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SOLUTION OF THE OPTIMAL PLANT
LOCATION AND SIZING PROBLEM USING
SIMULATED ANNEALING AND GENETIC

ALGORITHMS

Ramana Rao, Vijaykumar Hanagandi' and Kevin Buescher
MS C312, Los Alamos National Laboratory
Los Alamos, NM 87545
and
Michael Nikolaou
Department of Chemical Engineering
Texas A&M University
College Station, TX 77843-3122

Abstract. In the optimal plant location and sizing problem it is desired to optimize
a cost function involving plant sizes, locations, and production schedules in the face of
supply-demand and plant capacity constraints. We will use simulated annealing (SA)
and a genetic algorithm (GA) to solve this problem. We will compare these techniques
with respect to computational expenses, constraint handling capabilities, and the quality
of the solution obtained in general.

Simulated Annealing is a combinatorial stochastic optimization technique which has
been shown to be effective in cbtaining fast suboptimal solutions for computationally
hard problems. The technique is especially attractive since solutions are obtained in
polynomial time for problems where an exhaustive search for the global optimum would
require exponential time.

We propose a synergy between the cluster analysis technique, popular in classical
stochastic global optimization, and the GA to accomplish global optimization. This
synergy minimizes redundant searches around local optima and enhances the capability
of the GA to explore new areas in the search space.

*Author to whom all correspondence should be addressed. Tel.: (505) 665 0570, FAX: (505) 665 4479,
E-mail: vmh@lanl.gov




The Plant Location and Sizing Problem

This is a classic problem (Klein and Klimpel, 1967) in the area of linearly constrained
nonlinear optimization. The problem involves maximizing the net present value (NPV) of a
multi-plant enterprise subject to a set of linear constraints. The objective function is highly
nonlinear, and the nonlinearities arise from the setup capital required for constructing a
plant, and economies of scale relating to capital and annual operational cost. The objective
function has a very large number of local maxima making gradient descent type approaches
to optimization ineffective.

We have chosen to study a stochastic approach to this maximization problem using
the simulated annealing algorithm (Kirkpatrick et al., 1983). The primary motivation for
using simulated annealing is its ability to seek out sub-optimal solutions within reasonable
amounts of computational time. Simulated annealing is more effective than gradient descent
since it allows down-hill transitions, thus preventing the system from getting trapped in local
maxima. Further, the quality of the final solution found by the annealing algorithm does
not depend on the initial configuration. However, as in the gradient projection algorithm
(Rosen, 1960), no guarantee can be made that the solution found by the annealing algorithm
is indeed the global optimum.

The objective function for the plant location problem,
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where S;; 1 € {1,2,83,4} is the size of the plant at location ¢ and Pjx; 7 € {0,1,2,3},
k € {1,2,3} is the amount of the product shipped plant location 7 to market j in year k, is
to be maximized subject to the constraints

25i=10; 3 Puu=1 3 Pa2=4 3 Paa=5 ) Pu=2% ) Pmn=3
1 i { 1 t 1
ZR‘zs=2; ZPi:n =4 ZR'32=3; Zl’z‘ss=2; Pio. < Si (2)

where Por = 3_; Pijr denotes the total production at Plant i during the Year k. It is
instructive to rewrite the constraint set (Eq. 2) as shown in Table 1. The inequality con-
straints in Eq. 2 are obtained by going along the columns of Table 1. From the table, we




Table 1: Constraint Set

Year 1
Py + Pon + Pan + P o= 1
+ + + +
Piogy + Poyux + Payy + Py = 2
+ + + +
P33 + Py + Paay + Pgzn = 4
< < < <
51 + S5 + S5 4+ S8 = 10
Year 2
Piy2 + P2 + Py + P2 = 4
+ + + +
Pz + Py + Py + Py = 3
+ + + +
Pizg + Pas + Pap + Pz = 3
< < < <
St + S + S + S5 = 10
Year 3
Pus + Pz + Pz + Pus = 5
+ + + +
Piaz + Paz 4+ Pz + Pz = 2
+ + + +
P33 + Pz + Paz + Pz = 2
< < < <
Si + S + S3 + S4 = 10

observe that in Year 2, the sum of the amounts of product shipped off from each plant site
exactly equals the sum of the plant sizes. Further, we see that the production is less than
the plant size in at least some of the plants during the Years 1 and 3.

