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Cooperative Terrain Model Acquisition by a
Team of Two or Three Point-Robots

N. S. V. Rao, N. Manickam, V. Protopopescu

ABSTRACT

We address the model acquisition problem for an un-

known planar terrain by a team of two or three robots. The

terrain is cluttered by a finite number of polygonal obsta-
cles whose shapes and positions are unknown. The robots
are point-sized and equipped with visual sensors which ac-
quire all visible parts of the terrain by scan operations ex-
ecuted from their locations. The robots communicate with
each other via wireless connection. The performance is
measured by the number of the sensor (scan) operations
which are assumed to be the most time-consuming of all
the robot operations. We employ the restricted visibil-
ity graph methods in a hierarchical setup. For terrains
with convex obstacles and for teams of n(= 2,3) robots,
we prove that the sensing time is reduced by a factor of
1/n. For terrains with concave corners, the performance of
the algorithm depends on the number of concave regions
and their depths. A hierarchical decomposition of the re-
stricted visibility graph into n-connected and (n — 1)-or-
less-connected components is considered. The performance
for the n(= 2, 3) robot team is expressed in terms of the
sizes of n-connected components, and the sizes and diam-
eters of (n — 1)-or-less connected components.

I. INTRODUCTION

The terrain model acquisition problem (TMAP) deals
with robots autonomously acquiring a complete model of
a terrain (or environment) by systematically visiting por-
tions of it. The motivation for this problem is at.least
two-fold.

(a) Efficiency in Future Navigation: Once the ter-
rain model is completely acquired, the navigation al-
gorithms of known terrains can be employed for path
planning with two potential advantages. First, the
sensors may be switched off (at least in theory) in fu-
ture navigation, thereby avoiding the time-consuming
sensor operations involved in the acquisition and pro-
cessing of sensor data. Second, navigation paths with
the shortest distance between the start and goal po-
sitions may be computed using the terrain model. If
the terrain model is not available, no algorithm can
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always guarantee the shortest paths. Consequently,
a robot can only recognize a dead-end corner after
it has moved into it and explored it; of course, such
situations can be avoided if the terrain map is a priori
available.

Assistance to Human Model Builders: In ap-
plications involving mobile robots in indoor environ-
ments for repetitive operations, typically a human op-
erator is in charge of model building (which is tedious
and time-consuming). Robots capable of autonomous
terrain model acquisition (even in only small parts of
the terrain) can be employed to relieve the operator
from part of the work.

(b)

The focus of this paper is on algorithms that are guaer-
anteed to converge within the assumptions of the formu-
lation. The terrain model acquisition problem for three
dimensional polyhedral terrains has been solved by using
the visibility graph structure by Rao et al. [14] for the case
of a discrete vision sensor. In the plane, the restricted visi-
bility graph, which is obtained by removing all non-convex
vertices from the visibility graph, is shown to suffice [13].
The same problem can also be solved by using a method
based on the Voronoci diagram [16]. The TMAP in the
case of a robot equipped with a continuous vision sensor
has been solved by Lumelsky et al. [11]. The same prob-
lem when the obstacle boundaries consist of circular arcs
and straight lines can be solved by the methods of visibil-
ity graphs, Voronoi diagram and trapezoidal decomposition
using discrete and continuous vision sensors [12]. A survey
of non-heuristic algorithms for navigation in unknown ter-
rains and terrain model acquisition can be found in Rao et
al. [15].

To our knowledge, the problem of model acquisition of
an unknown terrain by a team of robots has not been
addressed in the formulation of non-heuristic algorithms.
This problem, however, has been studied by a number of
researchers using different formulations. For example, Ish-
ioka et al. [7] describe a cooperative map generation by
heterogeneous autonomous mobile robots (also see Dudek
et al. [4]). A cooperative recognition system for the envi-
ronment using multiple robots has been developed by Ishi-
wata et al. [8]. Our orientation is more along the lines of
the unknown terrains algorithms pioneered by Lumelsky
[10].

