneous behavior is of

interest.
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In multivariate statistics, subscripts are used to disﬁnguish between different random
variables. For example, the 10 components of a vitrification process batch can be denoted by
Xy» Xas s Xyo- Individual observations of a single random variable are usually indicated by a

second subscript; for example, x; is the j-th observation of the i-th random variable.

Most of the standard univariate distributions and densities have multivariate
generalizations. When modelling several random variables simultaneously, joint a’z'strz'butz’ons'
and joint densities, which are functions that model the simultaneous probabilistic behavior of
the variables, must be considered. In addition, when examining the effects of one variable on
another, conditional distributions and conditional densities, which model the probabilistic
behavior of one or more variables given the values of other variables, become important. The
notation can get quite complex, so, rather than attempting a general treatment, notation is

introduced below only as necessary.

In multivariate statistics, the tendency of several quantities to vary together ("co-vary")
is of interest. The statistical covariance between two random variables X; and X; is defined

as:

o; = EXm)(X) (A8)

j b

where the expectation is taken with respect to the joint distribution of X; and X; (i.e., this is a
double integral). Whereas the variance of a random variable must be nonnegative (by
definition), the covariance between two random variables can be positive, negative, or zero.
Positive covariance indicates that the two variables tend to vary together; i.e., if one is large
(relative to its mean), the other tends also to be large, and if one is small, the other tends to
be small. (The repetitive use of the word "tend" is necessitated by the probabilistic nature of
the behavior of random variables.) Negative covariance indicates that the two variables tend

to vary "in opposite directions;" i.e., if one is large (relative to its mean), the other tends to be
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small (relative to its mean), and vice versa. Zero covariance indicates that the behavior of

one variable does not affect the behavior of the other.®

Covariances are not scale-invariant, and their magnitudes are affected by the variances
of the random variables involved. These characteristics complicate interpretation and
comparison of covariances. Statistical correlation is essentially a standardized, unitless

covariance. The correlation between X; and X; is defined as:

o;
pj = ——= - (A.9)

2. 2
v O'iGj

Correlations must lie in the interval [-1,1]. Interpretation of the sign of a correlation is
similar to that for a covariance. In addition, the closer the correlation is to 1 (or -1), the
nearer the relationship between the two variables is to perfect linearity. The correlation
between two random variables is zero if and only if the covariance between these two
variables is zero. Two variables that have zero correlation (covariance) are said to be
uncorrelated;, if the correlation (covariance) is non-zero, the two variables are said to be

correlated. Correlated observations are not independent.

Matrix notation is quite useful in multivariate statistics. In this document, matrices are
denoted by upper case letters (e.g., = or S), and symbols for-vectors are underlined (e.g., ).
The random vector, X, is a vector of random variables, X,, i = 1, ..., p. The associated mean
vector (the vector of means of the individual random variables) is denoted by u. A
convenient method for summarizing the variances and pairwise covariances of the elements of
the random vector X is the variance-covariance matrix (for brevity, caﬂed the covariance

matrix below):

(a) This is not strictly true. Statistical covariance is actually a measure of linear
covariance, so a strongly curved relation between two random variables is not
necessarily reflected in the standard definition of covariance. It is in fact possible to
construct two random variables with zero covariance, even though one is an exact
function of the other.
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- 2 (A.10)
z= 0-31 0-32 O3 - Gap .
2
Op1 Opa Opz = Op

The covariance matrix contains the variances of the individual random variables in the
diagonal positions and the pairwise covariances in the off-diagonal positions. As a
consequence of the definition of covariance, the covariance matrix is symmetric (i.e., Gy =
o;)- If the underlying random vector has p elements, the covariance matrix has p rows and p

columns; i.e., its dimension is p X p.

Correlations can also be represented in matrix form; the correlation matrix is defined

1 Py Pz ™ Pyp
Par 1 Pag = Pap

A.11
Pay P 1 = Pap| - ( )

av)
1]

_pp1 ppz pp3 -1

The diagonal elements of a correlation matrix are always one (since, by definition, the
correlation of a random variable with itself is one); the pairwise correlations appear in the off-

diagonal positions. Like the covariance matrix, the correlation matrix is symmetric (p; = pj).

Multivariate generalizations of Ifxany common ‘statistical distributions exist. The
notation used to specify the (joint) distribution associated with a random vector X parallels
that used for a univariate random variable. For example, "X ~ MVN(y,%)" indicates that the
random vector X follows a multivariate normal distribution with parameters y and . "X ~
(1,X)" indicates that X follows a (multivariate) distribution with mean vector y and covariance

matrix Z.
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A.4 ESTIMATING POPULATION PARAMETERS WITH SAMPLE STATISTICS

Up to this point, various statistical distributions, parameters, and other theoretical
constructs used to model the behavior of random variables have been defined and discussed.
In much of statistics, such models for some population (real or abstract) of items are
postulated or hypothesized, and information is collected about a sample drawn from this
population. The objectives of this activity include checking the models, estimating
parameters, and drawing inferences about the population, based on the sample. Estimation
often involves calculating sample analogues to population parameters, moments, and other
characteristics. Some of these estimation procedures, and the associated notation, are

discussed below.

The usual assumption about a sample is that it is drawn at random from the
underlying population. The technical definition of a random sample is somewhat involved,
but essentially a random sample is one in which each item in the population has an equal
chance of being selected. A related concept is that of independent and identically distributed
(IID) observations. Given a sample of size n, x;, i = 1, ..., i, the assumption might be that
each x, is a realization of a single random variable X, or, equivalently, that the distribution of
X; is the same for all i. This is the concept of ide.ntically distributed observations. The
concept of independence is essentially that the value of X is unaffected by the values of any
of the other X;’s (j #i). The statistical shorthand used to describe this situation is "X;, i = 1,
.., 1 ~ IID D(p)," where D is the assumed distribution and p is the vector of parameters of D.
One link between random sampling and IID observations is this: if D(p) is the statistical
"distribution for a given population, and X, i = 1, ..., n, is a random sample from the
population, then X;, i = 1, ..., n ~ IID D(p). -

Assume that a random sample of size n is available from a population with mean p
and variance ¢ ie., X;,i =1, ..., n, ~ IID (4,0°). The sample-based estimate of the

population mean, y, is the sample mean:

_i‘ X; . (A.12)

% 1
i

i
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The sample-based estimate of the population variance, &°, is the sample variance:

S¢

1

n

R % | (a.13)
— 1=t

The sample-based estimate of the population standard deviation, G, is the sample standard

deviation:

s = s2 . _ . (A.14)
The sample mean, X, is a point estimator of the population mean, p. In many
situations, both a point estimate of the population mean and some idea of the quality of this

estimate are required. To address this issue, it must be recognized that the sample mean is a

random variable, since it is a function of the random variables X, i = 1, ..., n. Therefore, the

sample mean has an associated mean and variance. It can be shown that the sample mean is
unbiased, i.e., that EX) = p, so the question of the quality ‘of the sample mean as an
estimator of the population mean comes down to the uncertainty in the sample mean. This
uncertainty is measured by the standard deviaﬁon (or the variance) of X. In a wide range of
cases, the standard deviation of X is. well estimated by

sg= X (A15)

/n

This quantity, also known the standard error'® of the mean, is used to construct confidence

" intervals for the population mean.

