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Corrosion Fatigue of Alloys 600 and 690
in Simulated LWR Environments

by

W. E. Ruther, W. K. Soppet, and T. F. Kassner

Abstract

Crack growth data were obtained on fracture-mechanics specimens of Alloys 600 and 690
to investigate environmentally assisted cracking (EAC) in simulated boiling water reactor and
pressurized water reactor environments at 289 and 320°C. Preliminary information was
obtained on the effect of temperature, load ratio, stress intensity (K), and the dissolved-oxygen
and -hydrogen concentrations of the water on EAC. Specimens of Type 316NG and sensitized
Type 304 stainless steel (SS) were included in several of the experiments to assess the
behavior of these materials and Alloy 600 under the same water chemistry and loading
conditions. The experimental data are compared with predictions from an Argonne National
Laboratory (ANL) model for crack growth rates (CGRs) of SSs in water and the ASME Code
Section XI correlation for CGRs in air at the Kmax and load-ratio values in the various tests.
The data for all of the materials were bounded by ANL model predictions and the ASME
Section XI “air line.”
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Executive Summary

Fracture-mechanics crack growth rate (CGR) tests were conducted on compact-tension
specimens of mill-annealed Alloy 600 and thermally treated Alloy 690 in oxygenated water and
in deaerated water that contained boron, lithium, and low concentrations of dissolved
hydrogen at 289 and 320°C. Specimens of sensitized Type 304 and Type 316NG stainless
steel (SS) were included in several experiments to compare the behavior of these materials
with that of Alloy 600 under the same water chemistry and loading conditions. The
experimental data are compared with predictions from an Argonne National Laboratory (ANL)
model for CGRs of SSs in water and the ASME Code Section XI correlation for CGRs in air at
the maximum stress intensity (Kmax) and load-ratio R values in the various tests. The data for
all of the materials were bounded by ANL model predictions and by the ASME “air line.”

Comparison of CGRs of Sensitized Type 304 SS and Mill-Annealed Alloy 600 in
Oxygenated Water

The effect of water chemistry on CGRs of mill-annealed Alloy 600 and sensitized Type 304
SS was explored at a load ratio of 0.95. Small amounts of chromate and sulfate (<200 ppb)
and two amines (1-5 ppm) in water that contained =200 ppb dissolved oxygen (DO) produced
small but measurable changes in the CGRs of the sensitized Type 304 SS specimens but had
virtually no effect on the CGR of the Alloy 600 specimen. The average CGR of the Alloy 600
and sensitized Type 304 SS specimens was ~2.3 x 10710 m-s~! at aload ratio of 0.95 and Kmax
of >30 MPa-m1/2 under these water chemistry conditions. This rate is consistent with CGRs of
sensitized Type 304 and nonsensitized Type 316NG SS specimens in oxygenated water at
289°C under similar loading conditions. The observation that different materials, e.g., Alloy
600, sensitized Type 304, nonsensitized Type 316NG, and Grade CF-3, CF-8, and CF-8M cast
SS, exhibit approximately the same CGR in oxygenated water despite significant differences in
material chemistry, microstructure, and mode of crack propagation, suggests that crack
propagation is largely controlled by the rate of cathodic reduction of DO with a concomitant
anodic dissolution process at the crack tip.

Comparison of CGRs of Mill-Annealed Alloy 600, Sensitized Type 304 SS, and
Type 316NG SS in Oxygenated Water and in Simulated PWR Water

Experiments were also performed in simulated pressurized water reactor (PWR) primary-
system water that contained 450 ppm B and 2.25 ppm Li (added to the feedwater as H3BOg
and LiOH), 3-58 cm3 Ha-kg-1 Ho0, =1 ppb DO, and 750 ppb hydrazine. Hydrazine was added
to the feedwater to scavenge residual DO to a very low level. In these experiments, the role of
H3BO3, LiOH, and dissolved hydrogen in crack growth was investigated vis—a'-vis high-purity
(HP) deoxygenated water. Experimental CGR data for Alloy 600 and Type 304 and 316NG SS
specimens in simulated PWR primary-system water were also compared with rates for
wrought SSs in air from the ASME Code Section XI correlation and the ANL model that was
modified to assess crack growth in low-oxygen environments with no contribution from stress
corrosion cracking. With the exception of one data point for an Alloy 600 specimen, the
experimental results are bounded by the ANL model prediction and by the air curve for
austenitic SSs predicted by the ASME Code.
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CGRs of Mill-Annealed Alloy 600 and Thermally Treated Alloy 690 in HP
Water at 289 and 320°C

Corrosion-fatigne experiments were conducted on mill-annealed Alloy 600 and mill-
annealed plus thermally treated Alloy 690 specimens in HP water to investigate the effects of
temperature, DO, and dissolved hydrogen in water on CGRs of these materials. Initial results
were obtained at 289°C in water that contained =6-8 ppm and <5 ppb DO, load ratios of 0.2,
0.6, and 0.9, and Kmpax of 31-33 MPa-m!/2, Crack growth behavior of the two materials is
quite similar under the conditions in these experiments. In water that contained <5 ppb DO,
CGRs at 289 and 320°C were similar. At a load ratio of 0.6, CGRs are not dependent on DO,
which is indicative of a strong contribution of cyclic loading to the rates. At a higher load ratio
of 0.9, CGRs decreased as DO concentration decreased at 289 and 320°C. In all cases, CGRs
of both materials were near or below the “air” curve for austenitic SSs.

Several tests were conducted at 320°C in HP water that contained <5 ppb DO and =0, 2.2
and 53 cm3-kg-! dissolved hydrogen. At a load ratio of 0.9, CGRs of both specimens were low
(0.5~1.3 x 10-11 m-s~1) and dissolved hydrogen over the range of ~2-53 cm3 Ha'kg1 HoO did
not influence the rates at a Kmax of =34 MPa-m1/2. In contrast to results at lower load ratios
(i.e., £0.6), CGRs of Alloy 600 were greater than those of Alloy 690 by factors of =2-5,

CGRs of Mill-Annealed Alloy 600 and Thermally Treated Alloy 690 in
Simulated PWR Water at 289 and 320°C

The influence of dissolved hydrogen in simulated PWR water on CGRs of Alloy 600 and
690 specimens at 289 and 320°C was determined in another series of experiments. The water
contained 450 ppm B, 2.25 ppm Li, <2 ppb DO, and =3-58 cm3 Hg kgl HoO. Tests were
conducted at a load ratio of 0.8 and Kpax in the range of =30-41 MPa-m!/2. CGRs decreased
slightly as dissolved hydrogen concentration was increased from 3 to 58 cm3-kg-1. At both
temperatures, and under these water chemistry and loading conditions, the CGR of Alloy 690
was higher by a factor of =3 than the CGR of Alloy 600.

