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Abstract

Two Chebyshev recursion methods are presented for
calculations with very large sparse Hamiltonians, the
kernel polynomial method (KPM) and the mazimum
entropy method (MEM). If limited statistical accu-
racy and energy resolution are acceptable, they pro-
vide linear scaling methods for the calculation of phys-
tcal properties involving large numbers of eigenstates
such as densities of states, spectral functions, thermo-
dynamics, total energies for Monte Carlo simulations
and forces for molecular dynamics. KPM prouvides a
uniform approzimation to a DOS, with resolution in-
versely proportional to the number of Chebyshev mo-
ments, while MEM can achieve significantly higher,
but non-uniform, resolution at the risk of posstble ar-
tifacts. This paper emphasizes efficient algorithms.

1 Introduction

Many computational physics problems involve cal-
culations with very large sparse Hamiltonian matrices.
Finding all eigenvectors and eigenvalues requires cpu
time scaling as O(/N3) and memory scaling as O(N?),
which is impractical. For ground or isolated eigen-
states the preferred method is Lanczos diagonaliza-
tion, which uses only matrix-vector-multiply (MVM)
operations and requires cpu and memory scaling as
O(N). But new O(N) methods are needed for prop-
erties involving many eigenstates such as the density
of states (DOS) and spectral functions, and for quan-
tities that can be derived from DOS such as thermo-
dynamics, total energies for electronic structure and
forces for molecular dynamics and Monte Carlo simu-
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lations. Limited energy resolution and statistical ac-
curacy are often acceptable provided the uncertainties
can be quantified. Maximum entropy (MEM) (Mead
1984; Drabold 1993) has been a popular approach,
usually fitting power moments of a DOS or spectral
function. However, the non-linear convex optimiza-
tion algorithms required to find MEM solutions may
be difficult to implement for large numbers of power
moments and for singular structures in DOS.

This paper considers methods which use Chebyshev
moments rather than power moments of a DOS or
spectral function. Chebyshev moments are advanta-
geous for several reasons: their calculation is much
less sensitive to the limitations of machine precision;
the Hessian of the MEM convex optimization problem
is much better conditioned; and the isomorphism to
Fourier series enables use of advanced methods such
as FFT’s and Gibbs damping. Moreover, a linear
Chebyshev approximation to a DOS constructed from
such moments, termed the Kernel Polynomial Method
(KPM) (Silver & Roeder 1994; Wang 1994), provides
a computationally simple alternative to MEM. This
paper discusses the generation of Chebyshev moment
data, describes the KPM, and then discusses an effi-
cient MEM algorithm. We necessarily repeat discus-
sion of KPM presented at the HPC ’95 (Silver, et al.
1995), as needed for the MEM algorithm that follows.

2 Data Generation

Consider the DOS as representative of the proper-
ties of interest. The first step is to scale the Hamilto-
nian, H = aX + b such that all eigenvalues z,, of X lie
between —1 and +1. The DOS is then

L X
D(z) = E 8z —xn) . (1)
n=1
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The data about D(z) consists of Chebyshev moments,

1
i = TH{Tn(X)} = / Tp(@)D(@)de . (2)
-1
Calculation of moments uses Chebyshev recursion,
Tnt1(X) = 2XTn(X) = T2 (X) ()

requiring the same optimized matrix-vector-multiply
(MVM) algorithm in Lanczos methods. Unlike Lanc-
zos recursion, Chebyshev recursions are numerically
stable to arbitrarily large numbers of moments with-
out any need for expensive reorthogonalization. One
can use the rules for multiplying Chebyshev polynomi-
als, e.g. Tom = 27,1 — 1, such that M/2 MVM’s are
required to generate M moments. Exact evaluation of
M moments using cpu time o O(N2M/2) generates
T (X)|i > on each basis state |¢ >, and then

N
Hom = %; < m(X) T (X)i> -1 . (4)
Similarly for pom-1.