On the other hand, the navigation of multiple robots in
known and unknown terrains has been studied by a number
of researchers. Most of the existing papers on this problem




dre devoted to the case of known terrains, i. e. a terrain
model is supplied to the robot (Latombe [9]).

In terms of the cooperative terrain model acquisition by
two robots, the formulation that comes closest to ours is
the maze-exploration algorithm by two pebble automata
by Blum and Kozen [1]. The communication between the
pebble automata is achieved by using the pebbles that are
placed on free cells. Also, the pebble automata can recog-
nize the pebbles but are not equipped with computational
mechanisms to keep track of the coordinates of the cells.
On the contrary, we assume that the robots can store and
transmit information with arbitrary precision.

In terms of the terrain, the maze consisting of a two-
dimensional arrangement of cells [1] is much simpler than
the polygonal terrain considered here. This maze explo-
ration problem is similar to the terrain model acquisition
problem here in that the automata are required to visit all
free cells of the maze. For unknown terrains, the recent
study by Harinarayan and Lumelsky [6] indicates that the
simultaneous navigation of two robots cannot be solved if
no “cooperation” is present between them. Note that our
overall objective is different from theirs in two ways:

(a) we are interested in terrain model acquisition, and

(b) we wish to explore the cooperation mechanismsso that
the objective can be achieved more effectively by a
team of robots instead of a single robot.

In “very bad ” cases, e. g. the robots are initially located
at one end of a “long narrow polygonal corridor”, there
may not be any advantage in employing a team of robots:
the robots are forced to “stay” together. However, if the
terrain has “branches” so that the robots can explore dif-
ferent parts of the terrain, a team is likely to acquire the
terrain faster than one robot.

We prove that the terrain model acquisition method based
on the Restricted Visibility Graph (RVG) method [13] can
be advantageously implemented by a team of two or three
robots. In particular, if all obstacles are convex, the sens-
ing time can be essentially reduced to N,/n for n = 2,3.
The performance of the algorithm for general terrains de-
pends on the number of concave regions and their depths.
To tackle this situation, a hierarchical decomposition of the
restricted visibility graph into n-connected and (n — 1)-or-
less-connected components is proposed. The performance
for the n(= 2,3) robot team is expressed in terms of the
sizes of n-connected components, and the sizes and di-
ameters of (n — 1)-or-less connected components. This
analysis highlights the critical properties such as 2- and
3-connectivity, depth of hierarchy, etc. that support or im-
pede the paralle] acquisition of the terrain model.

The paper is organized as follows. Preliminaries are de-
scribed in Section 1. The TMAP in convex polygonal ter-
rains, and along tree and 2-connected structures are dis-
cussed in Sections III and IV respectively. The TMAP in
polygonal terrains is considered in Section V. Some varia-
tions of the proposed methods are presented in Section VI
Section VII contains a discussion of the results.

O
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Fig. 1. Visibility polygon from location p.

1I. PRELIMINARIES

We consider a finite two-dimensional terrain cluttered by
a finite and non-intersecting set of polygonal obstacles. An
obstacle vertex is convezr if the angle included inside the
obstacle by the edges that meet at this vertex is less than
180 degrees; otherwise the obstacle vertex is concave.

Two points p and ¢ in plane are visible to each other if
the line segment joining p and ¢, denoted by 7§, lies entirely
outside the interior of all obstacle polygons.

The robot, denoted by R, is point-sized and equipped
with a vision sensor. A discrele vision sensor-is character-
ized by a scan operation: a scan operation performed from
a position (point) p returns the visibility polygon of p that
consists of all points in the terrain visible to p (Fig. 1). We
assume that the most time consuming-part of the robot op-
eration is the scan operation. In vision-based robots, each
scan may take several minutes including the time required
to acquire and process the sensory data. The total sensing
time is given by the number of scan operations performed
by the robot(s) in sequence.

The robots communicate with each other in terms of
finite sequences of real numbers such that a real number ?
can be communicated in a small time unit via the wireless
connection.