CGRs decrease significantly as load ratio increases in both HP and simulated PWR water
environments. At load ratios <0.8, it appears that CGRs of the Alloy 690 specimens are
slightly higher than those of Alloy 600; however, at a load ratio of 0.9 the CGRs of the alloys
are similar. Crack growth experiments will be conducted at higher load ratios, including
constant load (R = 1.0), to determine whether Alloy 690 exhibits lower rates than Alloy 600 at
higher R values.
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1 Introduction

The objective of this work is to evaluate and compare the resistance of Alloys 600 and 690
to environmentally assisted cracking (EAC) in simulated light water reactor (LWR) coolant
environments. High-nickel alloys have experienced general corrosion (tube wall thinning),
localized intergranular attack (IGA), and stress corrosion cracking (SCC) in LWRs. Secondary-
side IGA* and axial and circumferential SCC™ have occurred in Alloy 600 tubes at tube
support plates in many steam generators. Primary-water stress corrosion cracking (PWSCC)
of Alloy 600 steam generator tubes in pressurized water reactors (PWRs) at roll transitions and
U-bends and in tube plugs*™* is a widespread problem that has been studied intensively.
Cracking has also occurred in Alloy 600 and other high-nickel alloys (e.g., Inconel-82 and
—182 and Alloy X750} that are used in applications such as (a) instrument nozzles and heater
thermal sleeves in the pressurizert and penetrations for control-rod drive mechanisms in
reactor vessel closure heads in the primary system of PWRstt and (b) in dissimilar-metal
welds between SS piping and low-alloy steel nozzles, in jet pump hold-down beams,t and in
shroud-support-access-hole covers8 in boiling water reactors (BWRs). Alloy 600, in general,
undergoes different thermomechanical processing for applications other than those used for
steam generator tubes. Because environmental degradation of the alloys in many cases is very
sensitive to processing, further evaluation of even SCC is needed. In addition, experience
strongly suggests that materials that are susceptible to SCC are also susceptible to
environmental degradation of fatigue life and fatigue-crack growth properties.

In this investigation, we have obtained preliminary information on the effect of
temperature, load ratio R, and stress intensity (K) on EAC of Alloys 600 and 690 in simulated
BWR and PWR water. Crack growth rates (CGRs) of these materials have been compared with
those of Type 316NG and sensitized Type 304 SS under conditions where EAC occurs in all of
the materials.

*USNRC Information Notice No. 91-67, “Problems with the Reliable Detection of Intergranular Attack (IGA) of
Steam Generator Tubing,” October 1991.

**USNRC Information Notice No. 9049, “Stress Corrosion Cracking in PWR Steam Generator Tubes,” August
1990; Notice No. 9143, “Recent Incidents Involving Rapid Increases in Primary-to-Secondary Leak Rate,”
July 1991; Notice No. 92-80, “Operation with Steam Generator Tubes Seriously Degraded,” December 1992;
Notice No. 94-05, “Potential Failure of Steam Generator Tubes with Kinetically Welded Sleeves,” January
1994.

***USNRC Information Notice No. 89-33, “Potential Failure of Westinghouse Steam Generator Tube Mechanical
Plugs,” March 1989; Notice No. 89-65, “Potential for Stress Corrosion Cracking in Steam Generator Tube
Plugs Supplied by Babcock and Wilcox,” September 1989; Notice No. 94-87, “Unanticipated Crack in a
Particular Heat of Alloy 600 Used for Westinghouse Mechanical Plugs for Steam Generator Tubes,”
December 1994.

TUSNRC Information Notice No. 90-10, “Primary Water Stress Corrosion Cracking (PWSCC) of Inconel 600,
February 1990. ‘

T1INPO Document SER 20-93 “Intergranular Stress Corrosion Cracking of Control Rod Drive Mechanism
Penetrations,” September 1993.

11 USNRC Information Notice No. 93-101, “Jet Pump Hold-Down Beam Failure,” December 1993.

SUSNRC Information Notice No. 92-57, “Radial Cracking of Shroud Support Access Hole Cover Welds,” August
1992.




2 Material Characterization

The various heats of Alloys 600 and 690 that were obtained for corrosion-fatigue testing
were characterized. The heat identification numbers, product form, and source of materials

for fabrication of 1T compact tension (1TCT) specimens are given in Table 1.

Table 1. Product form and source of Alloys 600 and 690

Material Heat No. Material Condition Product Form Source
600 NX8844B-33 Annealed 872°C/1 h 1.0-in.~thick plate EPRIa
600 J422 Mill Annealed 1T-CT specimens Metal Samples Co.
600 NX8197 Mill Annealed 1.0-in.—-thick plate A. M. Castle & Co.
600 NX8844J-26 Annealed 1038°C/1 h 1.0-in.—thick plate EPRI
600 NX8844G-3 Hot Worked 982°C, 1.0-in.-thick plate EPRI

20% Reduction
690 NX8662HG-33 Annealed + 715°C/5h  1.34-in.-thick plate INCO Alloys Intl., Inc.
690 NX8625HG-21 Annealed + 715°C/5h  1.34-in.-thick plate EPRI
690 NX8244HK-1A  Annealed 982°C/1 h 1.0-in.-thick plate EPRI
690 NX8244HK-1B  Annealed 1093°C/1 h 1.0-in.-thick plate EPRI

aNumerous heats of Alloys 600 and 690 were fabricated by INCO Alloys International, Inc., Huntington, WV,
for the Electric Power Research Institute (EPRI), Palo Alto, CA, which provided materials for this study.

The composition of the materials is given in Tables 2 and 3. The tensile properties of
cylindrical specimens in air at 25, 290, and 320°C and at a strain rate of 1.0 x 104 s~1 were
determined in accordance with ASTM Standard E8. Vickers hardness was measured at room
temperature, and average grain size of the various heats of Alloys 600 and 690 was
determined by following the procedure in ASTM Standard E112. The results for Alloys 600
and 690 are given in Tables 4 and 5, respectively. Properties obtained from certified material
test reports (CMTRs) supplied by the vendors or documentation obtained from the EPRI are
also included in Tables 4 and 5. Data for annealed specimens tend to follow a Petch
relationship, i.e., Oy = Oj + k-d-1/2, where Oy is the yield stress; d, the grain diameter; k, an
emperical constant; and ¢;, the “friction” stress, which is a measure of intrinsic resistance of
the material to dislocation motion. The dependence of the yield stress of annealed Alloy 600
(Heat NX8844) and 690 (Heat NX8244HK) specimens on average grain size at 25, 290, and
320°C is shown in Fig. 1. The relationship between ASTM grain size and average grain
diameter is shown in Fig. 2. Photomicrographs that were used to determine the grain size of
the various heats of Alloys 600 and 690 are shown in Figs. 3 and 4, respectively.

