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Benchmark Tests on the Digital Equipment Corporation Alpha AXP
21164-Based AlphaServer 8400, Including a Comparison of Optimized
Vector and Superscalar Processing

Harvey J. Wasserman

Computer Research and Applications Group
Los Alamos National Laboratory
Los Alamos, NM 87545

The second generation of the Digital Equipment Corp. (DEC) DECchip Alpha AXP microprocessor is
referred to as the 21164. From the viewpoint of numerically-intensive computing, the primary difference
between it and its predecessor, the 21064, is that the 21164 has twice the multiply/add throughput per
clock period (CP), a maximum of two floating point operations (FLOPS) per CP vs. one for 21064. Thus,
the peak performance of the 21164 that we tested can be calculated as twice its CPU clock rate in MHz
(300 MHz, 600 MFLOPS). A version of the 21064 running at 150 MHz is used in the Cray Research Inc.
CRAY T3D and a version of the 21164 will be used in the CRAY T3E.

The AlphaServer 8400 is a shared-memory multiprocessor server system that can accommodate up to
twelve central processing units (CPUs) and up to 14 GB of memory. In this report we will compare single
processor performance of the 8400 system with that of the International Business Machines Corp. (IBM)
RISC System /6000 POWER-2 microprocessor running at 66 MHz, the Silicon Graphics, Inc. (SGI) MIPS
R8000 microprocessor running at 75 MHz, and the Cray Research, Inc. CRAY J90. (The Alpha 21164 is
also available in DEC workstation models such as the AlphaStation 800 5/300, and so comparison with a
single-processor workstation such as the IBM RISC System/6000, is appropriate.) The performance
comparison is based on a set of Fortran benchmark codes that represent a portion of the Los Alamos
National Laboratory supercomputer workload. These codes have already been used to evaluate
performance of a variety of computing systems [1-3]. The advantage of using these codes, in addition to
their specific workload representation, and the extensive database of existing benchmark data using
them, is that the codes also span a wide range of computational characteristics, such as vectorizability,
problem size, and memory access pattern. The primary disadvantage of using them is that detailed,
quantitative analysis of performance behavior of all codes on all machines is difficult.

One important addition to the benchmark set appears for the first time in this report. This addition is a
new implementation of a benchmark that had been used previously. Whereas the older version was
written for a vector processor, the newer version is more optimized for microprocessor architectures.
Therefore, we have for the first time, an opportunity to measure performance on a single application
using implementations that expose the respective strengths of vector and superscalar architecture.

All results in this report are from single processors. A subsequent article will explore shared-memory
multiprocessing performance of the 8400 system.



The Alpha 21164

The 21164-based system that was used for these tests is a four-processor, DecServer 8400 shared-memory
system containing 1 GByte total memory. This system is installed in the open computing network at
Lawrence Livermore National Laboratory.

Many details of the Alpha microprocessor have been published elsewhere [4]; a few salient features are as
follows. The Alpha consists of five independent functional units: An integer arithmetic unit with two
separate 64-bit pipelines, a floating-point unit, also with two 64-bit pipelines, a load/store unit, and a bus
interface/cache control unit that provides extra-chip communication. Four-way superscalar technology is
employed, which allows simultaneous issue of certain combinations of load/store, integer arithmetic,
floating-point arithmetic, and branch instructions.

The floating-point unit consists of two pipelines, one for addition and division (although division
operations are not pipelined) and one for multiplication. Add and multiply latencies have been reduced
from six CP on the earlier Alpha, to four CP each on the 21164. The floating-point register file holds 32
64-bit words and has a total of nine ports: two read ports and one write port for each arithmetic pipeline,
two ports for loads from cache, and one port for stores.

The Alpha 21164 has the same 8-Kbyte, direct-mapped, write-through, on-chip data cache that its
predecessor had, with the same four 64-bit word line size. A load instruction that hits in the data cache
will suffer an initial latency of two cycles (reduced from 3 cycles in the 21064). What is altogether new in
the 21164 is that the next level of the memory hierarchy consists of an on-chip, 96-KByte, 3-way set
associative second-level cache. For this cache there is a 7-cycle (23.3-ns) latency for access to the first 64
bytes of data and a maximum transfer rate of 1 64-bit word each four cycles (4.8 GB/s) after that. The
21164 also contains another structure, called a miss address file, which can reduce latency for secondary
cache access by merging multiple load misses that access the same 32-byte block of memory into a single
read request.