Generation of moments using cpu time «x O(NM)
can be accomplished either by stochastic methods (Sil-
ver & Roeder 1994) or by local truncation (Voter,
Kress and Silver 1996). The stochastic method with
cpu scaling as O(NM N,) uses estimators

~ 1
in % g L <T@l > )

where |r > are N, Gaussian random vectors.
Such data have statistical variance proportional to
(NN,)~! which may be expressed directly in terms
of moments. More sophisticated choices of random
vector appear to reduce statistical variance (Drabold
and Sankey 1993), but they introduce statistical bias

The local truncation method may be applicable
if the density matrix has only local off-diagonal el-
ements, as in tight-binding Hamiltonians for insula-
tors. Chebyshev moments are estimated using a lo-
cally truncated Hamiltonian H;,

fim & }: < iTm(Xi))i> (6)

generating data with a systematic error determined
by the truncation range. ‘Logical’ truncation (Voter,
Kress and Silver 1996) appears to converge more
rapidly and smoothly than ‘physical’ truncation
schemes (Goedecker and Colombo 1994). Cpu scales
as O(N M J), where J is the average number of states
in the truncation range. Exact moment derivatives
(related to forces) can also be calculated from a
Chebyshev derivative formula.

3 The Kernel Polynomial Method

Cpu time and memory limit the number of mo-
ments. M and their statistical and systematic errors.
Given such limited data, KPM and MEM are two ways
to estimate DOS. KPM provides a linear Chebyshev
approximation to a DOS with a uniform resolution in
¢ = cos™!(z). It is based on an exact moment expan-
sion,

Dfz) = TV 11—- z?

The KPM truncates this expansion at M moments
and introduces a factor gM to damp the Gibbs phe-
nomenon,

to +2 Z HmIm (x)} - M

M
Dk(z) = N__Il—_-?ﬁ [uo +2y umgi‘me(x)}

m=1
(8)
Let D(¢) = sin(¢)D(X) and T)n(z) = cos(m¢). Then
Dk (¢) is both a simple convolution and a truncated
Fourier series,

2
DK(¢) = o 6K(¢ - ¢0)D(¢o)d¢o
1 M
dx(¢) = 2 |90 +2 Z oM cos(mq&)] . (9)
m=1

The “kernel” 8x(¢) is a 2m-periodic polynomial
approximation to a Dirac delta function, analogous
to the resolution function of a spectrometer. Reso-
lution is uniform in ¢ with width A¢ « M~1. If
gM = 1, at large |¢| the kernel is oscillatory with
period A¢ = w/M within an envelope function de-
creasing slowly as 1/¢%. The result is the Gibbs phe-
nomenon of a lack of uniform convergence at singu-
lar structures in DOS. An optimal g¥ can be deter-
mined variationally by requiring the kernel to be a
polynomial of degree M, strictly positive, normalized
and have minimal variance in ¢ (Silver, et al. 1996).
Specifically, by the Fejer-Riesz theorem

M 2

1 M-m
k(@) = gz 2w e = D aavem
= =0

(10)

Minimize the variance,

A= [ gxc(o)ds

-7

~ [ - 2cos(@)dn@)dé = 200201 . (11
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Figure 1: KPM DOS and band energy calculation for Si 216 atom supercell.

subject to a normalization constraint, ff” dx(¢)dé =
1. The variational problem,

M-1 M
Q‘: g1 — )\90 = Z Ay Ay 41 — /\Z ayay, , (12)
v=0 v=0
results in
é
—Q =0 = Ay42 — 2/\61,,.*.1 +a,=0 . (13)
Sa,

The solution to Eq. (13) is
U, (A)
Coto U

cos(gr) =X , {(14)

ay =

U0 = sin(s(il;aig@\) :

where the U,, are Chebyshev polynomials of the second
kind. The same kernel is also obtained by minimizing
the uniform norm (Jackson 1933). Its envelope func-
tion decreases exponentially at large |¢}.

Figure 1 illustrates the application of KPM to the
electronic structure of a 216 atom Si supercell using a
tight binding Hamiltonian (Silver et al. 1996) based
on the parameterization of Goodwin, et al. (Good-
win, Pettifor & Skinner 1989). This system is small

enough to be exactly diagonalized. Vertical lines are at
the energies of the exact eigenstates and their height
is proportional to their degeneracy. The solid line is
the KPM approximation to the DOS obtained for 200
Chebyshev moments. A Fermi energy Er is the en-
ergy at which the cumulative DOS Ck (E) equals the
number of electrons. The total band energy Ep is
then the cumulative energy Ex(E) at Er. For band
energies KPM converges o« M 2 reaching 10~° rela-
tive accuracy at about M = 150. Subtle details about
removing systematic bias and acheiving a faster con-
vergence rate are discussed in (Voter, Kress & Silver
1996).