A small section of each material was used to prepare metallographic specimens to
qualitatively determine the degree of grain boundary carbide coverage by optical
metallography. Specimens were polished to a 0.25-um diamond finish with Struers DP-Spray,
and a Vickers hardness indentation was made to provide a reference point for subsequent
examination to reveal the carbide distribution and grain boundaries after two chemical etching
methods. The specimens were electroetched in a 10% H3PO4 solution at =10 V for =25 s,
rinsed in ethanol, and air dried. Photomicrographs obtained at 500X magnification reveal
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Figure 1. Dependence of 0.2% yield stress at 25, 290, and 320°C on grain size of annealed
Alloy 600 and 690 specimens
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that carbides were the predominant phase present in the specimens. The specimens were
repolished with 1.0 and 0.25-um diamond spray, electroetched in a 5% nital solution (5 mL of
HNOg3 in 100 mL ethanol) at =10 V for =35 s, rinsed in ethanol, and air dried. The same
locations on the specimens were photographed once again at a magnification of 500X, with the
aid of the hardness indentation, to better reveal grain boundaries and obtain a qualitative
estimate of the extent of carbide precipitation thereon.

Photomicrographs of the five heats of Alloy 600 (=0.06 wt.% carbon) in Figs. 5-9 indicate
either semicontinuous or continuous carbide precipitation at the grain boundaries and a
significant amount of intragranular carbide. Photomicrographs of the four heats of Alloy 690
(=0.03 wt.% carbon) in Figs. 10-13 reveal continuous precipitation of carbides at the grain
boundaries, with relatively few intragranular carbides. The precipitate phases present in
Alloys 600 and 690 are Cr-rich M7C3 and M23Cg carbides and Ti(C,N) carbonitrides.1-3 In
general, the microstructures are consistent with the thermomechanical processing histories
and carbon concentrations vis—a’-vis the solubility of carbon in the materials (Fig. 14).4
Namely, according to these carbon solubility data, none of the materials was annealed at a
temperature high enough to dissolve all of the carbon in the grain matrix (Alloy 690, >1200°C
and Alloy 600, >1080°C); consequently, carbides are present on grain boundaries as well as
within the grains, in particular, Alloy 600, which contains =0.06 wt.% carbon.
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(a) Heat NX8844B-33, annealed at 872°C for 1 h, {b) Heat J422, mill annealed, ASTM grain size 7
ASTM grain size 8

g

{c) Heat NX8197. mill annealed. ASTM grain size 6 (d) Heat NX8844J-26. annealed at 1038°C for 1 h,
ASTM grain size 4

(e) NX8844G-3. hot worked at 982°C 20% reduction,
ASTM grain size 2

Figure 3. Photomicrographs used to determine grain size of various heats of Alloy 600
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(a) Heat NX8662HG-33, annealed and thermally (b) Heat NX8625HG-21, annealed and thermally
treated at 715°C for 5 h, ASTM grain size 5 treated at 715°C for 5 h, ASTM grain size 5

5

(¢} Heat NX8244HK-1A, annealed at 982°C for 1 h, (d) Heat NX8244HK-1B, annealed at 1093°C for 1 h,
ASTM grain size 5 ASTM grain size 2

Figure 4. Photomicrographs used to determine grain size of various heats of Alloy 690

(é) Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution

Figure 5. Microstructures of Alloy 600, Heat NX8844B-33, that show a uniform distribution
of intergranular and intragranular carbides

NUREG/CR-6383 8




(a) Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution

Figure 6. Microstructures of Alloy 600, Heat J422, that show semicontinuous intergranular
and intragranular carbides

(a) Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution

Figure 7. Microstructures of Alloy 600, Heat NX8197, that show continuous intergranular
and intragranular carbides

(a) Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution

Figure 8. Microstructures of Alloy 600, Heat NX8844J-26, that show semicontinuous
intergranular and intragranular carbides

9 NUREG/CR-6383




(a} Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution

Figure 9. Microstructures of Alloy 600, Heat NX8844G-3, that show semicontinuous
intergranular and intragranular carbides along slip lines

R

= R T T P
(@) Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution

Figure 10. Microstructures of Alloy 690, Heat NX8662HG-33, that show continuous
intergranular and relatively few intragranular carbides

{(a) Electroetched in 10% phosphoric acid solution (b) Repolished and electroetched in 5% nital solution
Figure 11. Microstructures of Alloy 690, Heat NX8625HG-21, that show continuous
intergranular and some intragranular carbides

i
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{b) Repolished and electroetched in 5% nital solution

Figure 12. Microstructures of Alloy 690, Heat NX8244HK-1A, that show continuous
intergranular but few intragranular carbides

(a) Electroetched in 10% phosphoric acid solution

{a) Electroetched in 10% phosphoric acid solution

e G

(b} Repolished and electroetched in 5% nital solution

Figure 13. Microstructures of Alloy 690, Heat NX8844HK-1B, that show continuous
intergranular but few intragranular carbides
1400 i T | LA T N S I B LN S S B A
1300 | e ~
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2 1100 - ) \ = Solubility of carbon in Alloys 690 and
g - Alloy 800 - 600 vs. temperature, from Ref. 4
Q. 1000 7 7
§ i/ ,
900 - : >
-/ :
800 _ L 1 TSN SRR Loy by
0.00 002 004 006 008 010 0.12
Carbon (wt.%)
11 NUREG/CR-6383




3 Fracture—Mechanics Crack Growth Tests on Alloys 600 and 690
in Simulated LWR Environments

Crack growth experiments were performed on several sets of 1TCT specimens of Alloys
600 and 690 to explore the effects of temperature, load ratio, stress intensity, and water
chemistry; namely dissolved-oxygen (DO) and -hydrogen concentrations, ionic impurities (e.g.,
chromate and sulfate), and two organic amines on CGRs. In this investigation, the orientation
of the crack plane in the specimens corresponds to L-T identification code for plates in ASTM
Specification E 399. In initial experiments, CGRs of mill-annealed Alloy 600 were compared
with those of sensitized Type 304 SS. Subsequently, experiments were performed on Alloy 600
and 690 specimens in high-purity (HP) water that contained a wide range of DO (=0.001-
8 ppm) and hydrogen (=0-58 cm3 Hg-kg-! H20). Experiments were also performed in
simulated PWR primary-system water that contained 450 ppm boron and 2.25 ppm lithium
(added to the feedwater as H3BOs and LiOH), 3-58 cm3 Hg-kg-! H20, =1 ppb DO, and 750 ppb
hydrazine. Hydrazine was added to feedwater to scavenge residual DO to a very low level;
however, it raised conductivity from =25 to 42 pS-cm-l. In these experiments, the role of
H3BOg3, LiOH, and dissolved hydrogen in crack growth was investigated vis-a-vis HP
deoxygenated water. Temperature and dissolved-hydrogen concentration in water influence
the stability of NiO on nickel-base alloys and conceivably could influence EAC of the alloys if a
slip—dissolution or slip—oxidation mechanism for crack propagation was operative. CGRs of
Alloys 600 and 690 were compared with values for wrought SSs in air, predicted by the ASME
Code Section XI correlation at the Kimax and load ratio values for the specimens in the various
tests and by an Argonne Natioinal Laboratory (ANL) model for crack growth in water® that was
modified (see Section 3.5) to account for agqueous environments that contain <0.2 ppm DO.
On the basis of these scoping experiments, experimental conditions will be refined to further
explore the effects of alloy heat treatment, temperature, water chemistry, and loading
conditions on the EAC of the materials.