Alpha AXP systems can be configured with a third-level, off-chip cache up to 64 MBytes in size that is
direct-mapped and requires an additional penalty of about 28 CP per 64-bit word. The machine we used
was equipped with a 4-MB third-level cache.

Results

All data were collected using DEC Fortran V3.8-711 and KAP/Digital UA_F version 2.1. Compiler
options used for optimization were -O5 and -tune ev5. In all of the Tables in this report, the codes are
listed in order of increasing vectorization effects; that is, in order of increasing performance on a single
CRAY C90 processor as measured by the Cray Hardware Performance Monitor. The actual performance
monitor data are listed in the Appendix.



Table 1 presents a comparison of benchmark execution times from the 21064 (unpublished results from an
AXP/3500 system) and the 21164. (Not all of our current benchmark codes were run on the 21064.) The
expected speedup between the 21064 and 21164 is 4, based on two-fold increase in clock speed and 2-fold
increase in FLOPS per CP. Some of the codes exhibit speedups that are below the expected value, and
although the reason is not clear, the most likely explanation is that the compiler is not yet producing
optimal code for the 21164.

Table 2 lists benchmark execution times in seconds from single processors of the DEC 8400, IBM RS/6000
39H, SGI POWER Onyx, and CRAY J90. It is instructive to compare the performance of the machines on
vectorizable and non-vectorizable code separately.

Non-vectorizable Codes. Figure 1 shows relative performance on application benchmarks that do not
vectorize to any great extent. In Figure 1 the vertical axis shows how much faster the DEC AXP
microprocessor-based system is relative to the IBM, SGI, and Cray systems. The result that stands out
most prominently is the AXP's performance on MCNP, an important particle-transport code that is
entirely non-vectorizable. On this code the AXP's advantage is greatest when compared with the vector
processor J90, but it is still substantial when compared with the other microprocessor-based systems.
Although not shown in the figure, the Alpha's time on our MCNP test is more than four times faster than
a single 6.0-ns CRAY Y-MP processor. The Y-MP is currently an important production platform within
the LANL Central Computing Facility.

Table 1. Comparison of DEC EV4 and EV5 Performance
DEC AXP 21064 DEC AXP 21164

Code (150 MHz) (300 MHz) Ratio
Time* Time*
MCNP5000 64.8 16.0 41
TWODANT93 1444 440 3.3
TWODANT915 80.9 18.2 44
WAVE 190.0 50.5 3.8
HYDRO 64.5 22.8 2.8
PUEBLO32 111.2 41.7 2.7

* in seconds




Table 2. Comparison of Benchmark Execution Times! on Single Processors

DEC 21164 IBM RISC SGI MIPS
300MHz System/6000- R8000 CRAYJ90

Code Time 39H Time 2 Time Time
MCNP 16.0 441 64.1 128.8
EULER90 3) 1309.8 3) 477.2
TWODANT93 440 51.0 86.2 97.8
EULER77 3762 347.24 3) 2434
WAVE 50.5 60.6 554 67.8
TWODANT915 182 27.6 27.0 245
SWEEP-L50 23.2 14.7 19.0 20.2
SWEEP-L75 79.4 48.0 64.3 64.1
HYDRO 228 269 21.1 19.7
NEUT 1117.6 1543.2 1523.2 557.0
SWEEP-D50 32.7 29.0 29.9 104
SWEEP-D75 129.8 1149 217.1 35.2
POP 120.2 83.7 140.1 43.0
PUEBLO32 36.7 47.6 51.6 17.8
1Times in seconds.
2 2-MB L2 Cache.

3 Did not run.

4 This result is from 66 MHz IBM RS/6000 Model 590.
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Vectorizable Codes. Figure 2 shows relative performance for vectorizable codes (90% or more
vectorizable by operation counts). Again, the vertical axis shows how much faster the DEC AXP is
relative to the other systems, although instances in which the ordinate is less than 1.0 mean that the other
systems in question are faster than the AXP.

There is a great deal of variation in the ordering and relative performance of the four machines, but two
results are consistent throughout. The first is that despite the much higher theoretical peak computing
rate of the AXP system, in no case is the AXP faster than the other systems by a factor approaching the
peak speed ratio. Regarding the other microprocessors, the SGI and IBM systems are similar, in that both
have much slower CPU clock rates than the AXP but both implement more instruction-level parallelism.
Specifically, both the SGI and IBM can process a maximum of four FLOPS per CP whereas the AXP can
process a maximum of two per CP. The results do not allow a precise determination of which method
(slower clock with greater concurrent instruction issue vs. faster clock with fewer concurrent instructions)
is better. In fact, with a few exceptions (as noted below), the three microprocessor systems provide nearly
equivalent performance on the vectorizable codes.