. The preceding discussion of the standard error of the mean is important to inference
for the population mean, but it also serves to illustrate that statistical estimators, such as the

sample mean, variance, and standard deviation, are random variables and thus have associated

(a) The term “"standard error”" is often used to refer to the standard deviation of an
estimator, as opposed to the standard deviation associated with individual observations.
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uncertainty. This uncertainty must be quantified in order to judge the quality of the
estimators and to draw inferences about true (population) values. The HLW vitrification
process/product control algorithms must deal with uncertainties in statistical estimators, as

well as with uncertainties in data.

In the multivariate case, each observation is a vector (rather than a single number).
For example, if interest focuses on p characteristics of each item and n items are examined,
the data comprise n vectors, each of length p. Denote the observed value for the j-th
characteristic of the i-th item as x;;, where j=1, ..., p, and i = 1, ..., n, and assume that the
observations are IID. The sample-based estimate of the population covariance between

characteristics j and k, Gy, is the sample covariance:

(x,-%)(x,c%) - (A.16)

where EJ and X, are the sample means of the j-th and k-th characteristics, respectively. The

sample-based estimate of the population covariance matrix, %, is the sample covariance

matrix:
-, - .
S1 S S5 s1p
2
Sp1 S2 Sy Sy .
1 tvd -\T (A.17)
= 2 = - - *
§= S31 Sz S5 - Sy n_1;()—(i 5)()—(1 5‘) !

s, s 2

_sp1 p2 p3 sP_

where x; is the i-th observation (a column vector containing the observed values of the p
characteristics for the i-th item), X is the column vector containing the sample means for the p
characteristics, and the superscript "T" indicates vector transpose. Since there are p
characteristics, the sample covariance matrix is a p X p matrix, and, like the population
covariance matrix, it is symmetric. The elements of the sample covariance matrix may be

computed individually [using the formula for single sample covariances given in Equation
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(A.16)], or the whole matrix may be computed using the vector formula given in Equation

(A.17). These methods are equivalent (unless there are missing data).

The sample-based estimate of the population correlation between characteristics i and

j» Py is the sample correlation:

p.=1r, = d (A.18)

The sample-based estimate of the population correlation matrix, P, is the p X p symumetric

sample correlation matrix:

— A.19
R=|r, rp 1 Iap ( )
Ty oz Tpa 1

A.5 PROPERTY MODEL NOTATION

Several property models being developed by CVS are second-order mixture models,

the general form of which is

10 9 10
O, = 21 by, + 21 > byxx; s (A.20)
= it pi

where ¢, is the k-th melt/glass property (or, in some cases, a simple mathematical
transformation thereof), xinand x; are the mass fractions of the i-th and j-th oxides, and by, and
by are the coefficients of the relation between the qxide mass fractions_ and ¢, (to be
estimated from the CVS détabase). The oxide mass fractions used in a mixture' model must

sumt to one, that is,
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Sx=1. (a21)

i
i=1

Some of the models developed by CVS are first-order, meaning that, for some properties (k),

by, = 0 for all i and j. The form of a first-order model is

Oy = 11{‘ byx; . | (A-22)

=
Both the first-order model and the second-order model can be written in the form:

(pk = ngk’ (A.23)
where x is the vector containing the oxide mass fractions (and cross-products thereof, if the
model is second-order), and b, is the vector of estimated coefficients relating these

composition data to the k-th property. Such models are linear in the estimated coefficients,

b,. First-order models are also linear in the data, Xx.

A.6 REFERENCES

Lindgren, B.W. 1976. Statistical Theory, third edition. MacMillan Publishing Co., Inc.,
New York.

Searle, S.R. 1982. Matrix Algebra Useful for Statistics. John Wiley and Sons,< New York.

A.13







APPENDIX B

RELATIONSHIP OF STATISTICAL MULTIPLIERS FOR ONE-SIDED
TOLERANCE LIMITS TO THE NONCENTRAL t-DISTRIBUTION







APPENDIX B

’

RELATIONSHIP OF STATISTICAL MULTIPLIERS FOR ONE—SIDED
TOLERANCE LIMITS TO THE NONCENTRAL t-DISTRIBUTION







APPENDIX B

RELATIONSHIP OF STATISTICAL MULTIPLIERS FOR ONE-SIDED
TOLERANCE LIMITS TO THE NONCENTRAL t-DISTRIBUTION

This appendix treats the statistical theory and relationships underlying tolerance limits,
tolerance intervals, statistical multipliers, confidence, and content. Specifically, the
relationship of statistical multipliers to the noncentral t-distribution is developed and used to

characterize best tolerance limits.

B.1 STATISTICAL THEORY

Let Z be a standard normal random variable; i.e., Z ~ N(0,1).®’ In addition, let Y be
a chi-square random variable with v degrees of freedom; ie., Y ~ ¥*(v). Assume that Z and

Y are independent. Then the random variable T, ;, defined as

’ Tos Z+0

B

, (B.1)

follows a noncentral t-distribution with v degrees of freedom and noncentrality parameter &

(Johnson and Kotz 1970, Chapter 31);® i.e.,

T,s ~ Tv,9). (B.2)

Assume that a random sample of n observations is taken from a normal distribution

with mean p and variance ¢ i.e., X, i = 1,...,n, ~ IID N(1,6%). Define the sample mean, X,

(a) For definitions of the various terms and symﬁols used in this appendix, see Appendix
A or the Glossary and list of Acronyms at the beginning of this document.

(b) This is, in fact, the definition of a noncentral t-distribution given by Johnson and Kotz
(1970, p. 201). Readers of Johnson and Kotz should note that those authors use the
symbol Y, to represent the square root of a x*(p) random variable.
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X1
]

the sample variance, S%,

. and the sample standard deviation, S,

It is known that

Also, by Theorem 4 of Lindgren (1976, p. 334),®

(n - 1)82

= - xAn-1),

(B.3)

(B.4)

(B.8)

In addition, X and S? are independent random variables (i.indgren 1976, p. 334, Corollary to

Theorem 3), which implies that the quantities defined in Expressions (B.7) and (B.8) a1:e

independent. Therefore,

(@ Lindgren’s (1976) theorem is stated slightly differently, since Lindgren uses n, rather

than n-1, in the definition of the sample variance.

B.2



(Z-wTal+s 7o ®.9
Yl(n-1) 82?1 (n-1)

where v = n-1. Algebraic rearrangement of the left side of Expression (B.9) yields

()?—}.L) +(50'/\/;) ~ TV,3). ‘ (B.10)
Si/n

B.2 TOLERANCE INTERVALS AND TOLERANCE LIMITS

A statistical interval designed to capture a specified proportion of the distribution of a -
random variable with some specified probability is known as a tolerance interval. The
proportion captured is known as the content of the tolerance interval; the probability with
which the capture occurs is known as the confidence .associated with the tolerance interval. A
tolerance interval designed to capture 100p% of the distribution with 100y% confidence is
known as a 100Y%/100p% tolerance interval.”” For example, 2 95%/90% tolerance interval
is designed to capture 90% of the population with 95% confidence.

A tolerance interval is delimited by.a lower tolerance limit (LTL) and an upper
tolerance limit (UTL); i.e., the interval is of the form (LTL,UTL). If the tolerance interval is
designed to capture the central portion of the distribution, both limits are finite. In this case,
the tolerance interval and the corresponding tolerance limits are termed two-sided. Two-sided

tolerance intervals and limits are not considered fﬁrther here.