Let |G| denote the number of nodes of the graph G, and
let the diameter of G, given by the number of nodes on
the longest path of G, be denoted by d(G). We shall also
use some terminology from graph theory, e. g. connectivity,
condensation, decomposition, etc., whose definition can be
found in books on graph theory (e. g. Harary [5]).

The restricted visibility graph is defined as follows [13].
The vertices of the RVG are the convex obstacle vertices.
Two vertices are connected by an edge if and only if they
are visible from each other or they are the end vertices of
an obstacle edge (Fig. 2). The RVG is connected and sat-
isfies the terrain-visibility property which implies that the
union of the visibility polygons of all the vertices of the
RVG contains the entire free-space [13]. The latter prop-
erty implies that any graph search algorithm implemented
by a robot will completely acquire the terrain model in a
sequence of N, scan operations, where N, is the number of
convex vertices of the terrain.

lSince in general a real number carries an infinite, uncompressible
amount of information, this hypothesis may seem unrealistic. However,
for the specific aspects of the present problem, this is not crucial. This
hypothesis is similar in spirit to the infinite precision arithmetic often
assumed to be available in the study of path planning problem [9].




’ IT11. CoNVvEX POLYGONAL TERRAINS

In this section, we consider terrains composed of convez
polygonal obstacles. The objective of the terrain model
acquisition algorithm is to perform a scan operation from
every node of the RVG which guarantees that the entire
free-space is seen.

The overall algorithm for a team of n robots is based on
the robots executing a graph search algorithm in a coop-
erative manner. At any step, each robot has the same
version of an incomplete RVG. For the team of robots
Ri,Rs,..., Ry, let R; have the highest priority, Ry have
second highest priority, and so on. Each robot performs a
scan operation and obtains the resultant visibility polygon.
Each robot computes its own adjacency list and communi-
cates it to the other robots. R; sends to R, its next desti-
nation d; which is one of the nodes adjacent to its present
location. Then R; marks d) as visited and computes its
next destination dy. R3; communicates dy and d; to Rg,
and dy to R;. This process is repeated until R, computes
its destination. Then the robots move to their chosen des-
tinations and repeat the algorithm. For concreteness, we
consider the depth-first search (Corman et al. [2]), where
R, chooses an unvisited vertex adjacent to its present lo-
cation, if such vertex exists. If not, Ry backtracks along
the path towards its starting vertex until it is located at
vertex with an adjacent vertex that had not been visited
so far or has been chosen by R;.

Note that an adjacency list computed after a scan opera-
tion consists of a (possibly empty) set of visited vertices and
not yet visited vertices. The above algorithm terminates
when all known vertices have been visited; the connectiv-
ity property together with the terrain-visibility property
ensure that the terrain model is completely acquired.

A. Two-Robot Team

Due to the connectivity of the RVG, R; is guaranteed
to find a destination in each step. In order that the above
algorithm be executed, we need to establish that Ry can
always find its destination. The required property is the 2-
connectedness of the RVG which is established for convex
polygonal terrains.

Lemma 1 The RVG of a terrain clultered by a finile num-
ber of convez polygonal obstacles satisfies the following prop-
erties: (a) there is a path between any two nodes u and v
containing a node w, and also there is a path between u
and v not containing w, and (b) there are two node-disjoint

(a) terrain (b) restricted visibility graph

Fig. 2. Restricted visibility graph.

Fig. 3. Illustration of the inductive step for Lemma 1.

paths between any two nodes of the RVG, i. e. RVG is 2-
connected.

Proof: We prove this lemma by induction on the number
of obstacles. Both Part (a) and (b) are true for a terrain
consisting of a single convex polygon. Assume that the
claim is true for a terrain of k obstacles; let RV G denote
the RVG of the k obstacles. Now place the (k+1)th polygon
Piy1. The edges of the RVG), that are intersected by the
new polygon are rerouted along the boundary of Pjyi.

