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ABSTRACT

The multitasking options in the three-dimensional neutral particle transport code TORT origi-
nally implemented for Cray’s CTSS operating system are revived and extended to run on Cray Y/MP
and C90 computers using the UNICOS operating system. These include two coarse-grained domain
decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP),
and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced
by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete
angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using
8 tasks, have been measured in a time-sharing environment, and generally depend on the test problem
specifications, number of tasks, and machine loading during execution.

I. INTRODUCTION

Accumulated experience with a variety of multiprocessing techniques and architectures for the
neutron transport equation have demonstrated the benefit to parallel efficiency of employing the coar-
sest possible grain size. The downside of this is the resulting small number of concurrent processes
which bounds the achievable speedup from above. The coarse grained architectural features of Cray
multiprocessors, i.e., tens of supercomputer class CPUs, therefore provide an excellent opportunity to
best utilize the available resources and at the same time produce significant speedup. The three-
dimensional neutron transport code TORT! typically consumes several hours, sometimes days, to exe-
cute large application problems making it a good testbed for multitasking. In addition, the Cartesian
geometry option is the one most commonly used in TORT applications due to the somewhat flexible
grids it permits. As demonstrated earlier? angular domain decomposition is intrinsic in Cartesian
geometry, meaning no degradation of the convergence rate with increasing number of participating
processors, thereby enabling the highest possible parallel speedup and efficiency on coarse grained
platforms. This follows from the fact that the processors on such platforms are so fast that a large
computational load per concurrent process is crucial for good parallel performance, and because the
typically small number of CPUs does not allow more concurrent processes than the number of
discrete ordinates in the majority of applications.

Previous work on multitasking TORT’s Linear Nodal method on a two-processor Cray X/MP
running under the now obsolete CTSS operating system achieved limited speedup, if any, even for
100,000 cell problems.? In this work we revisit the implementation on the Cray Y/MP and C90 com-
puters using two variants of angular domain decomposition, one along octants, the Octant Parallel
(OP) scheme, the other along individual angles, the Direction Parallel (DP) scheme, and demonstrate




their high parallel efficiency for various test problems. In the remainder of this paper we briefly
review the OP, and DP schemes in Secs. II, and III, respectively. Then we present and discuss
measured performance for three test problems on 8-CPU Cray Y/MP and 16-CPU Cray C90 comput-

ers in Sec. IV, and we close with a brief summary and some conclusions in Sec. V.

II. THE OCTANT PARALLEL METHOD

The mesh sweeps are performed in TORT one plane at a time; for each plane every row in the
x-direction is swept to the left then to the right in all angular directions within an octant in angular
space. Hence, the OP is implemented by starting a slave task to perform the left sweep for all angles
with [L<0 while the master task completes the right sweep for all angles with 1L.>0 then awaits the
slave task before proceeding to the next row. Mutually exclusive locks are implemented within the
parallel section of the code to avoid memory conflicts in the process of accumulating the angular flux
contributions to the new iterate of the scalar flux and its higher angular and spatial moments. Great
care must be exercised in setting up these locks not just to ensure correct operation of the code but
also to avoid destroying the vectorizability of loops over a row for a given angle. After sweeping a
row along discrete ordinates within two octants, TORT proceeds to sweep the next row over the
same two octants. After both octants are solved in all rows of a plane, TORT solves the other two
octants which have the same efa-level sign. Upon completing a plane, TORT steps to the next
plane; a complete inner iteration consists of a downward and upward sweep through the computa-
tional mesh.

The OP strategy suffers two drawbacks. First, only two tasks, corresponding to the right and
left sweep directions, can execute concurrently, thus bounding the potential speedup from above by 2.
However, the intrinsic nature of the domain decomposition implies that there is a one-to-one
correspondence between the sequential and concurrent algorithms. Thus, there is no deterioration in
the spectral properties of the iteration process. This, along with the coarse granularity of the parallel
algorithm, provides for as high a parallel efficiency as can be expected. Second, only fixed source
(including vacuum) and periodic boundary conditions are permissible along the spatial dimension in
which the sweep concurrency is realized, the x-dimension in TORT.