A one-sided tolerance interval seeks to capture either the lower or the upper portion of
the distribution. In the former case, the interval is of the form (-e0,UTL); in the latter case,

the interval is of the form (ILTL,). A one-sided tolerance interval is therefore characterized

(a) The naming scheme used here is conﬁdence/content Some references reverse the
order of these parameters.
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by its finite endpoint, the associated tolerance limit; hence, the remainder of this discussion is
fran:led in terms of tolerance limits (rather than tolerance intervals). Since an upper tolerance
limit for the random variable X is also a lower tolerance limit for -X, the same statistical
theory governs both types of one-sided tolerance limits. Therefore, this discussion considers

only construction and characteristics of an upper tolerance limit.

A one-sided upper tolerance limit is of the form

UTL=X + k.. S . (B.11)

nvp !

where k., is a constant that depends on the assumed distribution of the data, the amount of
information available on X and S? (reflected by n and v, respectively), and the specified
confidence (Y) and content (p). Calculation of Ky, for @ one-sided UTL under the

assumption that the data follow a normal distribution® is discussed in the next section.

B.3 CALCULATING k..

In order to construct a one-sided UTL of content p and confidence ¥, k, ., must be

chosen so that the following condition is satisfied:®

1-y = PHX+k Ssp+z,0l, (B.12)

nvY.e

where z, is the p-th quantile of the standard normal distribution. This condition can be

manipulated algebraically as follows:

(@)  Thatis, X and S? are derived from a set of n observations, X;, i = 1,...n, ~ IID
' N(u,0%). More complicated cases, in which the underlying data are subject to several
sources of variation or in which X and S? are based on different data, are discussed at
the end of Section B.3 and in Sections D.2 and D.3.

() The calculations below pertain to what is known as a B-content tolerance interval, i.e.,
one which contains at least 100B% of the underlying distribution (with the specified
confidence). There also exist B-expectation tolerance intervals, which contain 100p%
of the underlying distribution in the long run (sometimes more, sometimes less). This
type of tolerance interval is not considered further here.
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1-y = PriX+k S<p+zgo)

nv.y.p

- Xz <k, )} = Pr Xw(z0) & (B9
S VY0 S/ ‘/7_,- nv..p
From Expression (B.10),
(X ll -z G T(v,-z \/—) (B.14)

S/\/_

Therefore, k., must be chosen so that

1-y = PAT, j<-k,,../n}, (B.15)
where
§=zyn. (B.16)
Equation (B.15) implies
KooV = b (B.17)

where t, ., 5 is the 100(1-y)-th percentile of the noncentral t-distribution with v degrees of

freedom and noncentrality parameter -8.% Therefore,

t
Kpypp =~ (B.18)

(a) Notation in the main result of this section [Equation (B.20)] is simplified by the use of
-3, rather than 0, as the noncentrality parameter at this point in the development.

B.S




will ensure that the UTL has the required confidence and content. Using the fact that

PAT, ;210 = 1-PHT, ;< -1} (B.19)

vo— v,

(Owen 1968, p. 465), the notation given in Equation (B.18) can be simplified:

ko = bus (B.20)

avY.p ‘/E

Equation (B.20) demonstrates that the statisticai multiplier, k, .., required to produce
a 100y%/100p% UTL can be obtained from the 100y-th percentile of a noncentral
t-distribution. The content of the UTL affects the statistical multiplier through the
. no_ncentrality parameter, & [see Equation (B.16)]. Two facts used in the discussion of best
tolerance limits are: 1) to any fixed value of k, there corresponds an infinite number of
combinations of ¥ and p such that K,vyp = k, and 2) confidence and content are antagonistic,
in the sense that if either is increased, the other must be decreased in order to maintain the

same statistical multiplier.

In the development above, the assumption that X and S* were taken from the same
data was made for ease of presentation. As long as X and S* are independent, S* is an
estimate of the variance of the data from which X is drawn, and n is the number of
(independent) observations contributing to X, the same argument works. Therefore, S? might
be drawn from prior information or from a combination of prior and current information. The
only difficulty is that, in either of these cases, v is not necessarily equal to n-1. In any case,
Vv remains a parameter of the noncentral t-distribution, and n enters through its relationship to

8 [Equation (B.16)] and as the denoininator in the final calculation of k., [Equation (B.20)1.

Note that if each X; is affected by several sources of variation, the definition of n is
not simple. In this case, a reasonable estimate of n is the number of observations at the
highest level of the variance hierarchy. See Sections D.2 and D.3 for more discussion of this

issue.
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B.4 BEST TOLERANCE LIMITS

To demonstrate WAPS 1.3 complianée for a waste type, a 95%/95% UTL will be
compared with the maximum allowable value, U, and compliance will be considered
demonstrated if UTL < U. It may be possible to demonstrate compliance at higher
confidence and/or content levels. The highest values of confidence and content at which
compliance can be demonstrated (i.e., for which UTL < U) are called the best confidence and

content, and the associated tolerance limit is called the best tolerance limit.

Let k. be the maximum statistical multiplier for which UTL < U. The statistical

multiplier is maximized if UTL = U, which implies

K = UX . (B21)

The best tolerance limit is one that employs a statistical multiplier equal to k__., and any
combination of confidence (y) and content (p) such that k.. = k., can be called "best." As
mentioned in Section B.3, the number of such combinations is infinite. The HLW
vitrification process/product control system will calculate three quantities:

. Ymaxo the highest confidence level corresponding to the nominal (95%) content;
i.e., Ymax Such that the 100y, %/95% UTL is equal to U;

. Pmax» the highest content corresponding to the nominal (95%) confidence level;
i.e., Pmax Such that the 95%/100p,,,,% UTL is equal to U; and

. Tqae the confidence and content such that: 1) confidence and content are equal,

and 2) the corresponding UTL is equal to Uj i.e., 7., such that the

100x,,,,%100x,,,, % UTL is equal to U.

If mathematical functions for calculating probabilities and percentage points of the
noncentral t-distribution are available, the relationship of k., to this distribution can be used
to calculate ¥,.., Pmaxs a0d T,.. A computer program for calculating these quantities appears
in Appendix C. This program calculates Yy, directly, using a function that computes

probabilities of the noncentral t-distribution. The program uses a bisection search to obtain
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Pra 0d T, this search exploits the (monotonic) antagonism of ¥ and p for a fixed value of

k (see Section B.3).
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APPENDIX C

CALCULATING CONFIDENCE AND CONTENT
FOR BEST TOLERANCE LIMITS

This appendix presents a computer program for calculating confidence and content

associated with best tolerance limits, as defined in Section B.4 of Appendix B. The program -

is designed for use with the statistical software package SAS® (SAS Institute Inc. 1990).®
The code contains a large amount of internal documentation and therefore should be self-
explanatory. This code will serve as a logical template for implementing the best tolerance
interval approach in the high-level waste vitrification process/product control system. SAS®
provides functions for calculating noncentral t probabilities (PROBT) and percentage points
(TINV). Implementing the best tolerance interval approach in the high-level waste
vitrification process/product control system will require implementation of similar functions or
access to a library of mathematical/statistical routines that contains such functions. It may be
possible t6 avoid implementing a TINV-like function by modifying the logic contained in the
SAS® code. '

REFERENCES

SAS Institute ITnc. 1990. SAS® Language: Reference. Version 6, first edition. SAS Institute
Inc., Cary, North Carolina.