First consider Part (a). The claim is true individually
for the sets of vertices of Py4; and vertices of RVGr. Now
consider the properties between the vertices of P41 and
RVGy. There are at least two edges between the vertices
of Pi41 and the vertices of RV Gy as illustrated in Fig. 3.
Any node u can be included in a path between vy and v,
of Pi4+1 by using the path vy, u;, u, ug, vp. Similarly any
node v can be included in a path between pair w; and
wy of RVGy as follows. By Theorem 5.14 of Harary [5],
there are two node disjoint paths joining w; to u; and
wy to uy (since by hypothesis RGV}, is 2-connected); then
the required path is given by wy, u, v1, v, vz, uz, wy. Now
consider a path between a vertex a of Py4+1 and a vertex &
on RVGj. By connectivity of RV Gy, there is a path P
between a and b. If P, does not include a vertex v of Py4q,
the part of P, can be rerouted along the boundary of P4
to include v. If a vertex u of RV G} is not included in P,
then the part of P, the lies on RV G}, can be adjusted to
include u. An almost identical argument shows the second
part of (a) that a chosen vertex can be excluded from the
path between two vertices.

To prove Part (b), we observe that the 2-connectivity
among the nodes of Pp4; is trivially satisfied. We now
show that the required 2-connectivity among the nodes of
RV G, is preserved since no paths are broken by Pi4;, and
any pair of vertex disjoint paths intersected Py can be
rerouted along the two opposite sides of P41 s0 as to pre-
serve vertex disjointedness. First note that if two vertex
disjoint paths are intersected by Py, then it intersects
two edges e; and ey of the paths. There are two cases. If
e; and ez do not intersect, then the rerouting is simple as

shown in Fig. 4(a). If e; = (v11, v22) and ez = (v13,v21) in-

tersect, then the intersection can be removed by switching
the paths as shown in Fig. 4(b). Here, we connect vy; to vgy




recomputed paths

original paths
@ o)

Fig. 4. Rerouting to ensure vertex disjoint pair of paths.

2-cornected component

Fig. 5. Decomposition of the RVG into 2-connected parts and trees.

as follows (the other path is similarly constructed): rotate
e; around vy in the direction of vy; until v, is reached or
a new obstacle vertex a is reached; in the latter case the
process is repeated.

Now consider the 2-connectivity between a vertex v of
P41 and u of RVGy. By hypothesis, there is a path P,
between u; and up via u going through only the vertices of
RV Gy. If the path P, does not intersect Pg41, then the
paths v, vy, u;, u and v, v, us, u obtained by employing the
pieces of P,, are vertex disjoint. If the path P, intersects
P41, then reroute P, along the boundary of Py4; so as to
include v between u and u; (wlog). Then the required two
paths are given by segment of P, between u and v, and the
path Y, uz, vz, v1, U1, v. O

Note that 2-connectivity implies that the above RVG
cannot be disconnected by removing a single vertex. In-
deed, let the next destination chosen by R; at any step be
denoted by v. By connectivity, if there is an unvisited node
(other than v), then there is at least one unvisited node
adjacent to the paths traced by R; or Rj. If not, all the
unvisited nodes can only be reached via v, which makes v
a cut point; this in turn contradicts the 2-connectedness of
the RVG. Thus by the time R; performs [N, /2] scan oper-
ations, Ry would have performed scan operations from the
remaining nodes of the RVG.

B. Three-Robot Team

The extended visibility graph (EVG) is the RVG aug-
mented as follows. Consider the convex hull of the terrain
which is the smallest convex region that contains all ob-
stacles. The extended hull is obtained by expanding the
convex hull by a fixed non-zero amount. Then vertices of
the RVG on the convex hull are connected to the corre-
sponding vertices on the extended hull as shown in Fig. 6.
Note that the degree of all vertices in the EVG must be at

(a) terrain (®)EVG

Fig. 6. Definition of the EVG.

Fig. 7. Ilustration for the proof of Lemma 2.

least 3. To prove the main theorem we need the following
result. '

Lemma 2 The EVG of a terrain cluttered by a finite num-
ber of convez polygonal obstacles is 3-connected, i. e. there
exist three verter disjoini paths between any pair of vertices.