3.1 Comparison of CGRs of Sensitized Type 304 SS and Mill-Annealed Alloy
600 in Oxygenated Water

A fracture-mechanics CGR experiment was conducted on mill-annealed Alloy 600 and two
sensitized Type 304 SS specimens in simulated BWR water that contained 0.2 ppm DO at
conductivities in the range of =0.08 to 8.3 uS-cm~!. Thirteen tests were performed on a set of
three specimens during an =7900 h period to compare CGR behavior of mill-annealed Alloy
600 (Heat No. J422) with that of sensitized Type 304 SS (electrochemical potentiokinetic
reactivation [EPR] values of 6 and 17 Coulombs-cm—2) in HP water and in water that contained
sulfate and chromate impurities at low concentrations at 289°C.6 The effect of two amines
{2-butanone-oxime and ethanolamine) at low concentrations (1-5 ppm) on the CGR of the
materials in oxygenated water was also investigated. The test conditions and experimental
results are shown in Table 6. Most of the results were obtained at a load ratio R of 0.95 and a
range of Kmax values between 28 and 41 MPa-m1/2. Load ratios of 0.6 and 0.8 were used in
two of the tests. The frequency and rise time of the positive sawtooth wave form were
0.077 Hz and 12 s, respectively.

Experimental CGR data (a) for the three specimens are plotted in Fig. 15 vs. CGRs for
wrought SSs in air (a,;.), predicted by the ASME Code Section XI correlation at the Kmax and

NUREG/CR-6383 12




“I9JEMPI9) POIRUIFAXO S} 01 PIppE SeM SUIIEB[OUBYLY y
“193eMPId) PITBUSFAXO ) 0} PIpPpPR SBM IWIXO-3UOURING~F, g
" Xelly]/ Wy = 3 omyed peOT 312UMm “(R-1) ¥y = yv
‘poriad swmy 2y} Jo pud 9y} e sanfea ¥EWy Aisusjul ssaNg 5
-soiduwres qeIg Jo sasATeur ornRuLIo[ed Jo siseq ayy uo qdd
007 PUe (G Jo S[23] 1oyempas) 1of qdd 6G pure gz~ 919M SUOTE[UIIUCD JJEUI0IYD JUSNIFI ITIIAE [SPIOE SB IIJBMPIJ ) 03 PIPPE 21om 9JBJNS PUE JEWOID |
"WSISAS aAR[OINE 3]
1O uoIsoL10d £q uonadep UABAxo Joj sesuaduiod 0] ¢ Jo 10)08] ' Aq ISYSIY Sem UONENUIIU0D UIdAx0 19yempasy \qdd 00g-005~ Sem UONBNUIIUCD O NI ,
"A[oAnoadsar ‘s g1 pue ZH ;01 X § 919M ULIOJaARM TJ00)MES 2A1IS0d U} JO wm) IS pue Lousnbsiy g
"(z-W0-D LT = UdH) U 8 10§ D069 18 GED "ON Uswadg pue ( wd-) 9 = UdH) Y G 49] D059 18 PIZNISUss sem $¢) 'ON uswoadg
Y G0 10§ 3,0S0T 18 JUSUWeT) 1ea] [EaUUR-UOTINI0S B PIAISII (G]Z0T "ON J8dH) susupads §S $0g 2dAL UL "UOHIPUOD PI[ESUUR—[IU PIAIRISI-SE
91} Uf PsIse) sem (T-NI "ON) usunoads 909 Ao[lv 9UL (S8Z01 "ON 38dH) SS $0g 2dAL PUR (zZH( "ON J82H) 009 Ao|IV JO (LOLT) suswiads uoisus)-joeduio) 4

0162
6'¢ 96'1 168 SL 0T 287 o'e 8L'1 g'se G6°0 182~ e 09'6 €8 4o0g¢ - - -0LLL €1
GL9L
0~ ¥6'1 8'8¢ 11 00'2 1oy 06°0 Ll 8¥%e  968°0 091 g01 129 80°0 - - - -GL0L 31
0S0L
S'¥ ¥6'1 8'8¢ 9% 86°1 g'6¢ 8’1 gL 1 9%  $6°0 154 €91 %9 80'0 306 - - -06%9 11
. SLY9
0'% g8'1 6°9¢ 8% 88'1 g8 ¥l 69°'1 8'€C  S6°0 991 6€1 €29 800 301 - - -0LLS8 01
GL1S
¥1°0 L1 €g¢e 82°0 8L°1 g'gg Sl 09'1 0%e  S6°0 €2~ €9 o L3O - - 0g -G68Y 6
£ech
6'C 9L'1 ‘Tge Le 9L'1 rse 0% 181 £'18 860 1 ¥6 £9°g g0°'1 - 001 0s -G98¢ 8
zE8¢
z'1 gLl £¥%e 1 121 Z've £'g €61 908 G660 L8 9z £6'¢g Y0 - ot os AL I)
(4:1¢5
61 691 8'ee 1 L9°1 v'gg e 8%'1 565 G6°0 ST 12 £0°9 4 0] - St 0g ~G8ET 9
0858
61 ¥9'1 8'5¢ 1 79’1 ¥'ze 8L0°0 14201 L83 S6°0 (43 ¥9 ¥9°'G ¥L°0 - - 002 -8161 &
0161
£z 65°1 81¢ z'T 28°1 ¥1g L1°0 201 S8 S6°0 69 19 L0°9 ST'0 - - 0s -06€1 ¥
¥rel
01l 9521 vie 061 821 z'1g 0T 9811 ¥'8% 090 ¥8 2G €9 80'0 - - - -81¢1 ¢
(444
z'9 TT'9 rie L9 yI'9 L0g 040 29°g '8¢ 080 66 g9 1e'9 80°0 - - - ~0811 ¢
0611
L€ $G'1 L08¢ g 381 ¥'08 (]80] o¥'1 08¢ $60 86 09 ¥%'9 60°0 - - - -08¢ 1
S W01 g/ 1u-edI 1S W01 z/1W-BediN S o1-01 z/1w-edIN (AHS)AW 2w ol wdd qdd qdd q
‘ared SAV XRwy 218y yUV oxewy ‘arey IV pXewy oy ¥ SS $0E 0.8 'D.GZ ¥& OU0Q pOusy  ptouoD)  ‘SWLL  ON
(g-w2-0 £1) SS ¥0€ (z-wo-D 9) SS $0E 009 fofry peoT jeyd  cpuo) 1O NYING  SIBWOIYD - 389 ISAL

(Udd 'UOIEZIJISUSG) [el9Te [erUalod IPOJIOIT 2 ANSIUWDYY) 19Tepm

Do68C 10 SUNUDIOUDYID L0 ‘DUIXO-JUOUDING—Z ‘DID[INS ‘2IDWO0IYD P2UIDIUOD JDY] 13)pM PaIpudbfiixo Ul pup 1a3pm
pamuabfixo i W ¢burppol y-ybny 1epun suawwads SS $0¢ 2dA], ppazmsuas puv g9 flony 1of synsat Yymoub xov1) '9-3iquL

13



10° LR=06-095 4
ET =125 Figure 15.
F K =28-41MPa- m” v 3 Corrosion fatigue data _for specimens of Alloy
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4 T RRERY 4 Diagonal line corresponds to crack growth of
1072 : v el ot veod g sd sl “.'u; SSs in air, as predicted in ASME Code.
107 107 10° 10° '
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load ratio values for the specimens in the various tests. Data for all of the materials are
bounded by the two curves.