(a) SAS® is a registered trademark of the SAS Institute Inc., Cary, North Carolina. This
registered trademark is used to identify products and services of the SAS Institute Inc.
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/* ‘
CONFIDENCE AND CONTENT CALCULATIONS
FOR ONE-SIDED TOLERANCE LIMITS

Given a nominal confidence level (CONFID), a nominal content’
(CONTENT), and KO, the distance, expressed in standard deviation
(S) units, from the sample mean (XBAR) to the specified upper
bound (U) on the quantile of interest, this program finds

* G_MAX, the highest confidence such that: ‘
1) the upper tolerance limit is equal to U, and
2) content = CONTENT, the nominal content.

C* P_MAX, the highest content such that:

1) the upper tolerance limit is equal to U, and
2) confidence = CONFID, the nominal confidence level.

* G_EQ_P, the highest confidence and content such that:

1) the upper tolerance limit is equal to U, and

2) the associated confidence and content are equal.

The calculations done in this program take advantage of the
relationship between the statistical multiplier for constructing
a tolerance interval (XK) and the noncentral t-distribution:

k =t(g, n-1, d(p)) / sart( n)

where:

* t(g,n-1,d(p)) is the g-th quantile of the noncentral t
distribution with n-1 degrees of freedom and noncentrality’
parameter d(p). '

* g is the confidence associated with the tolerance interval,

* p is the content . associated with the tolerance interval,

* d(p) = z(p) sart( n), and

* z(p) is the p-th quantile of the standard normal
distribution.

Two functions are useful in these calculations:

g = probt( t0, n-1, d);
k = tinv( g, n-1, 4);

PROBT returns F(t0) = Pr(T <= t0), the distribution function of
the noncentral t, and is therefore useful in calculating
confidence. TINV returns the g-th quantile of the noncentral t
‘and is therefore useful in calculating k values. For example,

C2




given confidence (g), content (p), and samble size (n), the
code for calculating the corresponding k value is

dp = probit( p) * sqrt( n);
df = n - 1; .
k = tinv( g, 4df, dp) / sart( n);

As n increases, k(g,n-1,d(p)) converges to z(p) for all g
(see Owen, D.B., 1968, "A Survey of Properties and Applications
of the Noncentral t-Distribution," Technometrics 10(3):445-478,
p. 448). For large p (e.g., p >= 0.5), this convergence seems
to be monotonic decreasing; for small p, the convergence seems
to be monotonic increasing; and for intermediate, k seems to
decrease. to a minimum, then increase monotonically to z(p).

To find G_MAX, P_MAX, and G_EQ_P, the distance in standaxd
deviation (S) units between the specified upper bound (U) and the
sample mean (XBAR) is required. This distance, KO, is the
‘statistical multiplier k such that the upper tolerance limit
(UTL) is equal to U, i.e., U = UTL, where UTL = XBAR + (k * S).
Given U, XBAR, and S, KO is defined by the formula

kO = (u - xbar ) / s;

Calculating the highest confidence corresponding to a given
k, n, and p is quite simple:

dp = probit( p) * sagrt( n);
gt = n - 1;

t0 = k * sqrt( n);

g = probt( t0, n-1, dp);

This routine, with k = KO0 and p = nominal content, is used to
find G_MAX.

Calculating P_MAX, the highest content corresponding to KO
and the nominal confidence level, CONFID, is somewhat more
difficult, since content is an argument of both. functions. A
bound-and-bisect routine is used here. To understand the method,
it must be remembered that -confidence and content are
antagonistic, in the sense that, for a fixed KO0 and N, higher
confidence is realized at the expense of lower content, and vice
versa. G _MAX (the highest confidence corresponding to the
nominal content) is used as a starting point. The content
corresponding to G_MAX, p(G_MAX) serves as one of the bounds for
p_MAX. If G_MAX > CONFID, p(G_MAX) is a lower bound for P_MAX,
and an upper bound is obtained by increasing p until g(p) is less
than CONFID. If G_MAX < CONFID, p(G_MAX) is an upper bound for
pP_MAX, and a lower bound is obtained by decreasing p until g(p)
is greater than CONFID. Bisection on p is then used until g(p) =
CONFID.
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Calculating highest content and confidence for KO such that
content = confidence is also complicated by the fact that
content appears as an argument in both functions. The
approach here uses a bound-and-bisect routine on the statistical
multiplier, k(cc), where cc represents the (equal) confidence and
content. First, k(0.75), the statistical multiplier for a
75%/75% tolerance interval (75% confidence, 75% content) is
calculated. If k(0.75) < KO, 0.75 is a lower bound and an upper
bound is obtained by increasing cc until k(cc) > KO. If
k(0.75) > KO, 0.75 is an upper bound and a lower bound is
obtained by decreasing cc until k(cc) < KO. Bisection on cc is
then used until k(cc) = KO.

*/

.title ‘Tolerance Interval Confidence and Content Calculations’;

%let epsilon = 0.000001;

$macro calc_g; /* Calculate g( k, n, p), */
dp = probit( p) * sqgrt( n); /* the confidence in a */
df = n - 1; ' /* tolerance interval based */
t0 = k * sqgrt( n): /* on k, sample size n, and */
g = probt( t0, 4df, dp): /* content p. * /

smend; "

smacro calc_k; /* Calculate k( g, n, p), *)
dp = probit( p) * sgrt( n): /* the statistical multiplier */
df = n - 1; /* for a tolerance interval */
k = tinv(g,df,dp)/sart(n); /* with confidence g, sample */

$mend; /* size n, and content p. */

data first;
/*

The calculations below require the quantities CONFID,
CONTENT, N, and KO. These quantities are directly specified
(see the DO loops below), but could be read in from another data
set (via SET), from a disk file (via INFILE and INPUT), or from
text lines included here (via INPUT and CARDS).

KO. is the distance from the sample mean (XBAR) to the
specified upper bound for .the desired quantile (U), expressed
in standard deviation (S) units. ThHerefore, the input data
could include U, XBAR, and S in lieu of KO. The lines below
illustrate the process: '

keep xbar s n u confid content g_eqg p p_max g_max;

0.95;
0.95;

confid
content
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xbar = 10;

s = 3;

n = 25;

u = 20;

kO = ( u - xbar) / s;
*/

keep n confid content k0 g_eq p p_max g_max;

do confid = 0.75, 0.90, 0.95, 0.99;
do content = 0.75, 0.90, 0.95, 0.99;
do k0 = 0.25, 0.50, 1, 2, 3, 4, 5;

k = kO0; /* Calculate G_MAX, the highest */
p = content; /* confidence level consistent */
%calc_g; /* with KO and nominal content. */

g.max = g;

/'k

Calculate P_MaX, the highest content consistent with
KO0 and the nominal confidence, CONFID (i.e, such that the
corresponding UTL is equal to U). This is done with a
bound-and-bisect routine based on g, the confidence
associated with a candidate p.

THE BOUNDING ROUTINE FOR P_MAX:

Remember that p and g are antagonistic, in the sense that
each is a monotonically decreasing function of the other.
Therefore, the bounding routine begins by examining G_MaX
(for which the associated p equals the nominal content, i.e.,
p(G_MAX) = CONTENT). If G_MAX > CONFID, then CONTENT is a
lower bound for P_MAX, and an upper bound is sought by
bisecting toward p = 1. If G_MAX < CONFID, then CONTENT is
an upper bound for P_MAX, and a lower bound is sought by
bisecting toward p = 0. .