If the permissible values for P;;x and S; are restricted to integers, each equality constraint
now admits only a finite number of combinations for P;;; and ;. It is easy to see that
the problem now has about 3.14 x 10'° different combinations!. Of these, nearly 107
combinations yield feasible solutions. An exhaustive search over this feasible space, yields
the globally optimal solution (over integers)

51=7,8=3,Ain=1,Pia1 =4,Pr12 =4, P32 =3, Pazy = 3,

P113 = 5, P133 = 2,‘P‘221 = 2,P223 - 2, J=-11.105 (3)
This solution was reported by Klein and Klimpel (1967) as the best solution found by the
gradient projection method. Klein and Klimpel (1967) also hinted that this solution could

be the global maximum even when F;j; and S; are allowed to assume noninteger values.
The second best solution reported by the same authors is

S1=10,Pi11 =1,P21 = 2,Pi31 = 4, P12 =4, P22 = 3, Pi32 = 3,

obtained by multiplying the number of partitions of each equality constraint




P13 =5,P123=2,Pi33=2,J = -11.131 . (4)

As we show in the next section, this above solution is easily found by the annealing algo-
rithm.

Simulated Annealing

Simulated Annealing, a combinatorial optimization technique, has been shown to be effec-
tive in obtaining fast suboptimal solutions for computationally hard problems. The tech-
nique is especially attractive since solutions are obtained in polynomial time for problems
where an exhaustive search for the global optimum would require exponential time. As a
general purpose combinatorial optimization technique, simulated annealing was proposed
by Kirkpatrick et al. (1983). It is a generalization of the Monte Carlo method developed
earlier by Metropolis et al. (1953). In the past, simulated annealing has been used to
solve such optimization problems as the Traveling Salesman Problem (Cerny, 1982) and the
Wire Length Minimization Problem in VLSI circuits (Lam and Delosme, 1988), and the
Bin-packing Problem (Rao and Iyengar, 1994).

The simulated annealing algorithm provides a probabilistic method for choosing between
feasible solutions of a problem which ensures that the choice is made from a set contain-
ing increasingly better solutions as the computational time expended on the algorithm
increases. A control parameter, the temperature, of the combinatorial system determines
the termination criterion of the algorithm. This control parameter is the analogue of the
thermodynamic temperature in a physical system. Just as a physical system settles into
into its least-energy states when heated to a large temperature and then cooled gradually, a
combinatorial system seeks out minima in the solution space when the annealing algorithm
is applied, starting with a large value of the control parameter and gradually decreasing
this value. These ideas are made more precise in the following.

Let {s;}; ¢ € Z be the feasible solution space of an optimization problem P with an
associated objective function f(z;); 1 € 1,...,M. Without loss of generality, we may
assume that the objective function is to be minimized with respect to a set of constraints
{¢;}; 1 € 1,...,N. The simulated annealing algorithm starts by generating a random
(feasible) solution to the problem. The algorithm proceeds by generating other solutions
that satisfy the constraint set and accepting/rejecting these solutions based on the so-called
Metropolis criterion (Metropolis et al., 1953). The algorithm terminates when the target
value for the control parameter is reached and the current solution is accepted as the solution
for P. The annealing algorithm is shown (in pseudo-code) in Fig. 1.