The dependence of CGRs of Alloy 600 on Kmax at a load ratio R of 0.95 is shown in
Figs. 16 together with predictions for austenitic SSs in water from the ANL model and the
ASME Code in air. Several data points lie near the air line predicted by the ASME Code, i.e.,
the rates are not environmentally enhanced. The results suggest a threshold Kpax for EAC of
~26 MPa-m!/2 at an R of 0.95, i.e., CGRs at higher Knax lie significantly above the air line.

To illustrate the relative effect of simulated BWR water (=0.2 ppm DO) on EAC of Alloy 600
and sensitized Type 304 SS, the CGRs of Alloy 600 are plotted vs. the rates for the SS
specimens under the same environmental and loading conditions in each test (Fig. 17). A data
set in which the CGR of any of the three specimens was near the air line in Figs. 15 and 16
was omitted from the plot. A valid comparison of environmental effects on CGRs of the two
materials can be made only when the specimens exhibit some degree of enhancement in the
rates. Furthermore, CGRs of <3 x 10~11 m-s~1 (near the air line in Figs. 15 and 16) are based
on small changes in crack length that are near the sensitivity of the DC potential-drop crack—
length monitoring system, namely, 5 x 10-5 m, divided by the test times of *500-800 h. This
can lead to a large uncertainty when comparing rates in this range. The results in
Fig. 17 indicate that the CGR of mill-annealed Alloy 600 and sensitized Type 304 SS is
virtually the same in simulated BWR water under the conditions in these tests.

10%¢ s
7 ' 280°C Alloy-600 3
10°F R=095 (Mill Annealed) E .
S TetEs ] Figure 16.
— 1095? DO=02ppm o E Dependence of CGR of mill-annealed Alloy
@ 10 ‘ Oevgg:roo\ - ~ “‘ 600 specimen on Kngx in oxygenated water
E jo1 3 ’ - 3 at 289°C. Dashed and solid lines represent
& 10ML - predictions of ANL model for austenitic SSs in
O 0 E Trreshold 3
102k o water with 0.2 ppm DO and ASME Code
P: prediction in air, respectively, at an R value
10" E
_ME' | . 3 of 0.95 and rise time of 12 s.
10 1 10 100

K__ (MPam")

NUREG/CR-6383 14




—r
<,
3
m

R e e B R
it ?

— -7 [ A=06-095 _ .

w 10 E T =125 Figure 17.

E 10° w K_ =28-41WPa m' CGRs of Alloy 600 and two sensitized Type

= F DO=02ppm 3 304 SS specimens under identical loading

o 10°L 3 and environmental conditions at 289°C.

§ 16 o : Solid line represents identical CGRs in Alloy
E Type 304 SS 3

2 F Sensitization E 600 and Type 304 SS.

Z 10'L EPR=6C em® ]
EPR=17C. cm® ]

40l vl vl v d il s

102 10" 10 10° 10® 107 10°F
Type 304 SS CGR (m-s™)

The effect of water chemistry on CGRs of the materials at a load ratio of 0.95 was explored
in Tests 4-13 listed in Table 6. Additions of 50 and 200 ppb chromate to feedwater produced
modest decreases in the CGR of sensitized SS specimens (Tests 1, 4, and 5). At a load ratio of
0.95, CGRs of the Alloy 600 specimen were lower than those of the SS specimens by a factor of
=10 and were not influenced by 50-200 ppb chromate in oxygenated water. In Tests 6-8, 15,
25, and 100 ppb sulfate was added to water that contained 50 ppb chromate and =200 ppb
DO. CGRs of the sensitized Type 304 SS specimens increased by, at most, a factor of =3. The
CGR of the Alloy 600 specimen increased from =8 x 10712 to =3 x 10-10 m-s~1 when15 ppb
sulfate was added to the feedwater (Test 6), but the rate did not increase with 25 and 100 ppb
sulfate, When sulfate was no longer added to oxygenated feedwater that contained 50 ppb
chromate (Test 9), the CGRs of both sensitized Type 304 SS specimens decreased by a factor of
10 to =1-3 x 10-10 m-s-1; the CGR of the Alloy 600 specimen remained constant at =1 x 10-10
m-s~1. In the last series of experiments (Tests 10-13), chromate was not added to the
feedwater and the effect of 1 and 5 ppm of 2-butanone-oxime or ethanolamine in water that
contained =200 ppb DO was investigated. Under these water chemistry conditions, CGRs of
the SS specimens increased to their previous values of ~2-4 x 10-10 m-s-1, and once again, the
Alloy 600 specimen did not respond to changes in water chemistry. These amines at
concentrations of 1-5 ppm were neither beneficial nor deleterious to CGRs of the specimens.

Thus, additions of small amounts of chromate, sulfate, and the two amines to oxygenated
feedwater produced small but measurable changes in CGRs of sensitized SS specimens but
had virtually no effect on CGRs of the mill-annealed Alloy 600 specimen. If the effects of these
species in oxygenated water are neglected, average CGRs of the Alloy 600 and sensitized Type
304 SS (EPR = 6 and 17 C-cm?2) specimens are 2.16 x 10-10, 2.65 x 10-10, and 2.22 x 10-10
m-s—1, respectively, when R = 0.95 and Kpyax >30 MPa-m1/2. These values, i.e., =2 x 10-10
m-s~1, are consistent with numerous determinations of EAC of sensitized Type 304 and
nonsensitized Type 316NG SS specimens in oxygenated water at 289°C under similar loading
conditions.” We have observed that different materials, e.g., mill-annealed Alloy 600,
sensitized Type 304, nonsensitized Type 316NG, and CF-3, CF-8, and CF-8M grades of cast
SSs,8 exhibit similar CGRs in oxygenated water despite significant differences in material
chemistry and microstructure. The fact that these materials exhibit different modes of crack
propagation, albeit at nominally the same rate, i.e., sensitized SSs and low—carbon nuclear
grade SSs exhibit intergranular and transgranular modes, respectively, whereas cracks in cast
grades of austenitic SSs propagate along austenite/ferrite grain boundaries, suggests that the
rate of crack propagation is controlled by the rate of cathodic reduction of DO, with a
concomitant anodic dissolution process at the crack tip.
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3.2 Comparison of CGRs of Mill-Annealed Alloy 600, Sensitized Type 304 SS, and
Type 316NG SS in Oxygenated Water and in Simulated PWR Water