*/
if ( g_max > confid) then do; /* Need upper bound */
pl = content; ‘ /* for P_MAX, so */
pu = pl; /* Dbisect toward 1. */
do until ( g < confid);
p=(1.0 +pu) * 0.5;
¥calc_g;
pu = p;
* put ‘Bisecting up: ‘* pl pu g;
end;
end;
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else do; /* Need a lower bound */
pu = content; /* for P_MAX, so bisect */
pl = pu; /* toward O. */
do until ( g > confid);
p =pl * 0.5;

%calc_g:-
pl = p; :
* put ‘Bisecting down: ‘' pl pu’g;
end; .
end;
* put ‘Got bounds: ¢ pl pu g;

/*
THE BISECTION ROUTINE FOR P_MAX:

The bisection routine is straightforward: calculate p
halfway between PL and PU, calculate g(p), and choose new bounds
based on the relationship of g(p) to CONFID. Continue until g(p)
is sufficiently close to CONFID. :

*/
do until ( abs( g - confid) < &epsilon);
p=(pl+pu) * 0.5
%calc_g;
if ( g < confid)
then pu = p;
else pl p;
end; ‘

p_max = D;

/*

Calculate G_EQ_P_, the highest confidence and content such
that confidence = content and the upper tolerance limit is equal
to U. This is done with a bound-and-bisect routine based on the
statistical multiplier, k(cc), where cc represents the (equal)
confidence and content. (The code actually manipulates p, rather
than a variable named cc, and sets g = p before every call to
CALC_X.)

THE BOUNDING ROUTINE FOR G_EQ_P:

First, k(0.75), the statistical multiplier for a 75%/75%
tolerance interval (75% confidence, 75% content) is calculated.
If k(0.75) < KO0, 0.75 is a lower bound and an upper bound is
obtained by increasing cc until k(cc) > KO0. If k(0.75) > KO,
0.75 is an upper bound and a lower bound is obtained by
decreasing cc until k(cc) < KO.

*/
p = 0.75;
g = p;
$calc_k;
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if ( k < k0) then do; /* Need an upper bound
ccl = p; /* for CC, so bisect
ccu = p; /* toward 1.
do until ( k > k0);
p=(21.0+ ccu) * 0.5;
g = Db;
$calc_k;
ccu = p;
end;
end;

else do; /* Need a lower bound
ccu = p; /* £for CC, so bisect
ccl = p; /* toward O.
do until ( k < k0);
p =ccl * 0.5;
g = p;
$calc_k;
ccl = p;
end;
end;
/‘k

THE BISECTION ROUTINE FOR G_EQ P:

The bisection routine is straightforward: calculate p
halfway between CCL and CCU, set g = p, calculate k(p), and
choose new bounds based on the relationship of k(p) to KO.
Continue until k(p) is sufficiently close to KO.

*/
do until ( abs( k - k0) < &epsilon);

Pp=(ccl + ccu) * 0.5;

g = p:

¥calc_k;

if ( k < kO)
then ccl = p;
else ccu = p;

end;

g_eqp = p;
output;
. end;’
end;
end;
end;
run;

proc print noobs uniform;

var n confid content k0 g_max p_max g_edq p;
run;
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APPENDIX D

ESTIMATING AND MANIPULATING UNCERTAINTIES

Data from the high-level waste (HLW) vitrification process will be multivariate (e.g.,
feed compositions) and will be subject to several sources of uncertainty. Requirements and
specifications imposed on HLW vitrification material ;1pp1y to univariate attiibutes, many of
which will be calculated from (multivariate) feed compositions using empirical models
developed as part of the Composition Variability Study (CVS; Hrma, Piepel, et al. 1994).
Therefore, proper inference in HLW vitrification process/product control requires

. estimating univariate and multivariate uncertainties and components thereof

(e.g., variances, variance components, covariance matrices, covariance
components);

. propagating multivariate uncertainties to yield univariate uncertainties;

. combining univariate uncertainties to yield an estimate of overall uncertainty in
an estimated attribute value, and assigning a measure of strength of belief to
this overall uncertainty estimate; and

. updating existing uncertainty estimates to reflect both prior and current
information.
These topics are discussed in the following sections. This appendix supplies the technical
details that do not appear in Section 4. Expanded treatments of these subjects appear in
"Bryan and Piepel (1994), Bryan, Piepel, and Simpson (1994), and Searle, Casella, and
McCulloch (1992). Basic statistical concepts and notation are cove-red in Appendix A.
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D.1 THE MODEL FOR COMPOSITION UNCERTAINTY
IN HLW VITRIFICATION DATA

Let Yij,; represent the value of some attribute estimated from the k-th analysis of the
j-th sample from the i-th batch of HLW vitrification process material.®” Yy, is subject to
model uncertainty and to three sources of composition uncertainty (batch-to-batch variability,
within-batch uncertainty, and analytical uncertainty). Model uncertainty will be estimated
separately and then combined with composition uncertainty (see Sections D.5 and D.6).

Composition uncertainty (and its components) will be estimated using the following model:

Yie = B+ By + 0 + Gy (D.1)

where B; ~ (0,552, @ ~ (0,6,2), 04 ~ (0,0,7), and all the random variables are uncorrelated.
In this model, 0'32 represents batch-to-batch variability, o,? represents within-batch
uncertainty, and G, represents analytical uncertainty. The B;, ©;, and oy, are known as

random effects. The quantities 6%, 0,7, and G,* (and estimates of these quantities) are known

as variance components (or components of variance).

The number of batches in a single waste type is denoted by b, the number of sample‘s
taken from the i-th batch is denoted by w;,® and the number of analyses performed on the
j~th sample from the i-th batch is denoted by a;. If w; = w for all i, and a; = a for all i and js

the data are said to be balanced. Otherwise, the data are said to be unbalanced.

(a) Waste to be processed by the HL'W vitrification plant will be classified into waste
types. However, all requirements apply within a single waste type; no inferences are
required across waste types. For this reason, the model and methods discussed here
should be applied separately to each waste type. Therefore, the notation is simplified
by not accounting for waste type.

(b) It may seem more intuitive to use s; for the number of samples taken from the i-th
batch. However, the letter s (and subscripted versions thereof) is reserved in this
document for denoting a standard deviation. Therefore, w; is used to denote the
number of samples within a batch.
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Several of the equations and methods discussed below rely on the within-sample mean,
?ij.. The within-sample mean is the mean over the a; analyses performed on the j-th sample
from the i-th batch:

1<)
fll

1 a4y
E Y, - (D.2)

i
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D.2 THE BATCH MEAN AND ASSOCIATED UNCERTAINTIES

Under the model given in Equation (D.1), the true attribute value for the i-th batch is
i+ B, To check a single-batch requirement on this attribute, pu + 5; will be estimated with

the batch mean.® In general, the i-th batch mean is

1 & D.
[T{"E Yijk:l7 (B3

ij k=1

Vo= 2Y %y = 23

iJ=1

that is, the batch mean is a mean of w; within-sample means from the i-th batch. By

substituting for Yy, from Equation (D.1) and simplifying, it can be shown that

W, W, a
> 1 1wve| 13 (D.4)
Y.. =;,L+B.+__§:co..+_ 2:0‘" .
* owiE Y owiH l:aijkrl 17k