Proof: Any two vertices of u and v of the EVG fall into
one of the situations described below:

(i) Both u and v belong to the RVG: Note that the RVG
is the EVG minus the extended hull. Consider the
convex hull of the polygons containing u and ». Re-
move all the obstacles that are outside this convex hull.
Since the RVG of the resultant graph is 2-connected
there must be two vertex disjoint paths between u
and v without going through the extended hull. Then
shrink the polygons containing u and v to point poly-
gons and connect u and v to vertices on the extended
hull such that the connecting edges are outside the
above convex hull. Then there is a third vertex disjoint
path between u and v along the periphery of the ex-
tended hull. Now expand the point polygons at u and
v and restore the removed polygons. Then reroute the
paths between u (and also v) and the extended hull
along the boundaries of the restored and expanded
polygons. The resultant path between v and v will be
vertex disjoint from the two paths on the RVG.
Both u and v are on the extended hull: Let ' and v
be the vertices of the RVG corresponding to u and v
respectively. There are two vertex disjoint paths be-
tween u and v along the boundary of the extended
hull and the third path can be obtained by the short-
est path between 1’ and v’ which is guaranteed to be
vertex disjoint from the boundary paths.
(iii) One of u and v belongs to extended hull and the other
" belongs to the RVG: Let u be on the extended hull.

(i)
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Fig. 8. Example of terrain (a) and the corresponding RVG (b).

Then the shortest path on EVG between u and v pro-
vides us with one path. We obtain two more vertex
disjoint paths along the boundary of extended hull as
follows. Extend the last edge of the path to the other
side of v. Then rotate this extended ray around v
once to the clockwise direction and once in the anti-
clockwise direction. Stop the rotation when first ob-
stacle or extended hull vertex is encountered; if it is
an obstacle vertex then rotate the segment around the
vertex in the same direction. This process is contin-
ued until a vertex on the convex hull is reached; then
this vertex is connected to its corresponding vertex on
the extended hull. It is easy to see that the paths ob-
tained by clockwise and anti-clockwise rotations are
vertex disjoint since the obstacles are convex. Then
two paths along the boundary of the extended hull
are easily constructed as shown in Fig. 7.

For n = 3, the 3-connectivity ensures that Ry, Rz and R3
are guaranteed to find their destinations in each step since
the EVG cannot be disconnected by removing two vertices.
In the actual execution of the algorithm no scan operations
are performed from the vertices of the extended hull; these
vertices are just computed. The following theorem is a
straightforward generalization of the arguments of the last
section.

Theorem 1 The model of terrain cluttered by convez polyg-
onal obstacles can be obtained by a team of n = 2,3 robots
in a sequence of [N/n] scan operations, where N is the
total number of obstacle vertices.

IV. TREE AND 2-CONNECTED COMPONENTS

The RVG for a polygonal terrain can be decomposed into
trees and 2-connected components (see Fig. 5).

First assume that the team of robots explore a tree. No-
tice that in a worst case, d(T') is the minimum time required
to explore a tree T by a team of two robots. The strategy is
for both robots to stay together until the first opportunity
occurs to move along two edges of a tree. While the robots

are in two different branches of the tree, sensor operations
are done simultaneously. At the same time the robots will
not be together for more than d(7") time since the diameter
is the longest possible distance (in terms of sensor opera-
tions) that the robots will stay together without branching
off. To see this, assume that it is not true, then we have
sequences of paths (without branching ) whose total length
is longer than d(T); since the tree is connected and has no
cycles, the union of these paths constitutes a path of length
larger than d(T'), which is a contradiction. Thus |T'|-d(T)
scan operations are performed while the robots are not to-
gether. Hence, the sensing time required to explore a tree
is upper-bounded by d(T)+|T|/2~d(T)/2 = }[|T|+d(T)).