CGRs of mill-annealed Alloy 600 (Heat No. J422), Type 316NG, and sensitized Type 304
SS (EPR = 20 C-cm2) were determined at high load ratios in simulated PWR water at 289°C.
Initial tests were conducted in water that contained 450 ppm boron and 2.25 ppm lithium
(added to the feedwater as H3BOgs and LiOH), 4.1 cm3 Hg-kg-! H20, ~1 ppb DO, and 750 ppb
hydrazine. Room-temperature pH and conductivity were =7.2 and 42 pS-cm~1, respectively.
Hydrazine was added to the feedwater to scavenge residual DO to a very low level; however, it
raised conductivity from =25 to 42 pS.cm-l. Effluent DO and dissolved hydrogen
concentrations were determined by Orbisphere oxygen and hydrogen meters. The Alloy 600
specimen was mill annealed and the Type 316NG and 304 SS specimens were solution
annealed at 1050°C for 0.5 h and given sensitization heat treatments at 650°C for 24 h (EPR =
0 C.cm~2) and at 700°C for 12 h (EPR = 20 C-cm~2), respectively. CGRs were determined by
the DC potential-drop method.

The usual technique to initiate fatigue cracks in specimens at 289°C in a test
environment where Kpax is 20 MPa-m1/2, load ratio is 0.2, and frequency is 10 Hz was
successful for the SS specimens, but a fatigue crack did not initiate in the Alloy 600 specimen.
In an attempt to initiate a crack in the latter specimen, the Kpax and load ratio were increased
to 30 MPa-m!/2 and 0.8, respectively. Under these conditions, CGRs of the Type 316NG and
304 SS specimens were =3.0 x 1010 and 2.3 x 10-9 m's~!, respectively, but once again, no
crack growth occurred in the Alloy 600 specimen (Test 1 in Table 7). Because of the high
CGRs of the SS specimens, the load ratio was increased from 0.8 to 0.9 in the next test.
Under this condition, crack growth occurred in the Alloy 600 specimen, but the DC potential-
drop measurements indicated small negative CGRs for both SS specimens. Although we could
not identify the origin of the problem, we have never encountered this behavior in tests in
simulated BWR water. Consequently, the water chemistry was changed from simulated
primary PWR water to HP water that contained =6 ppm DO for a series of tests at load ratios
between 0.2 and 1.0 (Tests 3-8 in Table 7). In this environment, CGRs were determined for
the three specimens. Then, another attempt was made to determine CGRs in simulated PWR
water by the DC potential-drop method in Tests 9 and 10. Once again, data for one of the SS
specimens became erratic but results for the other and the Alloy 600 specimen exhibited
normal variability. In the last test (No. 10), the hydrogen concentration was increased from
~4 to 45 cm3-kg-1 to determine its effect on the CGR of the Alloy 600 specimen at a load ratio
of 0.8 and a Kpax of =31 MPa-m!/2. This hydrogen concentration decreased the CGR of the
Alloy 600 specimen by a factor of =40 and increased by 45% the CGR of the Type 316NG SS
specimen. The experiment was terminated and the system was reconfigured to utilize the
crack-opening—displacement (COD) compliance technique for crack length measurements on
specimens of Alloys 600 and 690 in simulated PWR water with a range of hydrogen
concentrations.

Experimental CGR data for the Alloy 600 and Type 304 and 316NG SS specimens in HP
water that contained =6 ppm DO are plotted in Fig. 18 vs. CGRs predicted for wrought SSs in
air by the ASME Code Section XI correlation at the Kpax and load ratio values for the
specimens in the various tests. With the exception of one data point for Alloy 600, the results
are bounded by the two curves.
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Figure 19 shows experimental CGR data for the Alloy 600 and Type 304 and 316NG SS
specimens in simulated PWR primary-system water that contained =1 ppb DO versus CGRs
predicted for wrought SSs in air by the ASME Section XI correlation at the Kyqax and load ratio
values for the specimens in the various tests. The dashed line represents the ANL model
prediction for crack growth in water that contains =1 ppb DO and no contribution from stress
corrosion cracking in the low—oxygen environment. With the exception of one data point for
the Alloy 600 specimen, the experimental resulfs are bounded by the predictions of the ANL
model and the air line for austenitic SSs predicted by the ASME Code. Additional CGR data
for austenitic SS specimens are required to validate model predictions in water that contains
low DO concentrations.
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3.3 CGRs of Mill-Annealed Alloy 600 and Thermally Treated Alloy 690 in HP
Water at 289 and 320°C

The effects of temperature, DO in HP water, and dissolved hydrogen in low-DO water on
CGRs of Alloys 600 and 690 is being investigated. In the latter environment, the
concentration of dissolved hydrogen in the water can influence the nature of corrosion-
product films on nickel-base alloys, and thereby play a role in the crack growth process. The
manner in which temperature and dissolved hydrogen in low-DO water can affect the stability
of NiO on nickel and Alloy 600 (75 wt.% nickel) is outlined below.
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3.3.1 Thermodynamic Stability of NiO Corrosion Product on Nickel-Base Alloys
as a Function of Hydrogen Concentration of Water and Temperature

Under conditions where chemical oxidation of nickel occurs in water (Eq. 1), atomic
hydrogen forms; some is absorbed by the alloy and can contribute to EAC,9.10 the remainder
is released to the coolant.

Nig) + H20(g = NiOr) + Ha2 (g). (1)
The free-energy change AGt of the reaction is given by
AGT = AGT + RTInkK, ' 2

where AG’r is the difference in the standard free energies of formation of NiO and HO,
R is the molar gas constant, and K is the equilibrium constant of the reaction;

aAnio  ag
K= . 2

3

ani  aH,0

If hydrogen obeys the ideal gas law in the vapor phase, and for dilute solutions of hydrogen in
water; the partial pressure of hydrogen in the vapor is given by

pHz = Nx, 4@

where N is Henry’s Law constant for hydrogen dissolved in water and x is the mole fraction of
hydrogen gas in water.

Because the standard free energies of formation of NiO and HgO are similar in magnitude,
the standard driving force AG’t for the reaction is small (AG°’tr = 550 + 10.18 T cal)10 and a
high enough concentration of hydrogen in water could prevent formation of the NiO phase.
For a constant hydrogen concentration in water, the pHo/pHg2O ratio decreases as
temperature increases because (a) the temperature dependence of Henry's Law constant N and
thereby pHg decreases with temperature, and (b) the saturation pressure of water pHgOsat
increases with temperature, i.e., pH20 =~ pHo08at, The dependence on temperature of AGt for
the reaction in Eq. 1 for 2 and 60 cm3 Hg-kg-1 HoO is shown in Fig. 20. The NiO phase is not
stable at positive values of AGt. Figure 21 shows the calculated range of stability of NiO as a
function of temperature and hydrogen concentration in deoxygenated water in units of cm3
Ho kg1 HoO and ppm hydrogen. These results were obtained from Fig. 20 (at AGt = 0) and
similar curves at other hydrogen concentrations in water.