For balanced data, these expressions simplify as follows:

(a) Since the batch effect is assumed to be random rather than fixed, an argument can be
made that the best estimator for the quantity p + B; is not the batch mean value, but a
"shrunken" version of this value. Searle et al. (1992, Chapter 7, esp. pp. 258-260)
discuss this problem. The preliminary Feed Test Algorithm (Bryan and Piepel 1994)
ignores this complication. If testing of the HLW vitrification process/product control
algorithms with the Plant Simulation Code indicates problems, this issue should be
re-examined. ‘
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7= LYYy, mneBr i 0,2 e, (D5)
* wass k=1 13k owE Y waH & i3k

Since the target of inference for a single-batch requirement is p + f; (the true attribute
value in the i-th batch), inference should be conditional on (i.e., taking as fixed) the true
value of B, Thus, for testing a single-batch requirement, the estimate of composition
uncertainty in the batch mean must account for uncertainties due to ; and o (the within-
batch and analytical uncertainties, respectively), but uncertainty in B, (the batch-to-batch

uncertainty) is irrelevant.

Since the batch mean is a mean of within-sample means, each within-sample mean can
be viewed as an observation coﬁtributing to the batch mean. In other words, the population
underlying the batch mean is the population of within-sample means, Y;- Therefore, the
uncertainty in the within-sample means is important in making inferences about the batch
mean. In general, the (conditional) compo.;.ition uncertainty associated with the j-th within-

sample mean from the i-th batch is

— o2
.. ) = ¢ . (D.6)
Var(Y%J' l BI) Gl + o
For balanced data, this composition uncertainty is.
= o; ,
var(¥; |By) = oot — - (D.7)

In general, the (conditional) composition uncertainty in the i-th batch mean is

var(7,..1B) = 22+

. (D.8)
Wi wpa;

where
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For balanced data, the (conditional) composition uncertainty in the i-th batch mean is

var(¥,.|B,) = 320-)"' O

A (D.10)
17 wa

Estimating these uncertainties is discussed in Section D.4.

Recognizing the batch mean as a mean of within-sample means assists in identifying
the proper sample size to be associated with the batch mean when constructing confidence
and/or tolerance limits. For example, in the balanced case, the number of individual Yy,
involved in calculating the batch mean is wa, but this is not the proper sample size for
statistical inference. The proper sample size is equal to the number of within-sample means
involved in constructing the batch mean. This sample size is w, in the balanced case, or w;,

in the unbalanced case.

Model uncertainty must also be accounted for by the statistical inference procedure.
Estimating model uncertainty is discussed in Section D.5. Combining model and composition

uncertainties is discussed in.Section D.6.

D.3 THE MULTIPLE-BATCH MEAN AND ASSOCIATED UNCERTAINTIES

The target of inference for a multiple-batch requirement is a percentile of the
distribution of batch means. Under the model given in Eqﬁation (D.1) and the assumptions
pertaining thereto, the true batch means, p + f;, follow a distribution with mean p and

variance oy’. Therefore, estimates of p and og* are required for statistical inference.

The procedure for checking muitiple-batch requirements will use the multiple-batch

mean, Y .., as an estimate of u. The multiple-batch mean is defined as
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Y.. = £ Y. BE _Z 7 |- (D.11)

The multiple-batch mean is a mean of the b individual batch means. By substituting for Yy

from Equation (D.1) and simplifying, it can be shown that

ayy

— (D.12)
Y. = — o
e BB B 0 s e
For balanced data, these expressions simplify as follows:
l b w a
Y;;
1 b w 1 b w a 13)
= ®; 4 o (D.
i “5;[3 *mEl; 3 DAy oy o e

As stated above, the statistical procedure for checking multiple-batch requirements
requires an estimate of G;>. Estimating o’ is discussed in Section D.4. It is instructive to
consider the uncertainty in the empirical batch means. In general, the cbmposition uncertainty

in the i-th batch mean is

_ &
var(v,..) = 6 O, O, (D.14)
w;a;
where
1
L (0.15)
Wi i
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For balanced data, the composition uncertainty in the i-th batch mean is

3, %

var(¥,.) = Gp+ — + (D.16)

wa -
Thus, the empirical batch means, Y;., have a larger variance than do the true batch means,

t + B, This variance can also be estimated using the methods discussed in Section D.4.

The proper estimate of composition variability to be used in the inferential procedure
may require more investigation. This issue is related to the issue of removal of nuisance
uncertainties, which is discussed in Section 5. The WAPS 1.3 compliance strategy to be used -
by the HLW vitrification process/product control system will employ an estimate of the
variance that appears in Equation (D.16). This uncertainty is larger than GBZ alone; hence,
inference based on this uncertainty is conservative relative to inference based on an estimate
of 0‘52. If testing of the WAPS 1.3 compliance strategy (e.g., using the Plant Simulation
. Code,’ as discussed by Bryan and Piepel 1993) indicates that this conservatism is likely to

hinder verification of WAPS 1.3 compliance, this issue should be revisited.

Recognizing the multiple-batch mean as a mean of individual batch means assists in
identifying the proper sample size to be associated with the multiple-batch mean when
constructing confidence and/or tolerance limits. For example, in the balanced case, the
number of individual Yy, involved in calculating the multiple-batch mean is bwa, but this is
not the proper sample size for staﬁsﬁcal inference. The proper sample size is equal to the

number of batch means involved in constructing the multiple-batch mean, b.

Model uncertainty must also be accounted for by the statistical inference procedure.
Estimating model uncertainty is discussed in Section D.5. Combining model and composition

uncertainties is discussed in Section D.6.
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D4 ESTIMATING VARIANCE COMPONENTS

The model given in Equation (D.1) is an example of a two-way nested random model.
The term "nested" is applied because the random effects are hierarchical; for example,
uncertainty exists among analyses within a single sample, among samples within a single
batch, and among batches within a waste type. Each obsei'ved, measured, or estimated -
attribute value includes uncertainty introduced at each level of this hierarchy. The uncertainty
at each level in this hierarchy can be represented by a variaﬁce. These hierarchical

representations of uncertainty are the variance components.

Methods for estimating variance components are discussed in great detail by Searle et
al. (1992). The discussion below focuses on general principles, applicability to HLW

vitrification process/product control, and special features of the HLW vitrification process.

Assume that the data available for estimating variance components are balanced. As
in Section D.1, the number of batches is denoted by b, the number of samples taken from
each batch is denoted by w, and the number of analyses run on each sample is denoted by a.
The total number of observations is then bwa. These data may be analyzed with the analysis
of variance (ANOVA)®, as in Table D.1. The estimates of the individual variance

components are

62 = MSB-MSW g2 _ MSW-MSA
B Twa ' o —a

= 6,2 = MSA , (D.17)

where the symbols used above are defined in Table 1. These ANOVA-based estimators are

derived by setting the sample-based mean squares MSA, MSW, and MSB equal to their

(a) The analysis of variance, or ANOVA, is a well-known and widely-used statistical
procedure. ANOVA is discussed in most books on basic applied statistics (e.g.,
Snedecor and Cochran 1980); Graybill (1976) and Searle (1971) present extensive
theoretical treatments of ANOVA.
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expectations (the "Expected Mean Squares" of Table 1) and solving for 6.2, ¢,2 and c%.®
The degrees of freedom associated with the estimates of G;,z and o4’ can be calculated from

the Satterthwaite approximation (Section D.6).