Now consider the case of three robots acquiring a 2-
connected graph G. The strategy is to keep R; and R3
together as a two-robot team, while R; explores in par-
allel. Using the argument above, the time robots Ry and
Rj3 stay together does not exceed d(G), and R, will not
be forced to be together with the other robots. Thus the
sensing time is upper-bounded by d(G) + (|G| — 24(3)]/3.
The results are summarized in the next lemma.

Lemma 3 The sensing time of exploring a tree T of |T|
nodes by two robots is upper-bounded by d(T)/2 + |T|/2.
The sensing time of three robols exploring a 2-connected

graph G is upper-bounded by d(G)/3 + |G|/3.

V. PoLYGONAL TERRAINS

First consider the case n = 2 in detail. We assume
that the initial location of the robots is outside the convex
hull of the obstacle vertices. We identify the 2-connected
component corresponding to the initial location. This 2-
connected component for the RVG of Fig. 8(b) is shown in
Fig. 9(a). Then we remove this component and all the trees
that are emanating from it and identify the 2-connected
components of the next level as shown in Fig. 9(b). The
same process is repeated to identify the next levels of 2-
connected components as shown in Fig. 9(c).

Trees of various levels are identified as follows. For any
level, we specify the trees that emanate from the nodes of
the 2-connected components of that level. Fig. 9(d) and (e)
show the trees emanating from 2-connected components of
level 1 and 2 respectively. There are two types of trees.
The first type are the trees that connect the nodes of one
level with nodes at another level, and the second type are
the trees that strictly belong to one level. In Fig. 9(d),
the left and right trees belong to the former type and the
middle one belongs to the second type.

‘We obtain a hierarchy tree from the RVG by condensing
each 2-connected component of the hierarchical decompo-
sition to a node and removing the trees of second kind. The
resultant tree is denoted by Ty. An example of hierarchy
tree is shown in Fig. 10 where the hollow circles represent
nodes obtained by the condensation of 2-connected com-
ponents.

The overall strategy for solving the TMAP by two robots
is to avoid keeping two robots in the same tree 7; to the
maximum extent possible, Using this strategy, the robots
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Fig. 9. Hlustration of hierarchical decomposition of RVG of Fig. 6.

will explore different trees until there is at most one tree left
to be (possibly partially) explored concurrently at the cur-
rent level of hierarchy. This strategy can be implemented
as follows. Notice that the end points of trees can be rec-
ognized by a local concavity, but a local concavity does not
necessarily indicate the presence of a tree. The strategy is
to delay sending the robots into the same local concavity
until this becomes the only available option at that partic-
ular level.

Let us analyze the performance of the above method. Let
the 2-connected components and the trees of this decompo-
sition be denoted by {C),C,...,Cn.} and {T1,T2,...,Tn,}
respectively. Since the terrain is unknown, the order in
which the individual trees are explored is unknown. We
carry out a worst case analysis for each of the ! levels of
the hlerarchy Consxder the level k& with 2-connected com-

ponents C’1 C’2 ) Cz,‘ , and the trees TF,TF,. .. Tk,,u

and T, Th, . .. ’T2n=" of ﬁrst and second type respectively.
t

Also let

Ty = (T4, Thy oo, Ths ) U (T, T Thop).

The size of the tree that is left to be explored last is upper-

bounded by
ax | IT|= D IT|

Tel TeJ

where the maximum is taken over all sets I and J such

that IUJ =T, INJ = ¢,||I| - |/|| = 1. Now note that

this quantity is upper-bounded by max |T|, which in turn
1

implies, from Lemma 3, that the sensing time is upper-
bounded by } Tr%%x[d(T)+|T]]. For the level k, the number
k

of scan operations that are performed simultaneously by

the two robots is at least Y |T| - :};nax[iT{ + d(T)}.
TETk ETk

Thus the total sensing time for level k required by a team

of two robots is upper-bounded by
Yo ITl-3 max[ITl +d(T)]

Z Z |CF| +
TeT:

1
+3 ;ne%[lTl + d(T))

Z c’°|+ > lT|+l

TET)‘

D) =

< ax(IT]+ d(T)]

,,h

The summation of above quantity over all levels yields an
upper-bound on the sensing time of the team. The summa-

e ne
tion of the first two quantities yields 3 Y |Ci]and § 5 |Ti]
i=1 =1

respectively. The summation of the third term is hJandled
as follows. At every level only one tree (if any) either of
type one or two is last explored by the two robots (in a
worst case). Thus the contribution to the upper-bound by
the trees of type two is no more than %miax[d(T,-) + T3],

and the contribution to the upper-bound by the trees of
first type is upper-bounded by 3[d(To) + |To]).