In Step 2, T is a high value for the control parameter T. Tg in Step 3 is the algorithm
termination criterion. It corresponds to a very small temperature in a physical system.
T ensures that almost all generated feasible solutions are accepted, even if they do not
lead to a solution which is better. This is done to avoid getting stuck in local minima of
the solution space. The inner loop (Steps 4-9) is iterated a fixed number of times at the
same value of T. This number bears a linear relation to the size of the problem. In the
minimization problem, it is chosen to be a small multiple of the number of parameters (M)
in the problem. Step 10 readjusts the value of T according to a monotonically decreasing
function F. The profile of this function is critical to the performance of the algorithm. Too
rapid a decrease leads to quenching where the system gets stuck in a local minimum while
too slow a decrease is computationally wasteful. Best results are obtained by choosing an
exponentially decreasing profile for F.




Table 2: Results: Simulated Annealing

# 51 52 S3 54 Obj Fun.
1 10.0 0.0 0.0 0.0 11.130454
2 10.0 0.0 0.0 0.0 11.130454
3 6.886355 3.113645 0.0 0.0 13.683241
4 10.0 0.0 0.0 0.0 11.130454
5 7.033023 2.966977 0.0 0.0 13.212274
6 10.0 0.0 0.0 0.0 11.130454
7 10.0 0.0 0.0 0.0 11.130454
8 10.0 0.0 0.0 0.0 11.130454

Annealing the Plant Location Problem

Simulated annealing is a combinatorial optimization technique; thus it is best suited for
optimization problems where the feasible solution space is a collection of discrete, countable
points. This space is explored by the algorithm in a stochastic fashion for increasingly better
solutions to the problem. Though the plant location problem displays an objective function
whose solution space is uncountable, it is still possible to apply the basic annealing strategy
— stochastic search for better and better suboptimal solutions — to the problem.

An annealing schedule is described by three choices — the starting value for the control
parameter T, the stopping value for 7', and the temperature decrement function d(t). The
configuration space of the problem is explored before the actual annealing process in order to
obtain information about the fundamental statistical quantities of the system. This phase is
used to estimate the high and low temperature scales of the system being optimized. Based
on this statistical information gathered from our initial experiments, we chose to implement
the inhomogeneous version (van Laarhoven and Aarts, 1987) of the simulated annealing
algorithm. The homogeneous version of the algorithm proceeds by agitating the system a
number of times at each value of the control parameter. Each set of such iterations (at a
fixed temperature) is called a chain. Successive chains in the annealing process are carried
out at decreasing values of the temperature parameter. The inhomogeneous algorithm
performs only one iteration at each value of the temperature parameter but the temperature
is reduced by an infinitesimal amount between iterations. As in the homogeneous algorithm,
choosing too rapid a decrease for the temperature results in quenching and leads to local
minima which are analogous to metastable states of a physical system.

Table 2. summarizes the results of 8 different annealing schedules for the inhomogeneous
algorithm. It is relevant to mention here that the random starting values for S; were assigned
to allow one or more them to have a zero value. Without this modification, the simulated
annealing algorithm is unable to reach the best or the second best solution. This is to be
expected since the probability that three of the four plant sizes are zero is extremely small
if S; are randomly assigned values in the range (0,10).

From Table 2 it is reasonable to infer that the second best solution reported by Klein and
Klimpel (1967) is easily found by the annealing algorithm. In our experiments we have also
tried a two level annealing approach. For instance, experiments 3 and 5 in Table 2 do lead
to the best solution reported by Klein and Klimpel (1967) if a local search is carried out in




the neighborhood of the solution found by the annealing method. However, we caution that
this is an ad hoc modification to the basic algorithm. In general, a coarse-to-fine refinement
approach where the values of S; are changed by large amounts towards the beginning of
the annealing process and smaller amounts at lower temperatures will perform favorably
when compared to the ad hoc two level annealing method. We are currently studying a
refinement-based approach to the problem.