TORT uses zero weight angular directions to distinguish the various 1 levels which is important
for proper computation of the redistribution term in curvilinear geometry. The L values attached to
the zero weight directions are always negative implying that all will be swept in the left sweep per-
formed by the slave task in a multitasked run; this introduces some load imbalance. Of course, the
zero weight directions are conceptually worthless in Cartesian geometry, and as such, it seemed pos-
sible to skip sweeping them in the loop over angular directions in subroutine rowmp. Hence, we
examined the 5000 loop in rowmp and discovered, as well as numerically confirmed, that skipping
the zero weight directions entirely results in erroneous fluxes because of the several indices that are
updated in this loop.

II. THE DIRECTION PARALLEL METHOD

The Direction Parallel (DP) method is based on sweeping each row of cells in the mesh con-
currently along the discrete ordinates in an octant of angular space. [This method was termed Row
Parallel in Ref. 3]. As such it eliminates the two drawbacks of OP mentioned above thus providing a
large number of independent tasks to be executed simultaneously and, since octants are processed
successively, allowing all types of boundary conditions. The DP is an Angular Domain Decomposi-
tion (ADD) which in rectangular geometry, the primary focus of this work, is intrinsic. Its main
drawback is the typically limited number of tasks available, essentially the number of discrete



ordinates per octant, compared to the very large number of computational cells in a spatial domain
decomposition for example. Of course the number of concurrent tasks sets an upper bound on the
potential for speedup, except in case of distributed memory architectures where the aggregate
memory of the participating processors can reduce or eliminate the need for I/O. Typically for
coarse-grained platforms supporting at most a few tens of supercomputer class CPUs such as the
Cray Y/MP the real bound on speedup is set by the number of processors.

The original implementation of the DP in TORT was hardwired to utilize only two processors,
perhaps because of the poor performance which was observed in early tests even on this few proces-
sors.? Indeed our effort to make this option run correctly, i.e., produce results identical to the sequen-
tial run to within roundoff error, progressed very rapidly but initial tests on two processors exhibited
very poor performance. The Wall Clock time on two processors was larger than the sequential Wall
Clock time, while the CPU time increased by as much as 100%. Upon examining the profiles for
sample runs it became evident that while there are several sources of additional CPU time in the DP
over the sequential run, much of it is spent by processors on hold waiting for tasks to be executed.

The major enhancements in the new DP implementation address the following issues:

1. Eliminating the overhead for assigning and releasing locks: In the original implementation locks
were unnecessarily assigned and released every time subroutine row is called. This is avoided
by assigning them only once, upon first entry into row.

2. Permitting the user to select parallelization scheme and number of concurrent tasks: Several
changes were made to permit the user to select the number of concurrent tasks by setting the
input parameter ncpu. If it is set to zero the original sequential (vector) path is executed in
which the row sweeps are conducted by subroutine rownv. The OP is selected by setting ncpu
to -1, or -2 to run with only a master, or one master and one slave task, respectively; if it is set
to a value less than -2, TORT resets it to -2 since this is the most concurrency OP allows. In
this case the row sweeps are conducted by subroutine rownvp which is called by the interface
subroutine rowmp. Positive values of ncpu imply DP running on a master and (ncpu —1) slave
tasks also using rownvp to sweep a row along one angle, but here called by the interface sub-
routine rowdp described shortly. Generalizing the number of concurrent tasks required, among
other things, creating sufficient scratch space for arrays used by rownvp and for the private
copies of the common block comrow. The latter must be fixed at installation; we set the number
of these copies to 16 in the installation script of the current version of TORT.

3. Increasing the useful computations per task creation: In the original implementation of DP each
call to rownvp was performed by a new task implying a large number of task creations which
contributes to overhead. By moving the task creation outside of the loop over angles, only as
many tasks as requested by the user will be created to sweep each row. Of course this overhead
can be reduced even further by moving the task creation to a higher level routine, e.g. plane,
but this requires additional memory and major code restructuring. DP was implemented in a
new subroutine rowdp that serves as an interface between row and rownvp. An additional
improvement in the new implementation is the dynamic scheduling of discrete directions within
existing tasks thereby reducing the undesirable effect of load imbalance.