The second important result is that the J90 is faster than the AXP system on all of the codes. Although the
J90 is only about 15% faster on HYDRO (which is discussed below), it is more than 3.5 times faster on the
larger SWEEP-D problem and it is on average 2.5 times faster on these six vectorizable codes. This is in
spite of the AXP's 3-fold advantage in peak speed relative to the J90. Indeed, the J90 has the lowest peak
speed of all the machines considered here; yet is the fastest on the vectorizable codes.
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Figure 2 Relative performance of Alpha, RS/6000, R8000, and J90 on codes
with high vectorizability. The vertical axis shows how much faster the DEC
AXP is relative to the IBM, SGI, and Cray systems. Single processor results.




The processors mentioned in this report all use different architectural strategies in order to minimize
memory latency. The IBM RISC System/6000 uses a relatively large primary cache (128 KB) and a
secondary cache, whereas the SGI MIPS R8000 system has no primary data cache (for floating point data)
and uses only a large, off-chip "streaming" cache. The Alpha AXP has a very small (8-KB), on-chip cache,
a larger secondary cache (96-KB), also on-chip, and also a large, off-chip cache as well. The CRAY J90
uses vector registers, the primary advantage of which is compiler-control, rather than dynamic placement
of data. Since the vectorizable codes in the benchmark suite depend heavily on memory bandwidth, they
can give some indication as to the relative success of each of these strategies.

HYDRO provides an interesting example of performance improvement on vectorizable code with use of
secondary cache (or "tertiary” in the case of the AXP). HYDRO is a 2-D Lagrangian hydrodynamics code
that is representative of a large class of codes in use at Los Alamos, and it is the only vectorizable code in
this study on which microprocessor performance approaches that of the single-processor CRAY J90. In
older reports, microprocessor performance on HYDRO relative to vector machines has generally been
lower than that of the other vectorizable codes in our test suite. For example, in 1990, HYDRO
performance on a 33-ns IBM RS/6000-540 was only about 7% that of a single CRAY Y-MP processor,
whereas five other vectorizable codes averaged at least twice that [5]. In HYDRO the majority of vector
accesses occur with a stride equal to the size of the grid (~100) and the non-unit stride access can cause
particularly poor primary data cache reuse. As if that were not difficult enough, HYDRO also uses a
vectorizable binary search routine that involves gather operations which also can cause large numbers of
data cache misses. However, all three microprocessors in this report are equipped with off-chip caches
into which HYDRO (~0.75 MB) fits completely. For this 2-D code the secondary cache allows
microprocessor performance that, relative to the J90, is not out of line with that of the other vectorizable
codes. In fact, all three microprocessor systems are within 40% or so of the J90/1. In comparison, the
RS/6000 Model 590, which has no secondary cache, is more than two times slower than the J90/1 on
HYDRO [2].

At the very least, these results show the level of inaccuracy that can result from using solely cache-
resident benchmark codes when determining microprocessor performance. Factors of two to six separate
the 2-D HYDRO benchmark from the results of the 3-D vectorizable codes.

NEUT is another code on which microprocessor performance has always been considerably out of line
with expectation (e.g., RS/6000 performance 30X worse than CRAY C90, rather than factors of four or so
[2]). In contrast with HYDRO, the most time-consuming routine in NEUT involves all straight-forward,
stride-1 computation. However, in this routine, four loops using 28 arrays of length 32k are used (~7
MB), and so certainly on-chip data cache reuse, and even off-chip cache reuse is probably poor.
Interestingly, the DEC AXP system is about 30% faster than both the IBM and SGI systems, suggesting
that the AXP's 3-cache memory system may provide improvement on codes with very long, contiguous

vectors.