KPM can be applied to other properties such as
spectral functions (Silver et al. 1996),

. 1
Aw) = lim l[m{< |0t ————0| ¥, >} ;
n—0+ w—H—:n

H
(15)

‘where O is an operator. KPM approximations use

moments 4@ =< ¥,|0TT,(X)0[¥; >.




4 The Maximum Entropy Method

MEM uses the same Chebyshev moment data as
KPM. The entropy,

s= [ D)~ Dute) - Do) (2] ds
(16

Do(¢)

Here D,(¢) is a default model for the DOS in the
absence of data. Consider the case where the data are
subject to Gaussian independent statistical noise,

b = Um+m 5 Enn =0 ; Enppnn = o'rznémm’
(E denotes the statistical expectation value of the ran-
dom variable that follows it.) If the data are exact,
Om represents the numerical precision required of the
MEM fit to the data. The primal optimization problem
uses moments as variables to maximize entropy as a
function of D(¢) constrained by the known moments.
Maximize

x? o~ (fim = pim \?
o=s-L i ve3 By g

o2
m=0 m

The statistical regularization parameter « sets a bal-
ance between the fit, measured by x?, and an infor-
mation measure, ~S, of distance between the inferred
D(¢#) and the default model D,(¢). (Alternatively,
1/a is a Lagrange multiplier.) The m = 0 term is
included to constrain normalization, jiy = 1. Taking
the limit o9 — 0 strictly enforces normalization.

Our MEM algorithm consists of three nested loops:
iterations in o, until a stopping criterion is reached;
at each «, Newton-Raphson iterations of a dual op-
timization problem defined using Lagrange multipliers
as variables to solve for the MEM D{(¢); at each o and
MEM D(¢) conjugate gradient iterations to apply the
Hessian onto a vector.

Popular stopping criteria for a are x> = M and
x? — 2aS = M, although many other criteria are dis-
cussed in the literature. However, the algorithm for
finding the MEM D(¢) tends to be unstable if initi-
ated at such small o. Instead, start at large o' = x2,
and use D,(¢) to initiate the optimization of D!(4).
Progress down in o such that of*! = o¥/2. If this
is unstable, halve the step down in o repeatedly until
stability is reached. At each «, use D*(¢) as the start-
ing point for the optimization of D¥*1(¢). Once the
stopping criterion is passed, perform a golden search
for the optimal o.

In the case of exact moment data, set o, to the
numerical precision required, which can be very small.

(17)

In our applications to electronic structure, errors of
one part in 10° or smaller were used. Iterate o —
0 until the entropy S saturates at an a-independent
value.

Given an o, a variety of algorithms have been de-
veloped to find MEM solutions {Turek 1988; Skilling

1993). The primal problem maximizes @, as a func-
tion of D{¢}),

0Qp (D(¢)) o fim = fim
=—In +Z cos(mg) =0
dD(9) D.(¢)) = aok
(19)
which has a unique solution. Define parameters X by
Bm — pm + @02 Am =0 (20)

Then the D(¢) satisfying Eq. (19) is

M
D(#) = D,(¢)exp (- > Am Cos(m¢)) . (21)
m=0

This form is also obtained by maximizing entropy sub-
Ject to Lagrange contraints on moments with Lagrange
multipliers A.

However, a dual optimization problem as a function
of the M Lagrange multipliers (Auyeng & Mersereau
1991) solves the same problem, and it is more stable
numerically than the primal problem. The X of the
dual problem vary more slowly than the D(¢), and
they are a finite rather than a continuous set of vari-
ables. The quantity,

T M 242
Qi=hn ( /0 D(¢)d¢) +3 [ﬁmAm + ”’g)"" :
m=0

(22)
is maximized as a function of the X when Eq. (20) is
satisfied. Away from the maximum, define

JQd ~ 2
~ =8&m = Bm — Um m)\m
i &m = Bm — pim + 0 (23)
Then,
M 52
deQP_*-rnZ::o 2040'2,; M (24)

The Hessian of the dual problem is a positive definite
M x M matrix and a simple function of the moments,

82Qd _ Bm+m! +I$[m—m'|
A ON, 2

Hpm = +0¢0}2n5mm'

(25)

A solution to Eq. (20) may be found by Newton-

Raphson iteration. Beginning with some starting X0,
the n + 1’th step is

Xn+1 = Xn _ H;lgn

(26)
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Figure 2: Comparison of KPM and MEM for the DOS of a polaron formation problem using 200 moments.