The major features of the two parallel options in TORT are depicted in Fig. 1. Our new imple-
mentation of DP tests the value of ncpu early in subroutine row, similar to the OP case, and if posi-
tive makes private copies of the common block then calls the new subroutine rowdp once by the
master task, and (ncpu —1) times by the slave tasks via a call to tskstart. Once in rowdp each task
unpacks its own copy of the common block and computes pointers to the scratch arrays. Execution




| Subroutine row |

Figure 1. Flow Chart for Subroutine row with the Two Multitasking Options: OP and DP.
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then proceeds as it would in the sequential/vector case, i.e. ncpu = 0, to the loop over the left-right
passes then to loop 5000 over the discrete ordinates in the current octant. Each task spans loop 5000
for all values of its index m but sweeps only along the directions dynamically scheduled to it. Thus
each task grabs a direction from the queue of all directions via the global counter iselfsch and calls
the row sweep subroutine rownvp only if m is equal to the angle index it just grabbed. This keeps
all indices incremented properly within each task but implies redundant operations performed repeat-
edly in loop 5000. Upon return from rowdp the master task waits for all slave tasks then proceeds
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IV. MEASURED PERFORMANCE

We used three problem configurations to test the correctness of the OP and DP methods imple-
mentation in TORT and to characterize their performance. All test runs are conducted in the time
sharing environment using the target platforms for this implementation, namely multitasking-capable
Cray computers. The first two test problems were executed on Los Alamos National Laboratory’s
rho machine, an 8-CPU Y/MP running UNICOS 8.0, and the third test problem measurements were
obtained on Lockheed Martin Corporation’s 16-CPU C90, also running UNICOS 8.0.

A. Test Problem 5 (TP5)

The first test problem is a modified version of TORT’s Test Problem 5 (TP5) wherein we use
the Linear Nodal method with a 10~ convergence criterion, and allow for 20 inner iterations. This
problem, which we still denote TP5 in spite of the modifications mentioned above, is sufficiently
small (1 group, 66 directions, and 3672 cells) that it fits entirely in core. We used the 66-angle qua-
drature of the original TP5, then to test the scaling of parallel performance with the number of
discrete directions, we repeated the runs with a standard S;¢ angular quadrature. The higher quadra-
ture order benefits parallel performance in two ways. First, it provides a larger pool of independent
processes which for DP improves the potential for speedup on a platform supporting more CPUs and
enhances the load balance across tasks. Second, since in OP and in the new DP implementation the
tasks are created only once per row, then the higher quadrature results in a larger computational load
per task thus diluting the effect of the task starting penalty. The measured Wall Clock speedup for
these cases is plotted in Fig. 2 as a function of the input parameter ncpu with values ranging from -2
to 8, the number of processors on LANL’s rho machine.

Figure 2. Measured Wall Clock Speedup for TP5 on Typically Loaded Machine.
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The nondedicated environment of these runs implies dependence of the parallel performance on
machine loading at the time of execution, hence the non-monotonic speedup with increasing ncpu.
The results depicted in Fig. 2 were observed in single runs for each case shown (except when unusu-
ally high machine loading occurred) so they are representative of performance on a typically loaded




machine. In order to characterize the parallelization itself we repeated the run for each value of
ncpu, until a sufficiently large and monotonically increasing machine utilization occurred. The meas-
ured Wall Clock speedup plotted in Fig. 3 is representative of machine performance on a lightly
loaded machine. More importantly, it comes closer to characterizing performance in a dedicated
environment, hence judging the success of the parallel algorithms employed in ideal circumstances.

Figure 3. Measured Wall Clock Speedup for TPS on Lightly Loaded Machine.

22}

- o— 66 Quad.

-x--Syg
Ideal
[} 1 1

6 8

ncpu
Figures 2 and 3 exhibit good speedup of the respective computations which appear to increase
with the order of angular quadrature and CPU availability. The relatively low achievable speedup,
~ 2.6, is due to the small size of TP5, especially the short row-length, and thus the smaller the com-
putational load per task compared to parallelization overhead.

The output files containing the converged flux for each case shown in Figs. 2 and 3 were com-
pared with the ncpu=0 case to verify correctness of the solution to all printed figures regardless of
the number of tasks. Also the iteration histories agreed across runs for all but the first iteration in
which the flux that undergoes the largest change is different between the single and multitasked runs.
Upon examining this inconsistency we concluded that it is the result of finite arithmetic precision.
More specifically, in the first iteration the previous iterate is a uniform 0 and the code computes the
pointwise change in the scalar flux to be the ratio of the new iterate to itself multiplied by the zone
importance. On’an infinite precision computer this would produce a uniform value of 1 in zones
with unit importance, and the point where the largest change is assigned would always be the last
point tested in such zones. The finite precision of real computations, in contrast, perturbs this unity
value by an arbitrary amount on the order of machine precision and the point of largest flux change
in the first iteration is not necessarily the last one tested, but rather the one where the arbitrary per-
turbation is largest and positive. The parallel methods as coded in TORT accumulate the flux
moments in the new iterate vector within a lock in subroutine rownvp in a random order depending
on which task reaches, and arms, each lock first for the directions it owns. For example the sequen-
tial code, as well as the | ncpul =1 cases, accumulate all. the angular flux contributions to the flux




moments for the right-to-left sweep first then for the left-to-right sweep, thus resulting in first, as well
as later, iterates, that differ within machine precision from those obtained using multiple tasks. This
difference translates into the observed difference described above in the first iterate only because in
all later iterates the convergence errors are far more significant than roundoff error.