Background on Genetic Algorithms

GAs accomplish the task of optimization by starting with a random “population” of values
for the parameters of an optimization problem, and thereafter producing new “generations”
of improved values that combine the best “parts” of values from previous populations.
In order to achieve this, it is very crucial to represent the objective variables in a non
ambiguous way. In our case studies we use the binary representation of real numbers
and integers and manipulate these strings to achieve reproduction, crossover and mutation.
Parent representations which are used to produce offspring are selected in a random manner
but with a bias toward selecting candidates with high fitness values. This step is called
reproduction. Offspring are produced by randomly cutting and swapping parts of the two
parent representations. This is called the crossover operation. Mutation is achieved by
screening the bits of the offspring and changing each binary bit to the opposite kind (0
to 1 or 1 to 0) with a very low probability. Mutation helps to introduce diversity in the
population thus preventing the GA from getting saturated with solutions in local optima.
Figs. and . illustrate the crossover and mutation operations using binary representations
of the real and integer optimization variables. In each generation a limited number of
candidates get to reproduce and have offspring which go into the next generation. When
the problem is of objective function maximization the fitness f; of candidate ¢ in a given
population is the normalized objective function given by

F fi - fmin

fi - fma:z: - fmin

where f; is the objective function value of candidate ¢ and f,,, and f,,:, are the maximum
and minimum values respectively of f; encountered in that population. In a minimization
problem the same procedure is followed but with a sign reversal. Elitism, in which the best
candidate encountered thus far is reintroduced in each generation, can also be employed.
Tables 3, 4 and 5 give the pseudocode for a simple GA (SGA). In the pseudocode, the array
fitness contains the fitness values of all the members of the current population. sumfitness
is the sum of the fitness values of all members of the population and the function random()
returns a uniform random number on the real interval [0,1]. One run of the roulette wheel
selection routine gives two parents which can now be used to perform crossover and mutation
as demonstrated in Figs. 1 and 2. For further details about the theory and implementation
of GAs we refer the reader to well known literature (Goldberg, 1989; Davis, 1991).
The following points summarize the advantages of using GAs:

e As a GA proceeds randomly (yet systematically) in its search, it does not require
smoothness, derivability, continuity etc. in the objective function. The only require-
ment is that for a set of values for the optimization parameters, one must assign a
fitness value.




Table 3: The SGA pseudocode - Main algorithm.

START
generation count=0
initialize population by random strings
repeat
generation count=generation count+1
create next generation
until (generation count > max gen)

STOP

Table 4: The SGA pseudocode - Refinement of create next generation.

START
=0
repeat
select two members by roulette wheel selection
perform crossover
perform mutation
introduce offspring into the new population
=2
until(j > population size)
STOP

Table 5: The SGA pseudocode - Refinement of select two members by roulette wheel sefection.

START
partial sum=0.0
=0
rand=random() X sumfitness
repeat
=i+l
partial sum=partial sum+fitness(j)
until(partial sum > rand or j=population size)
selected individual=]

STOP




¢ GAs can efficiently handle highly nonlinear and noisy ob jective functions encountered
in stochastic processes where traditional gradient based methods are inefficient.

e GAs are amenable to parallel processing. Unlike gradient search algorithms, in GA
the objective function evaluation for one parameter set is independent of that for all
others in the same generation. This facilitates the use of parallel computers for the
search procedure.

Motivation for Using a Clustering Algorithm in Search

Many valuable lessons are learned by observing the nature closely. Holland (1975) made
arguments concerning the distribution of individuals in a natural environment. He argued
that, in nature, when like individuals begin to dominate a niche, increased competition
for limited resources decreases life expectancy and birth rates among the members of that
niche. Less crowded niches experience less pressure and achieve life expectancy and birth
rates much closer to their actual potential. In other words, each individual has a certain
survival probability and reproduction capability associated with its fitness in its environ-
ment. If a particular individual belongs to a niche which is dominated by like individuals
then its survival and reproduction chances are diminished because it is more likely to com-
pete with the members of its own community (niche) for limited resources whereas for an
individual belonging to a less crowded niche these rates are not altered. To incorporate
these aspects of nature in artificial genetics, De Jong used the so called crowding model. In
this model, whenever an individual is born, it is compared with a fixed number of individ-
uals in the current population and it replaces an individual which is closest to itself. He
called the fixed number of individuals compared as the crowding factor. This helps prevent
the duplication of like individuals and helps to maintain diversity to some extent. When
multi-modal function optimization is of concern, the issue of niches being formed has yet
another dimension.