Once these estimates of variance components have been calculated, they can be used
to estimate composition uncertainties (and the associated degrees of freedom) for within-
sample means and batch means [Equations (D.6), (D.7), (D.14), and (D.16)]. Note that the
required variances are linear functions of the variance components, and that the variance
component estimators given in Equatic‘m' (D.17) are linear functions of the mean squares.
Therefore, for balanced data, the required variances can be estimated with linear functions of
the mean squares (skipping the intermediate estimation of variance components). Such a
simplification of the estimation process should be used when available, since a single-step
Satterthwaite approximation to the associated degrees of freedom ,will be more accurate than a
two-step approximation. In fact, for balanced data, the estimated variances collapse to simple

functions of the mean squares in Table 1:

‘7(23-‘5;) = -Mép—vl v(z..) =

MSB

. (D.18)
wa

The degrees of freedom associated with these estimated variances are simply those associated

with the corresponding mean squares, b(w-1) and b-1, respectively.

The estimators of variance components given in Equation (D.17) belong to the class of

ANOVA estz'mato.rs.“”. Searle et al. (1992) discuss other methods for estimating variance

(a) The method of moments is a technique for deriving statistical estimators in which
sample-based quantities are set equal to their expectations and the resulting equations
are solved for the parameters in terms of the sample-based quantities (Lindgren 1976).
Thus, the ANOVA-based estimators discussed here are examples of method of
moments estimators.

b) This document follows the convention of Searle et al. (1992) in applying the term
"ANOVA estimators" to any estimators derived by applying the method of moments to
quantities involved in an ANOVA. In some cases (e.g., when the data are not
balanced), different types of ANOVA may be legitimately applied to the same data.
Different method of moments may result from these different ANOVAs. Therefore,
ANOVA estimators are not necessarily unique.
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components, including maximum likelihood estimation, restricted maximum likelihood
estimation, and Bayes procedures. Complete enumeration and elucidation of the wide variety
of techniques for variance component.estimation are beyond the scope of this document. The
choice of estimation technique must depend on the structure of the available data and the
assumptions about the process that are considered realistic at the time. Therefore, this choice
should be made when data become available, as part of the data analysis process. Some

considerations in the choice of specific technique are discussed below.

It is common to assume that random effects in a linear model follow a normal
distribution. In fact, some distributional assumption is required for several of the variance
component estimation techniques mentioned above (e.g., maximum likelihood and Bayes
procedures). The ANOVA estimators are exceptions -- they are derived simply by equating
mean squares to their expected values and therefore depend only on the moments of the

underlying distribution(s).

The assumption of balanced data greatly simplifies the form of the ANOVA
estimators. In fact, with balanced data, several methods for variance component estimation -
yield estimates identical or closely related to the ANOVA estimates. Unfortunately, this is
not the case if the data are unbalanced; in fact, for unbalanced da.ta, several reasonable types
of ANOVA estimators exist. Other estimation techniques yield unique estimators, but these
techniques are iterative in nature and can impose a significant computational burden. If
imbalance in the available data is not too large, the ANOVA estimators of Equation (D.17)
(possibly modified to account for the imbalance) should provide reasonable approximations to

the variance components.

ANOVA estimates of variance components can be negative. This is troubling, since
the true values of variance components, by their nature as variances, must be nonnegative.
Searle et al. (1992, pp. 129-131) discuss various options for dealing with this problem. One
is simply to set a negative estimate to zero (thereby concluding that the related random effect
contributes no uncertainty to the observed value); a secon& is to use one of the methods that

guarantee nonnegative estimates (e.g., maximum likelihood and Bayes procedures).
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Estimating multivariate composition uncertainties may be required as part of HLW
vitrification process/product control. Like univariate uncertainties, multivariate uncertainties
may derive from various sources, so methods for estimating components of multivariate
uncertainties may be required. Just as for univariate variance components, the importance of
multivariate components of uﬁcertainty lies in their crucial role in estimating uncertainty in

values (e.g., means) calculated from a set of observations, Xy

. The model given in Equation (D.1) can be generalized to apply to the multivariate

situation, e.g., to vectors of measured feed composition:
“Z'{ijkzg'*.-@-i +@-ij +g’-‘jk' (D’lg)

where X, is the vector of individual oxide mass fractions (X, 1 = 1, ..., 10), and B:, @, and
Oy, are vectors of random effects. In this multivariate generalization of Equation (D.1), it is
assumed that B; ~ (0,Zg), @y ~ (0,Z,), O ~ (0,Z;), and the random vectors B, ; and Oy are
uncorrelated. In analogy to the univariate case, the covariance matrices Z, Z,, and Z, are

known as covariance components (or components of covariance).

Searle et al. (1992) discuss estimation of covariance components. T he method to be
used in HLW vitrification process/product control is based on the methods for univariate
variance component estimation discussed above and on the well-known formula for the

variance of a sum of two random variables (see, for example, Lindgren 1976, p. 137):

Var(X;+X;) = Var(X;) + Var(X;) +2 Cov(X;, X;) . (D.20)
from which is easily derived:

Cov(X,,X;) = 3 {Var(Xpx,) - (Var(x,) + var(x,)1). (D.21)

To obtain estimates of the components of covariance between X; and X;, the three univariate
variance components (64%, G5 O, Will be estimated for each of X;;, X;, and the sum, X; + X;;,

and the above formula will be applied. Performing this estimation for each pair (i,j), j > i,
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"fills in" the upper half of each of the matrices of covariance components; the lower half of

each matrix is derived from the symmetricity of covariance matrices.

D.5 PROPAGATING UNCERTAINTIES

Many of the batch and glass attributes that must be estimated and checked as part of
HLW vitrification process/product control will be calculated as functions of more than one
uncertain quantity (e.g., oxide mass fractions, other process measurements, empirical model
coefficients). In order to check compliance of these attributes with-process and product
specifications, the total (univariate) uncertainty associated with each attribute must be
estimated. Therefore, a procedure for combining multivariate uncertainties (e.g., covariance

matrices, covariance components) to yield univariate uncertainties is required.

For HLW process/product control, the multivariate uncertain quantities fall into two
categories: i) composition and other process measurements, and 2) empirical model
coefficients. As discussed in Section 4.1, composition uncertainty and components thereof
will be estimated by using the CVS models to'co'nvert individual measurements of feed
composition to property values (e.g., PCT results), and then performing univariate variance
component estimation for these results (using the methods discussed in Section D.4).
However, future developments and investigations may indicate that efficiency could be
in¢reased by estiméting (multivariate) covariance components for composition and
propagating these covariance components into property (PCT) units. If this is the case, the
methods discussed in this section can be used to estimate the contribution of composition
uncertainty (and the components thereof) to uncertainty in property values. In any case, the
methods discussed here will be used to estimate the contribution of model uncertainty to

uncertainty in property values.

The procedure described below is one form of error propagation (or propagation of
error). This procedure can be used to estimate uncertainty for a wide variety of functions of

multivariate uncertain quantities.