Another scan of the execution data suggests a possible weakness of the SGI cache strategy relative to the
AXP on larger problems. The SGI R8000-based system is faster than the AXP system on two codes,
HYDRO and the smaller SWEEP-D benchmark. The codes on which the AXP system is faster are all
larger problems, e.g., 1-D, order 32K for NEUT, 75-cubed for SWEEP-D75, 256 X 128 X 20 for POP, and 1-
D, order 32K for PUEBLO. In other words, to the extent that execution times depend solely on memory
throughput and the data cache strategy (not true; this neglects, at the least, per-cycle floating-point
throughput and compiler effects), the benchmark data suggest that for larger problems the AXP system is
superior to that of the SGI system. As noted in a separate comparison of the IBM RISC System /6000
Model 590 and the SGI POWER Onyx [6], the MIPS R8000 suffers from relatively poor memory
bandwidth between the streaming cache and main memory, so that when a code's working set size
exceeds that of the cache, MIPS R8000 performance degrades.

Optimization of Microprocessor Performance. For several years we have been making performance
comparisons between microprocessor-based systems and vector processors. The caveat we had to
employ each time was that the benchmark codes were written with vector processors in mind and thus
may have contained certain characteristics that enhanced vector performance and at the same time
degraded microprocessor performance.

With SWEEP (a 3-D neutral particle transport code that uses the Sn method, [7]), we now have two very
different implementations of the same code, one optimized for vector processors and another optimized
for cache-based processors. The comparison of these two versions of SWEEP shows the extent to which
reorganization of a vector code can provide significant benefit on microprocessors.

In both versions of SWEEP the main part of the computation consists of a "balance" loop in which particle
flux out of a cell in three Cartesian directions is updated based on the fluxes into that cell and on other
quantities such as local sources, cross section data, and geometric factors. The cell-to-cell flux
dependence, i.e., a given cell cannot be computed until all of its upstream neighbors have been computed,
implies a recursive or wavefront structure.

The difference between the two implementations of SWEEP is best shown using data from the Cray
Hardware Performance Monitor running on a CRAY C90 system (see Table 3). In one version, (labeled
"SWEEP-D") the mesh is swept using diagonal planes, which enables the balance loop to be vectorized. In
this version gather/scatter operations must be used to obtain local source and cross sectional values. The
CRI Hardware Performance Monitor shows that SWEEP-D has a average computational intensity,
defined as the number of FLOPS divided by the number of loads and stores, of 0.5, i.e., the code is highly
memory-bandwidth dependent. However, on the Cray, it is greater than 96% vectorized (based on
operation counts), and it achieves about 30% of peak CRAY C90 processor performance.



Table 3. Characteristics of the Two Versions of SWEEP as Determined by the CRAY C90
Hardware Performance Monitor (Single-Processor Results).

Average
Version Average Average Hardware Percent Vector Computational
MFLOPS Vector Length Operations Intensity !
SWEEP-L50 126.5 50.5 66.8 1.11
SWEEP-D50 293.1 122.1 97.0 0.54

! Defined as total floating-point operations divided by total memory references.

It should be noted that SWEEP has a relatively low floating-point intensity in general; i.e., without
additional computation such as flux fixup or flux leakage there are less than 40 FLOPS per grid point per
per discrete direction per iteration regardless of the implementation.

The version of SWEEP labeled "SWEEP-L" does not use a diagonal plane sweep; rather, the three
Cartesian directions are swept explicitly in a 3-D loop nest. This "line-sweep" version eliminates the need
for any gather/scatter operations; in fact, all memory accesses are now unit-stride. Furthermore, there is
a substantial reduction of memory traffic through "scalarization" of several arrays, so that the
computational intensity is increased to 1.11. However, with the balance loop proceeding along columns
and rows rather than along the diagonal, recursion now prohibits complete vectorization. (Using the
Cray fpp preprocessor the balance loop is split and some of the computation is vectorized.) On the C90,
the operation-count vectorization level is about 66% and per-processor performance is reduced to 125
MFLOPS.

The execution time data in Table 2 show that on the vector-optimized, diagonal-sweep version (SWEEP-
D) the CRAY J90 processor is three times faster than all of the microprocessor systems for the smaller grid
and 3 - 6 times faster for the larger grid.

Using the microprocessor-optimized line-sweep version (SWEEP-L), microprocessor (AXP, IBM, and SGI)
performance improves by factors of 1.5 - 2 for the small grid and by factors of 1.6 - 3.4 for the larger
problem. However, because of poor vectorization, using the line-sweep version, CRAY J90 performance
decreases by a factor of two, and on this version microprocessor performance is the same as (or in the case
of the IBM RS/6000 better than) that of the J90 processor.