According to Figs. 20 and 21, for a given dissolved Hy concentration in water, a higher
temperature favors NiO formation (a AGT of <0 in Fig. 20), mainly through the In K term in
Eq. 3), in contrast to a decrease in thermodynamic stability of oxides in air and other
environments as temperature increases (less negative AGt). In Eq. 3, the activity of nickel in
Alloy 600 was assumed to be equal to the mole fraction of nickel in the alloy, i.e., 0.72, which
has only a minor effect on the position of the lines in Figs. 20 and 21. For pure nickel, the
curves in these figures would be lower by =10°C.

For Alloy 600 and other nickel-base alloys, the calculated stability of the NiO phase
(position of the line in Fig. 21) would be influenced by incorporation of chromium into the
corrosion-product film, i.e., a more negative AG® for a nickel-chromate film. This would tend
to lower the position of the line in Fig. 25 and expand the stability regime for the corrosion-
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product phase. At a fixed temperature, a higher hydrogen concentration in water would be
required to prevent the formation of NiO, or alternatively, at a fixed hydrogen concentration in
water, a decrease in temperature would produce the same condition. Normal uncertainties in
thermodynamic properties and slow oxidation kinetics (Eq. 1) at small, negative AGt values
near the Ni/NiO phase boundary lead to significant uncertainty when predicting whether a
corrosion-product phase will actually form on the alloy surface or within a propagating crack
at a given temperature and hydrogen concentration in water. Nevertheless, experimental CGR
data are being obtained to determine whether these considerations are important in EAC of
Alloys 600 and 690 under PWR operating conditions.
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Figure 21. Calculated thermodynamic stability of NiO on Alloy 600 as a function of
temperature and concentration of dissolved hydrogen in water in units of
(@) cm3 Ho'kg~1 H20 and (b) ppm hydrogen

3.3.2 Crack Growth Rate in HP Water

Corrosion-fatigue experiments were conducted on mill-annealed Alloy 600 (Heat No.
NX8197) and mill-annealed and thermally treated Alloy 690 {(NX8662HG-33) specimens in HP
water to investigate the effects temperature and DO and dissolved hydrogen in water on the
CGRs of these materials. The grain size (Figs. 1c and 2a) of these specimens is similar and the
carbide distribution along grain boundaries of both (Figs. 7 and 10) is continuous, although
Alloy 690 contains few intragranular carbides. At 290-320°C, these heats of Alloy 600 and
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690 have ultimate tensile and yield strengths of =660 and 321 and 600 and 235 MPa,
respectively.

Initial CGR results were obtained at 289°C in water that contained ~6-8 ppm and <5 ppb
DO, load ratios of 0.2, 0.6, and 0.9, and Ky ax values of 31-33 MPa-m1/2 (Tests 1-6 in
Table 8). These stress intensity factors are greater than the threshold value of ~26 MPa-m1/2
for EAC of Alloy 600 in oxygenated water (Fig. 16). Crack growth behavior of the two materials
is quite similar under the conditions in these experiments. The temperature of the autoclave
was increased from 289 to 320°C to begin an analogous set of experiments at the higher
temperature in water that contained <5 ppb DO. During this time, the specimens were
maintained at a low constant applied load before beginning the cyclic loading tests. Each
incremental decrease in applied load (Tests 7-9) was accompanied by an abrupt decrease in
electrical resistance of the specimens, which we attribute to closure of the tight crack, followed
by a gradual increase in resistance to the inital value because of oxidation of the crack
surfaces. Although the DC potential-drop measurements are indicative of crack growth at
relatively low stress intensity factors, we believe that the increases in potential are caused by
increases in electrical resistivity of the oxide film on crack surfaces near the crack-tip region.
Eventually, the resistivities approached values obtained in the last test under cyclic loading
conditions.

Two tests were conducted under cyclic loading at load ratios of 0.6 and 0.9 at a stress
intensity of =33 MPa-m1/2 (Tests 10 and 11). The CGRs at 320°C were similar to those at
289°C at the two load ratios in water with <5 ppb DO (Tests 5 and 6). Then, two tests were
conducted at 320°C in water that contained =6-7 ppm DO at load ratios of 0.6 and 0.9
(Tests 12 and 13, respectively). The CGRs in these tests are similar to those at 289°C (Tests 2
and 3); i.e., CGRs of the Alloy 600 specimen show a small decrease as temperature increases
at both R values. The rates for the Alloy 690 specimen at 289 and 320°C are virtually the
same at a load ratio of 0.9.

Three tests were conducted at 320°C in water that contained <5 ppb DO and =0, 2.2, and
52 cm3-kg1 dissolved hydrogen at a load ratio of 0.9 (Tests 14-16, respectively), and in Test
17, the load ratio was decreased from 0.9 to 0.6 at the highest hydrogen concentration. Ata
load ratio of 0.9, CGRs of both specimens were low (0.5-1.3 x 10-11 m-s~1) and dissolved
hydrogen over the range of =2-53 cm3-kg-! did not have any influence on the rates at a Kmax
of =34 MPa-ml/2. At a load ratio of 0.6, 52 cm3-kg-! hydrogen in low-DO water decreased the
CGR of the Alloy 600 specimen by a factor of two at 320°C; however, the rate for the Alloy 690
specimen remained the same {compare Tests 10 and 17 in Table 8). In Tests 10 and 17, the
CGRs of Alloy 690 were greater than those of Alloy 600 by factors of =2.4 and 5.4, respectively.

In Test 18 at 320°C and a load ratio of 0.6, the hydrogen concentration was decreased
from =52 to 4 cm3-kg-! and the CGRs of both materials increased. In Test 19, temperature
was decreased from 320 to 289°C and the load ratio was increased from 0.6 to 0.9. These
changes produced a significant decrease in the CGRs of the materials. In Tests 20 and 21,
load ratio was decreased from 0.9 to 0.6 and then to 0.2, respectively. The CGRs in Test 20
increased to values that were somewhat lower than those at 320°C for the same loading and
water chemistry conditions (i.e., Test 18). CGRs in Tests 22 and 23 at R values of 0.9 and
0.6 in water containing =54 cm3 Ha-kg-! H2O at 289°C were similar in magnitude to those at
320°C (Tests 16 and 17).
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Table 8. Crack growth results _for Alloy 600 and 690 specimens® in HP water at 289 and 320°C