Consider a situation where we start with a random initial population of parameters and
do a few steps of gradient search starting from each one of these points. In this case there is
a high probability that elements of a particular niche (which is nothing but a group of like
individuals) tend toward the same local optimum if the gradient-based search is continued.
Instead, it makes perfect sense to select the optimal member of this niche and do a gradient-
based search starting from only this member. A similar concept was used by Térn (1977;
1978) in conjunction with the multistart algorithm- a stochastic optimization technique.
Torn’s algorithm, known as Algorithm LC (multiple local searches with clustering), is given
below:

1. Choose uniformly random points.

2. Use a local search algorithm for a few steps.

3. Find clusters by using a cluster analysis technique.

4. Take a sample point from each cluster. Return to step 2.

We propose to use this idea in the context of the genetic search procedure. We use T6rn’s
clustering technique to identify and dissolve clusters in the parameter space so that redun-
dant function evaluations of candidates leading to the same local optimum are minimized
and diversity is introduced in the population. In other words, by the cluster dissolving

8




idea we explicitly impose the natural pressure on crowded niches and cause them to perish.
‘When the performance of a simple genetic algorithm (SGA) and that of a simple genetic
algorithm with De Jong’s crowding model (SGA-CM) are compared we noticed that niches
are not effectively dissolved for any value of the crowding factor. On the other hand our
methodology explicitly identifies and breaks the clusters.

Methodology and Results

Although it eliminates redundant calculations, Térn’s algorithm (see previous section) lacks
the ability to search in new directions which is crucial for multi-modal function optimization.
To remedy this problem we propose a hybrid methodology which relies on the strength of
GAs to search in new directions and on the ability of the clustering technique to reduce
redundant calculations. The steps in the proposed GA with clustering (SGA-CL) are as
follows:

1. Start with an initial population.
Evaluate the fitness of each member of the population.

Appl)'f a clustering algorithm to identify clusters.

Ll

If any clusters are identified, from each cluster select the best member and randomize
the rest.

Evaluate fitness of the new members whose fitness has not been evaluated in step 2.

@

6. Apply reproduction, crossover and mutation.
7. Generate new population.

8. Stop if the number of generations exceeds the maximum allowable generations or if
convergence is satisfactory. Else, go to step 2.

The breaking of clusters reduces redundant objective function evaluations and the random-
ization introduces diversity in the population. In the GA we use here, we employ elitism.
Elitism accelerates local search. Using elitism in between cluster dissolving operations is
analogous to doing a local search between cluster dissolving operations as suggested by
Torn in his algorithm LC. The clustering algorithm we use here aims at selecting a seed
point and growing the cluster by enlarging the hypersphere around the seed point as long
as the density of the cluster remains greater than the average density of the space in which
all the points are distributed. This method does not require the user to specify the number
of clusters a priori. Details of this algorithm are given in APPENDIX A.

In the optimal plant location and sizing problem, the SGA and gradient-based tech-
nique gave inferior solutions. Constraint handling was done as explained in the simulated
annealing section. The SGA with clustering approach gave the second best known solution
with a success probability of unity (i.e. it gave this solution from any initial population
of parameter settings). Details are summarized in Table 6. Table 6 gives details of the
best solutions obtained using the indicated techniques. Of the three techniques listed, the
SGA-CL techniques gave the best solution. However, none of these techniques gave the best
solution known so far (Klein and Klimpel, 1967) which has an objective function of -11.105
MMS.