Nevertheless, the fastest implementation/architecture match is that of the diagonal sweep version
running on the vector processor. Comparing the best implementation on each type of machine shows
that the J90 is twice as fast as the SGI and DEC processors and 1.4 times as fast as the IBM processor.
Note again, the difference in peak speeds of the processors: DEC: 600 MFLOPS; SGI: 300 MFLOPS; IBM:
270 MFLOPS; J90: 2¢ " MFLOPS.

In other words, even with extensive restructuring of a vector code and concomitant two-fold improvement in

microprocessor performance, vector processor performance is still superior to workstations with peak speeds that are
1.5 to 3 times higher.




Furthermore, there are implications for code developers: The results for this code show how optimization
for microprocessors adversely affects vector processor performance (e.g., SWEEP-D50 CRAY J90 time =
10.4 seconds, SWEEP-L50 CRAY J90 time = 20.2 seconds).

Two different sizes of both SWEEP implementations were run in order to further assess the effect of cache
performance on microprocessor execution time. The J90 vector processor shows no dependence on
problem size on a per-gridpoint basis. Among the microprocessor-based machines, both the Alpha and
RS/6000 systems also show little problem size effect. However, using the non-optimal diagonal-sweep
version, SGI performance is worse on the bigger problem (which is 3.3-times larger but runs more than
seven times slower than the smaller one). Again, previous tests have shown how SGI MIPS R8000
performance degrades significantly due to low memory-to-cache bandwidth once the working set size
exceeds the capacity of the secondary cache [6]. However, note that using the more optimal line-sweep
version of the code eliminates this problem size dependence on the SGI entirely.

Note, also, that both the 50-cubed and 75-cubed problems run in this benchmark are much smaller than
the problem sizes that are desired to be run; thus, the cache effect observed in the comparison of the

vectorized version of the code would be even more exaggerated.

Conclusions

One conclusion from the SWEEP comparison is that benchmark codes written for vector processors may
not be the best way to measure microprocessor performance. However, if an existing vector workload is
to be ported to a microprocessor-based system then the vector codes must be used to obtain an estimate
of initial performance on the microprocessor system without tuning. The results presented here show the
kind of extensive re-organization of vector codes that must be done in order to optimize for
microprocessors, and give an estimate of the kind of performance improvement that can be expected.
The key optimizations were elimination of scatter/gather operations and drastic reduction in memory
traffic. However, even with this extensive rewriting, and even using microprocessors with fairly large
secondary cache structures, overall performance of the vector processor was still superior.

The DEC AXP 21164 processor provides, as expected, a significant improvement in performance relative
to its predecessor, the 21064. The performance of the 21164 relative to other contemporary
microprocessor-based workstations and compute servers varies widely depending on the characteristics
of the benchmark code. In particular, codes that do not vectorize run extremely well on the single
processor of the DEC 8400 that we tested. However, on codes that do vectorize, despite its very high
CPU clock speed and associated theoretical peak computing rate, performance of the AXP 21164 is not
significantly better than that of IBM and SGI microprocessor-based systems. Comparing Alpha AXP
21164 and Cray C90 benchmark execution times along with operation counts from the C90 Hardware
Performance Monitor suggests that on none of our codes does the Alpha exceed 10% of its theoretical
peak computation rate. Note, too, that Alpha performance as implemented in a processor such as the




8400 mainframe, with its 4-MB third-level cache, might be expected to be significantly greater than it
would be in an MPP such as the CRAY T3E, in which no external cache is present.

The results also show that in spite of the progress made in microprocessor architecture, transistor
densities, cache size and organization, and CPU clock speeds, vector processors such as the CRAY J90
continue to maintain a significant performance advantage over microprocessors on vectorizable codes.

This is true even when comparing CMOS microprocessor and vector implementations.

Finally, the wide variation in relative performance observed on the suite of codes used here strongly
suggests that popular benchmarks which yield single-number results are inadequate measures of
performance for multi-issue microprocessor and vector architectures.

Appendix: Description of Benchmark Codes

MCNP: A general-purpose Monte Carlo particle transport code widely used and Los Alamos and
elsewhere [8]. The code treats an arbitrary three-dimensional configuration of materials in geometric cells
bounded by first-, second-, and fourth-degree surfaces. The benchmark problem transports 5,000 source
particles.