We now turn to the case n = 3. The EVG can be de-
composed into 3-connected components C3, C3, ..., C2 |
2-connected components Cf, CZ, ..., C2  and trees Ty,
T3, ..., Tn,- The CP’s can be assigned to ! different lev-
els in a hierarchical decomposition of EVG (see Section 5
for precise definitions). Some T;’s and C?’s connect C}'s
of different levels while some are attached to a C? of a
single level. Then the hierarchy Ty is obtained by con-
densing each of C3’s and C?’s to a node and removing the
2-or-less connected components that do not connect Cj’s
of different levels. By using above approach and Lemma 3
to estimate the sensor time corresponding to 2-connected
components, the sensing time achieved by a team of three
robots is upper-bounded by

(}: c2) +Z 1) +d(c2)> + -;—JZ:;ITJ-I

i=1

+2d(To) +1Tol) + 3 max [d(T) + )

i€{1,...,n¢}

Note that the number of two connected components for
the decomposition for two-robot team (n.) is different from
that for a three-robot team (ns).

Theorem 2 The sensing time for n = 2,3 robots to ac-
quire the model of a terrain of polygonal obstacles is upper-
bounded by

1 & 1 1
§EIC£|+ §Z|Tsl+ 7(4(To) + [Tol]
i=1 ji=1

l
47 ok [d(T) + [T
and

%(}:wawz !Czl+d(C2)) +§j§m|

i=1
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Fig. 10. Illustration of hierarchy tree.

1 !
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forn =2 and n = 3 respectively.

For a comparison, note that the total sensing time for a
single robot, based on the RVG method, is given ?by

e ne
Z |Ci| + Z | T3]
i=1 j=1
based on the decomposition for n = 2 or by
n3 g Ny
doIc+ 3 IcH+ Y (Tl
i=1 izl i=1

for the case n = 3.

Notice that for terrains with convex polygonal obstacles,
RVG and EVG consist of only one 2- and 3-connected com-
ponent respectively. Thus this theorem subsumes Theorem
1. If the RVG is a single tree T, then Ty = T'; for this case,
since Theorem 2 yields a weaker upper-bound, it does not
precisely subsume Lemma 3. The performance is decided
(in a worst case) by the depth ! of the hierarchy described
above. For typical office indoor environments [ is of the
order 2. On the other hand, deeply nested mazes can gen-
erate large values for [.

VI. VARIATIONS

We now consider two geometric structures that are used
for terrain model acquisition in unknown terrains.

(a) Voronoi Diagram: The Voronoi diagram correspond-
ing to a set of line segments and circular arc segments
has been studied by Yap [17]. The distance d(p,s)
between a point p in free-space and a boundary edge
s is defined as inf{d(p,¢)lg € s}. The clearance of a

1t is possible to “see” the entire terrain boundary by performing less
than the stated number of scan operations, but, we are unaware of any
algorithm that is guaranteed to acquire the terrain model with less number
of scan operations.

Fig. 11. Navigation course based on Voronoi diagram.
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Fig. 12. Navigation course based on trapezoidal decomposition.

point p in free-space with respect to O is the minimum
of d(p, s) for some obstacle edge (segment or an arc)
s of O. For z € 2, we define Near(z) as the set of
points that belong to the boundaries of obstacles O;,
i=1,2,...,n and are closest (among all points on the
obstacle boundaries) to z in terms of the metric d. The
Voronoi diagram, Vor(Q), of the terrain populated by
O is the set {z € Q|Near(z) is a disconnected set },
(i. e. for each ¢ € Vor(O) the set Near(z) contains
more than one topologically connected components or
equivalently z € Vor(O) is nearest two at least two
distinct points on the obstacle boundary). See Fig. 11
for an example.