E
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The basis for the error propagation method to be used in HLW vitrification
process/product control is as follows. Let y represent the characteristic of interest, and
assume that y = f(z), where z is a random vector with mean y, and covariance matrix Z,.
Then, using a Taylor series expansion about L, to approximate f(z), an approximation to the

variance of y, 6,2, can be derived:

oy = d*%.d_, . (D.22)

where d_ is the gradient of f (i.e., the vector of partial derivatives with respect to z), evaluated

at the observed value of z.

The uncertainty associated Wim a modelled batch or glass property (y) derives from
two distinct sources: 1) uncertainty associated with the estimated coefficients (b) of the
empirical model, and 2) uncertainty associated with the estimated composition (x).® Model
uncertainty will be rébresentéd by the covariance matrix, Z,, for the vector of estimated model
. coefficients (which will be obtained from CVS, Hrma, Piepel, et al. 1994). For simplicity of
presentation, it is assumed here that a single covariance matrix representing composition
uncertainty, Z,, is available. The case of several covariance components for feed composition

is discussed at the end of this section.

The general method of error propagation discussed above can be applied to the case in
which the random vector z consists of two distinct subvectors, e.g., the case in which
y = f(x,b). Denote the gradients of f(x,b) with respect to x and b by d, and d, respectively.
If x and b are uncorrelated random vectors (a reasonable assumption unless x is part of the
data used to estimate b), the approximate variance of y divides neatly into two parts, one

attributable to composition uncertainty, the other attributable to model uncertainty:

o, = d’r,d +d’z.d, . (D.23)

(a) If the property model is second-order, the vector x contains not only the individual
mass fractions, but also some cross-products.
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For the special case where the function f(x,b) is linear in both the data, X, and the
estimated coefficients, b, this formula takes on an even simpler form. For this case, y = x'b,

d

_z=.}_3.?.d_b=z"and

0% = bE b+ X5 x . (D.24)

The HLW vitrification process/product control system will estimate the two types of
uncertainty (composition uncertainty and model uncertainty) separately. The method of
Section D.6 will be used to combine these two types of uncertainty and to assign degrees of

freedom to the resulting estimate of overall uncertai;ity.

As currently envisioned, HLW vitrification process/product control will use error
propagation only to estimate model uncertainty. However, if the decision is made later to
estimate and propagate (multivariate) covariance components for composition, the error
propagation methods discussed in this section can be used to estimate the contribution of
composition uncertainty (and the components thereof) to uncertainty in property values. The
composition covariance components can be propagated separately. Using the method of
Section D.6, the resulting univariate variance components can be combined with the estimated
model uncertainty to form a univariate estimate of overall uncertainty in property units and to

assign an associated number of degrees of freedom.

D.6 COMBINING UNCERTAINTIES

When observed daia are subject to more than one source of uncertainty, proper
estimation of the uncertainty in a function (e.g., the mean) of these observations requires
combining variance components. In addition, estimating variance components often requires
combining mean squares, and the HLW process/product control algorithms must combine
model uncertainty with composition uncertainty. In many cases (including all so far
identified for HLW vitrification process/product control), the required combination of mean
squares or variance components is a weighted sum, where the weights are related to the

distribution of sampling effort (e.g., the number of samples per batch and the number of
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analyses per sample) or strength of belief in the individual variance components. In general,

such weighted sums take the form:

p
sZ =Y c;si, (D.25)

J=1

where s is the required combination of the individual variance components, s, with weights

Cj.

Some measure of the quality of s.> must be available in order to use this estimate to
draw inferences. The quality of a variance estimate is often quantified by the associated
degrees of freedom. The weighted sum above incorporates several variance estimates, each
with an associate number of degrees of freedom, f;. What number of degrees of freedom
should be associated with the combined variance estimate, s.>? i—ILW process/product control

will use the answer given by Satterthwaite (1946); the degrees of freedom to be associated

with s2 is
C.Sq
PR -l N - (D.26)
& (es) &S
JZJ; £; :2-; L;

Satterthwaite’s approximation, as the above formula is known, was derived under the
assumption of normality. -Caution should be exercised in applying this formula when some of
the c; are negative (which is often the case when estimating variance components). Methods
and additional requirements in this case are discussed by Gaylor and Hopper (1969), who
show that the approximation is adequate when the component (or the sum of the several

components) being subtracted is relatively small.
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D.7 UPDATING UNCERTAINTIES

In some cases, an uncertainty estimate may be available from a source external to the
actual Hanford HLW vitrification process data. For example, an uncertainty estimate may be
available from operations at other sites (e.g., DWPF, WVDP) or from simulations of the
HLW vitrification process. It may be desirable to combine this external uncertainty estimate
with data from the Hanford HL'W vitrification process. Combining an external uncertainty

estimate with current data is here referred to as updating the uncerfainty estimate.

If the external uncertainty estimate can be expressed as a variance, s, with an
associated number of degrees of freedom, f, the method described in Section D.6 can be used
to combine this information with variance estimates derived using the methods of Sections
D.4 and D.5. However, if the external uncertainty esﬁmate appears in some other form,
another method of combining this estimate with Hanford HLW vitrification process data must
be employed. For example, the external uncertainty estimate may appear as an estimated
variance, s?, with an associated standard deviation, e.” This section describes two methods

for combining such an external uncertainty estimate with HLW vitrification process data.

The first method is an adaptation of the method in Section D.6. This method relies on
the properties of the chi-square distribution to calculate a number of degrees of freedom
associated with s%. If s? is estimated from a random sample of size n from a normal
distribution, the associated random variable S? follows (a multiple of) a chi-square distribution
with f = n-1 degrees of freedom (Lindgren 1976, p. 334, Theorem 4). Since the mean and
variance of a chi-s'quare distribution are f and 2f, respectively, the relative standard deviation
(RSD) of S is

rsp(s?) War 52 l (D.27)

Therefore,

(a) This e is a measure of the uncertainty in s, i.e., an "uncertainty of the uncertainty."
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7 = 2 - 2(52)2 ]

- rsols?] <

(D.28)

This approximate f can be used with s* and the method of Section D.6 to combine the
external uncertainty estimate with uncertainty estimates derived from HLW vitrification

process data.

To update an uncertainty estimate, prior information must be combined with
information contained in a current data set. Combining prior and current information is one
application of the branch of statistics known as Bayesian statistics. The second method of
updating an external uncertainty estimate utilizes a Bayesian approach. Assume that n current
observations, X;, i = 1, ..., n, are available, where the X; are a random sample from a normal
distribution with mean zero and variance 6% As above, assume that both a prior estimate of
o2, denoted s?, and a prior estimate of the standard deviation of ¢, denoted e, are available.
Define

2
’YE (Sezz +2=_Z_:_+2 (D.29)
§ = s2 (S_: + 1). (D.30)
e

Based on these definitions, an updated estimate of 6> (one incorporating both the data

and the prior information) can be constructed from one possible Bayes estimator:

3, )
Sy F' (D.31)
where
_s. 1y
5, = 8+_Z§:x§, (D.32)



and

Yu=7+-§- (D.33)

(in each case, the subscript "u" is used to denote an updated estimate). In addition, an

updated estimate of the standard deviation of 6> can be constructed:

d

e, = Z

Se
U [eIVY2 Y2

(D.34)

More discussion of this Bayesian updating method, including derivation of the updated
estimators in Equations (D.31) and (D.34), appears in Section 9 and the Appendix of Bryan,
Piepel, and Simpson (1994). A multivariate version of this updating scheme appears in
Anderson (1984, p. 272).
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