TWODANT: A two-dimensional discrete ordinates particle transport code used for neutral particle
transport [9]. It includes a multigrid solver and is vectorizable to some extent. Two different problems
are run that exercise different portions of the code. Both problems are three-group tests with fission.
TWODANT915 runs a “k-calc” computation and TWODANTO93 runs a fixed-source multiplication test for
a fixed value of k. The executable size is approximately 10.8 MBytes.

WAVE: A two-dimensional, relativistic, electromagnetic particle-in-cell simulation code used to study
various plasma phenomena [10]. WAVE solves Maxwell's equations and particle equations of motion on
a Cartesian mesh with a variety of field and particle boundary conditions. The benchmark problem
involves 500,000 particles on 50,000 grid points for 20 timesteps; about 4 MW of memory are required.
One routine containing loops of length 256 and considerable indirect addressing dominates the code’s
runtime.

HYDRO: A two-dimensional Lagrangian hydrodynamics code based on an algorithm by W. D. Schulz
[11]. HYDRO is representative of a large class of codes in use at the Laboratory. The code is 100%
vectorizable. A typical problem is run on a 100 X 100 mesh for 100 time steps. An important
characteristic of the code is that most arrays are accessed with a stride equal to the length of the grid.

NEUT: A highly vectorizable Monte Carlo neutron transport code. that runs a k-calc computation
starting with 32K neutrons. NEUT represents a Fortran77 version of Eldon Linnebur's (LANL)
Connection Machine Fortran code [12].

SWEEP: SWEEP3D is a three dimensional solver for the time independent, neutral particle transport
equation on an orthogonal mesh [7]. The first-order form of the transport equation is solved by sweeping
through the spatial mesh along discrete directions (ordinates). The solution algorithm in SWEEP3D is
vectorized/parallelized by sweeping though the mesh along diagonal planes, which requires large
amounts of data gathers/scatters and extensive array indexing. Two problem sizes are run as benchmark
codes, using a 50 X 50 X 50 or 75 X 75 X 75 grid (~85 MBytes). The code is a Fortran77 implementation of
a data-parallel version of the code.

POP: A global ocean model developed on the Thinking Machines Inc. CM-2 and translated into
Fortran77 [13]. POP is based on the Bryan-Cox-Semtner model but uses reformulated barotropic
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equations to solve for surface-pressure field rather than a volume-transport streamfunction. It uses a
preconditioned conjugate-gradient solver.

PUEBLO: A 3-dimensional Lagrangian hydrodynamics code used to model point explosions in space
[14]. The code is highly vectorizable, although Cray compiler directives are currently included. The most
common loop length is on the order of n3, where n = 32 for PUEBLO32 or 64 for PUEBLO64.

EULER: A 3D hydrodynamics code that simulates high-speed fluid flow and high-rate multi-material
deformation problems. The code uses a “one-fluid" approximation in which all materials are moved with
the same cell velocity under a Lagrangian time derivative. Material properties are then mapped back to
an Eulerian grid where interface reconstruction is performed and new volume fractions for each of the
materials are computed. The computational domain is partitioned in Cartesian geometry into fixed,
logically-connected hexahedra. Fluid variables are laid out in a staggered-grid fashion. The code was
developed on a TMC CM-2 under a data-parallel Fortran model. Two versions were run, one using array
syntax (EULER90) and another with all array syntax "naively" translated into Fortran77. The problem
used in these tests computed on a 20 X 20 X 40 grid; otherwise everything else is the same as the "salami"
problem. The smallest "salami" problem requires at least 128 MW and therefore would not fit on the J90.

Characteristics of the Benchmark Codes as Determined by the CRAY C90 Hardware
Performance Monitor (Single-Processor Results)
Average
CODE Average Average Hardware Percent Vector Computational
MFLOPS Vector Length Operations Intensity
MCNP 11.6 12.4 0.2 0.58
EULER90 275 20.5 53.4 0.45
TWODANT93 54.3 15.3 58.8 0.58
EULER77 70.0 21.0 79.6 0.55
WAVE 77.5 66.3 63.0 0.88
TWODANT915 96.9 70.4 79.8 0.70
SWEEP-L50 126.5 50.5 66.8 111
HYDRO 177.7 92.9 94.4 1.00
NEUT32 278.0 111.2 96.6 0.87
SWEEP-D50 293.1 122.1 97.0 0.54
POP 362.1 122.9 96.8 0.64
PUEBLO32 458.4 119.9 98.2 1.31
* Defined as total floating-point operations divided by total memory references
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