Dual graphs based on trapezoidal decomposi-
tion: First, we decompose the free-space into trape-
zoids by sweeping a line (for example, moving a hori-
zontal line from top to bottom) such that whenever the
line passes through a vertex, extend a sweep-line seg-
ment from this vertex into free-space until it touches
an obstacle boundary or extends to infinity as shown
in Fig. 12. For each sweep-line segment we have one of
the two following cases: (a) if the segment is finite, the
dual graph node corresponds to the mid-point of the
segment , or (b) if the segment is not finite, the dual
graph node corresponds to a point on the segment at
a distance 6 from the vertex. Two nodes belonging to
the boundary of the same trapezoid are connected by
an edge of the dual graph. See Fig. 12 for an example.

(b)

In terms of the sensing time for a single robot, the Voronoi
diagram method could require a larger number of scan op-
erations, whereas trapezoidal decomposition method yields
about the same number as required by the RVG method.
The RVG method requires that the robots be capable of
navigating along the obstacle boundaries, whereas Yoronoi
diagram method keeps them as much away from the ob-




‘stacles as possible. The trapezoidal decomposition method
could require that the robot navigate close to obstacles,
but less frequently than the RVG method.

Notice that both structures can be decomposed into con-
nected components and trees and thus results along the
lines of Theorem 2 can be derived for the case of two or
three robots. In particular, the structure of the hierarchy
tree for these two will be similar to that of the RVG.

The strategy of Section IIIA can be in principle replaced
by several other methods. A possible algorithm for a team
of two robots can be outlined as follows: Consider the con-
vex hull of the terrain. The boundary of the terrain is
called the outer path which consists of polygonal obstacle
boundaries separated by straight line segments. Then ob-
tain the inner path by (a) identifying the alternative paths
for the non-obstacle parts of the outer path, and (b) replac-
ing each obstacle chain of the outer path by the other path
around the obstacle. An illustration is shown in Fig. 13.
Then all obstacles that are part of the paths at this level
are removed, and the procedure is recursively carried out.
As a result we obtain layers of inner and outer paths. The
algorithm for TMAP is to have the two robots move along
different layers as long as possible.

VII. DiscussioN

This paper focuses on TMAP where it would be bene-
ficial to employ a team of robots to perform a task rather
than a single robot. Only the sensor time is considered
here as a measure of performance, and the main discussion
is based on the visibility graph methods. In this context, we
have identified the parts of the terrain that can be advanta-
geously explored in parallel and the parts in which having
more than one robot may be ineffective or even wasteful (in
a worst case). The estimates for the sensing time derived
here are conservative. We believe that alternative charac-
terizations and better performance estimates are possible.
Also the method discussed is restricted to one particular
way of solving the TMAP, namely, using a graph search
on a navigation course [12]. In general these methods do
not guarantee that the sensing time or the distance tra-
versed by a single robot is close to the optimal achievable
if the terrain model is known. The recently studied class
of competitive algorithms for the TMAP by Deng et al.

outer layer

Fig. 13. Illustration of inner and outer layers.

[3] guarantee that the distance traversed by a single robot
is bounded within a factor of the minimum possible value
achieved if the terrain model is available. Improving the
performance of the algorithms of this type by employing a
team of robots will be of future interest.

The effectiveness of employing a team of robots for the
TMAP might be judged by other measures of performance
such as distance traversed, total time of sensor operations,
travel time, etc. For example in the RVG method for a
single robot, the distance traversed in solving the TMAP
is a function of the search algorithm employed, whereas the
sensor operations is given by N, (fixed for a terrain). The
analysis of the parameter such as the distance appears to
be significantly difficult even for the case of the RVG and
warrants further research.
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