The quantity, H"lg, may be calculated, e.g., by con-
jugate gradients. In view of Eq. (24), converging
bounds at the n’th iteration are Q7 > Q= > @y
where Q% = lim, o {Q},Qp}. This provides stop-
ping criteria for the iteration.

For electronic structure applications, high numeri-
cal precision (e.g. ~ 107°) is needed for accurate en-
ergy derivatives. Careful attention to how the MEM
algorithms are discretized then becomes very impor-
tant. Practical fast Fourier transform (FFT) algo-
rithms calculate the g, = fow cos(m¢) D(4)d¢ by sam-
pling the domain 0 < ¢ < 7 at a discrete set of N,
equally spaced points. The Shannon sampling theo-
rem says that such naive discretization corresponds to
representing a DOS in a Ny-order truncated Cheby-
shev series. In effect, MEM is used to infer an N,-
order Chebyshev approximation from knowledge of M
true moments.

But typical DOS contain singular structures such
as d-functions, van Hove singularities, band edges, etc.
These structures are properly described by an infinite
order Chebyshev expansion. As discussed previously
for the KPM, abrupt truncation of a Chebyshev ex-
pansion at NV, terms results in the Gibbs phenomenon;
i.e. singular structures in the true DOS at ¢, induce
oscillations in Chebyshev approximated DOS of pe-

riod A¢ = m/N, with an envelope function decreasing
slowly as 1/(¢ — ¢,)?. While the moment data satisfy
the Hausdorff conditions for the existence of a posi-
tive solution (Mead & Papanicolaou 1984}, the added
requirement that the solution be an Np-order Cheby-
shev series is stronger. For the exact moment problem,
the a-iteration may have difficulty forcing x? — 0 and
saturating the entropy S.

Fortunately, the kernel polynomial method (KPM)
provides a solution to this discretization problem. In
the MEM problem, replace the M Chebyshev moment
data fi,;, by modified moments ﬁmg,IX”, where the grjx"
are the Gibbs damping factors in Eq. {10). In other
words, change the goal of the MEM algorithm to the
inference of a Ny-order KPM approximation to the
DOS. Iteration toward y* — 0 and saturation of S
becomes easy.

By choosing N, 3> M, MEM can achieve significant
resolution enhancements over KPM from the same M
moments. In tests with tight binding Hamiltonians
for the electronic structure of Si, band energies con-
verge approximately 4 times faster with MEM than
with KPM. For the example in Fig. 1. MEM reaches
1073 accuracy at M = 35. Setting N, > 4M is ade-
quate to achieve this gain. The cpu time required by
MEM scales as O(M?), and it is negligible compared




to the cpu time required to generate the moment data.
Use of MEM cuts the overall cpu requirements by at
least a factor of 4 over KPM. Isolated features in DOS,
such as individual states and band edges, may con-
verge even faster.

Figure 2 compares MEM and KPM for the DOS
of a 1D polaron formation problem. The Hamiltonian
consists of an electron placed into a 10, 000 atom chain
with a Peierls distortion, which is then allowed to re-
" lax resulting in the polaron state at £ = 1.0. This ex-
ample demonstrates that MEM achieves dramatically
better energy resolution than KPM for isolated states
and band edges, but it tends to “ring” (or oscillate) in
smooth positive regions of a DOS when singular struc-
tures, such as Van Hove singularities, are nearby. For
such regions of a spectrum, MEM may converge more
slowly than KPM. A solution to the ubiquitous MEM
ringing problem most likely will require a modification
to the entropy functional to include local smoothness
constraints (Silver & Martz 1994).

Energy derivatives needed for molecular dynam-
ics and Monte Carlo can be derived for MEM us-
ing the same expressions for exact derivatives of mo-
ments. The statistical error for stochastic methods
using Gaussian random vectors can easily be accomo-
dated, because the covariance of the moments is pro-
portional to the Hessian. Details of these extensions
will be presented elsewhere.
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