B. Test Problem 6 (TP6)

The second test problem is TORT’s Test Problem 6 (TP6) except here we allow the slow group
also to converge. This problem is large enough (2 groups, 60 directions, and 104,247 cells) to
exceed the core memory objective and require I/O of the flux and source to a scratch file. It also
tests the correctness of the parallel implementation when a fixed, but non-zero, boundary source is
imposed on an x-edge which is particularly important to verify in the OP method. As with TPS5, here
also we measured the parallel performance on typically and lightly loaded machines as shown in
Figs. 4, and 5, respectively, using Sg and S;¢ angular quadratures. These results demonstrate the
beneficial effect of problem size on parallel speedup in general and on lightly loaded machines in
particular where the Wall Clock speedup exceeds 4.4.

Figure 4. Measured Wall Clock Speedup for TP6 on Typically Loaded Machine.
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Comparison of the converged flux and iteration history for TP6, however, did not agree in the
sixth, and rarely fifth, printed figure for all ncpu >1 cases. We conjecture this is a roundoff effect
that appears in TP6 because its solution is comprised of fluxes that are very small to the extent that
they can be contaminated by roundoff errors resulting from the unpredictable sequence of arithmetic
operations performed within the locks as discussed earlier. The full agreement between the printed
solutions for the serial and multitasked cases for the other test problems attempted so far confirms the
correctness of the parallel algorithm and its implementation.

C. DLVN Test Problem

The DLVN* problem used an S;¢ quadrature, P3 flux moments expansion, 25 energy groups and
207,360 cells. The ncpu =0 solution requires 910 min. of CPU time and 1125 min. of Wall Clock




Figure 5. Measured Wall Clock Speedup for TP6 on Lightly Loaded Machine.
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time on the C90 computer. The difference between the elapsed time and the CPU time is due in part
to the typically high load on this machine, and in part to the significant amounts of I/O required by
the problem.

The parallel speedup for the DLVN problem is shown in Fig. 6. The maximum speedup
obtained was 1.8 for ncpu =8. For comparison, Amdahl’s Law is also plotted in Fig. 6 for a code
with 81% parallelism. This is typical of the time TORT spends in the row sweep portion of the code
for the DLVN problem. When ncpu =8, the maximum theoretical speedup is 3.4; TORT achieves
52% of this value. The degradation from the theoretical speedup arises from two sources: the load
on the machine and the increase in the parallel overhead with increasing number of tasks. While the
load on the machine is not directly quantifiable, the increase in CPU time for the ncpu =8 case was
approximately 32% over the ncpu =0 case, i.e., the parallel run on 8 processors required 1201 min.
of CPU time versus 910 min. for the serial run. In the worst case, if one-eighth of the extra 291
min. of overhead are added to the sequential part of the ncpu =0 run, then only 78% of TORT would
be parallelized and Amdahl’s Law would give a theoretical speedup on 8 processors of 3.1. TORT
achieves approximately 57% of this value when ncpu =8. Of course this assumes that the overhead
occurs entirely in the parallel portion of code which is known not to be the case; some overhead is
serial. Therefore, even on a lightly loaded machine the parallel speedup of the DLVN problem is
bounded from above by 3.1.

V. CONCLUSION

We revived and fine-tuned the two multitasking options for the Linear Nodal method available
in the TORT code to execute in parallel on Cray platforms running the UNICOS operating system.
The two options represent coarse-grained angular domain decompositions in octants (OP) and indivi-
dual discrete ordinates (DP) in the process of sweeping a row of computational cells. Our results
exhibit speedup factors that approach 4.5 for some problems on a lightly loaded machine. However,




Figure 6. Measured Wall Clock Speedup for DLVN on Typically Loaded C90 at Lockheed Martin
Corporation.

(<)

ncpu

the observed performance demonstrates the high sensitivity of speedup to operating conditions
beyond the user’s control.
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