Table 6: The best objective function values reached by SGA, gradient and SGA-CL tech-
niques

SGA Gradient Technique (FSQP) SGA-CL
-12.09 MM$ -16.80 MM$ -11.131 MM$

Conclusions

The simulated annealing algorithm was successful in identifying the second best solution
known so far in most of the trials. In the experiments we have conducted, this algorithm
needed augmentation (in the form of a local search in the neighborhood of the solution)
before it could identify the best solution known so far. We are currently studying different
techniques for enhancing the effectiveness of simulated annealing based methods for solving
linearly constrained nonlinear optimization problems.

In population-based stochastic search techniques like GAs, formation of niches around
local optima is detrimental to the convergence to global optimum. In this paper we pre-
sented a modification to the simple genetic search which is based on a clustering algorithm
and demonstrated its efficiency in solving a plant location and sizing problem. This algo-
rithm aims at identifying and dissolving the clusters so that diversity is preserved in the
population. The superiority of the proposed methodology over the simple genetic search
and a gradient-based technique is clear although it failed to attain the best solution known
so far.

Our methodologies were able to find the next best solution in almost all the trials. The
advantages of using the SA and SGA-CL stem from the fact that the objective function can
be an arbitrary black box and nice analytic properties are not required (i.e., smoothness
and/or differentiability of the ob jective function is not assumed).
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algorithm anneal

begin

1 generate a random initial solution s in {s;}
2 T —T,;

3 while T' > Tj do

4 repeat

5 generate new solution s’ in {s;}
6 AC =C(s") - C(s)

7 ifAC’<Oorr)<e'A—TC'

8 se—s

9 until thermal equilibrium is reached
10 T — F(T)

11 end do

12 output s {s is the best solution}

end

Figure 1: The Simulated Annealing Algorithm for Minimization

Parent Representations Offspring
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- O OO0 40000 4 oo

O 4 = = Olr O OO 0 0O =
—- OO O e e O[O ek ea

Figure 2: Illustration of the crossover operation. The offspring are a result of cutting and
swapping parts indicated between the arrows in the parent representations.
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Flip
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Figure 3: Illustration of mutation. Each bit is flipped to the opposite kind with a very low
probability.
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’ APPENDIX A
TORN’S CLUSTERING ALGORITHM

In what follows we describe briefly the clustering algorithm used by Térn in his algorithm
LC. The basic idea is to grow clusters from seed points to include all the neighboring points.
There are two main issues in identifying clusters:

¢ Location of the seed points.

¢ When to stop the growth of a cluster. In other words, deciding about a threshold
distance r for stopping the growth of a cluster.

The choice of a threshold distance is critical because if r is large, all points will be assigned
to a single cluster and if r is small, each point will be form an isolated cluster.

In a multi-modal objective function minimization problem, consider a collection of N
points in which we want to identify clusters. The assumption is made that the local minima
would be good seed points to use and that the point with the smallest function value may
be used as an estimate of the local minimum. The cluster growing is started from this point.
When this cluster stops growing and a new seed point is needed, the point, among those
not yet classified, with the least function value is chosen. This procedure is repeated until
all the N points are classified.

A cluster is grown by enlarging a hypersphere around the seed point as long as the point
density in the hypersphere remains greater than the uniform point density p = -"; where V
is the volume of the space containing all the N points and is given by

1
vV =1N 4)2.

Ai are the eigenvalues of the covariance matrix § and

1 N 1& n

sij = 7\,—-__—1(2 TikTjk ~ ;ink k)
k=1 k=1 k=1
In the above equation, x; is the kth parameter vector and z;; is the ith component of
X. Torn’s original clustering algorithm includes only the parameters of optimization in
the vectors x; for cluster identification, but we include the objective function value along
with the parameters of optimization in the vectors x;. This modification gives better
classification (cluster identification) particularly for functions with multiple local minima,
each having different objective function values, which are crowded in a particular search
space.
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