Water Chemistry
Test Test Test Hz (o)} Cond. pH at Electrode Potential Load Alloy 600 Alloy 690
No. Time, Temp. Conc.? Conc.® at25°C, 25°C 304SS Pt Ratiod  Kmaxe. AK.f Rate. Kmaxe,  aK.[T Rate,
h °C  cm3 kgl ppm pS cm-l mV(SHE) at 289°C MPa. m!/2 10-10m 51 MPa- m1/2 10-10 m. 5-1
1 %8— 289 - 5.8 0.06 6.52 170 172 0.2 31.3 25.04 86.8 31.0 24.80 76.3
2 gg— 289 - 5.8 0.06 6.72 - - 0.6 31.8 12.72 28.0 31.4 12.56 24.7
3 %gg— 289 - 7.5 0.09 6.93 153 152 0.9 32.2 3.22 5.2 31.6 3.16 0.82
4 gg;— 289 - <0.005 0.08 6.33 -267 -400 0.2 32.5 26.00 36.7 32.2 25.76 98.3
5 3‘7&?—- 289 - <0.005 0.08 6.33 -301 -448 0.6 32.8 13.12 10.4 3‘2.5 13.00 17.2
3] ggg— 289 - <0.005 0.06 6.83 ~452 -461 0.9 329 3.29 0.08 326 3.26 0.06
7 ;38— 320 - <0.005 0.08 8.71 —488 —494 1.0 7.3 0 —& 7.3 0 -g
8 g:lig— 320 - <0.005 0.08 6.81 -510 -500 1.0 5.7 0 ~& 5.5 [ =4
9 lg%g— 320 - <0.005 0.09 6.81 -517 -506 1.0 1.1 0 -& 1.1 0 -g
10 igég— 320 - <0.005 0.06 6.83 -522 -509 0.6 33.2 13.28 9.98 33.0 13.20 24.0
i1 ;gfgg— 320 ~ <0.005 0.08 6.55 -525 -513 0.9 33.3 3.33 0.28 33.1 3.31 0.02
12 {%g— 320 - 5.8 0.08 6.55 168 192 0.6 33.5 13.40 22.5 335 13.40 38.8
13 iggg— 320 - 7.0 0.08 6.31 249 250 0.9 33.7 3.37 1.49 33.6 3.36 0.92
14 535138— 320 - <0.005 0.08 8.57 -300 -386 0.9 33.8 3.38 =0 33.7 3.37 0.11
15 %%}1(5)— 320 2.2 <0.001 0.09 6.40 -520 -516 09 33.9 3.3¢2 0.13 33.8 3.38 0.05
16 2545~ 320 52.1 <0.001 0.08 6.91 -610 -602 0.9 33.6 3.36 0.12 33.7 3.37 0.05
17 g?)gz& 320 51.2 <0.001 0.09 6.80 —623 614 0.6 33.9 13.56 4.28 35.1 14.04 23.0
18 2338_ 320 38 <0.001 0.07 6.70 -463 -454 0.6 34.5 13.80 17.0 37.5 15.00 31.2
19 18%8— 289 3.2 <0.001 0.06 6.78 -534 -522 0.9 34.5 3.45 0.70 375 3.75 =0
20 ;4“9)‘218— 289 3.8 <0.001 0.06 6.66 -544 -532 0.6 34.5 13.80 3.29 37.9 15.16 23.6
21 33(;%— 289 4.5 <0.001 0.06 6.78 -547 -535 0.2 34.8 27.84 113.70 38.6 30.88 156.6
22 gggg— 289 53.7 <0.001 0.07 6.90 -599 -589 0.9 34.7 3.47 0.26 39.0 3.90 0.17
23 gggg— 289 53.5 <0.001 0.07 6.90 -605 -598 0.6 34.7 13.88 0.96 39.2 15.68 16.1
24 5620- 289 1.88 <0.001 0.06 6.93 -578 -563 1.0 5.7 4] 2.06 6.7 o] -8
25 gg;g 289 1.2g <0.001 0.06 6.87 -463 —-451 1.0 13.6 o] 1.74 15.3 o] -

4 Compact tension specimens (1TCT) of Alloy 600 (Heat No. NX8197) and Alloy 690 (Heat No. NX8662HG-33).
Alloy 600 and 690 specimens (Nos. 197-07 and HG-07, respectively) were tested in the as-received mill-
annealed and mill-annealed plus thermally treated (715°C for 5 h) conditions, respectively.

b Effluent dissolved hydrogen concentration was determined with an Orbisphere hydrogen meter.

€ Effluent DO concentration was determined with an Orbisphere oxygen meter or Chemetrics ampules.

d Frequency and rise time of the positive sawtooth waveform were 8 x 10~2 Hz and 12 s, respectively.

€ Stress intensity Kmax values at the end of the time period.

f AK = Kmax(1-R), where load ratio R = Kmin/Kmax.

& Hold periods a constant load at lower stress intensity values.

h Corrosion-product hydrogen; no hydrogen was added to the feedwater.

Two tests were conducted at 289°C under constant load (Tests 24 and 25) at low siress
intensity factors, in which no hydrogen was added to the feedwater. The DC potential-drop
response of the specimens was similar to that in Tests 7-9. When load was decreased in Test
24 and then increased in Test 25, the resistivitity of both specimens first decreased and then
increased abruptly, followed by a gradual increase to the values obtained at the end of Test 23.
This behavior tends to confirm the hypothesis that DC potential-drop measurements are
strongly influenced by morphology and degree of oxidation of crack surfaces in constant load
tests if Kjpyax decreases, in contrast to actual increases in crack length during cyclic loading
with increasing Kmax.
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The dependence of the CGRs of Alloy 600 and 690 specimens at 320°C on DO
concentration in HP water and on the ECP of a platinum electrode (at 289°C) is shown in
Fig. 22. At a load ratio of 0.6 (Figs. 22a and b), CGRs are not dependent on either DO or ECP,
which is indicative of a strong contribution of cyclic loading to the rates. At a higher load ratio
of 0.9, CGRs decrease as DO concentration and ECP decrease, Figs. 22c and d, respectively.
Figure 23 shows similar results at 289°C at load ratios of 0.2, 0.6, and 0.9. At a high load
ratio of 0.9, CGRs exhibit a 1/4-power dependence on DO concentration, which has been
observed previously in slow-strain-rate tensile tests on sensitized Type 304 SSs.11.12 The
dependence of the CGRs on Kyax at load ratios of 0.2-0.9 in deoxygenated water (<5 ppb) and
in water with 6-8 ppm DO is shown in Fig. 24.
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Figure 22. Dependence of CGRs of Alloy 600 and 690 specimens in HP water at 320°C on
DO concentration and ECP of Pt electrode at 289°C at load ratios of 0.6
{a and b) and 0.9 (c and d), respectively

Lines that depict the predicted dependence for austenitic SSs in air from Section XI of the
ASME Code at the various R values are also shown in Fig. 24. In all cases, the CGRs of both
alloys lie near or below the air curve for austenitic SSs. Crack growth experiments on these
alloys in air at 289 and 320°C are planned to determine whether the rates differ significantly
from those of austenitic SSs and to provide baseline data for these and subsequent tests in
simulated LWR environments.
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Figure 23. Dependence of CGRs of Alloy 600 and 690 specimens in HP water at 289°C on
DO concentration and ECP of Pt electrode at 289°C at load ratios of 0.2 (a and b),
0.6 (c and d), and 0.9 (e and f), respectively

Corrosion—fatigue data for the alloys at 289 and 320°C are plotted vs. predicted CGRs for
austenitic SSs in air from the ASME Code (Fig. 25a) and vs. rates in water predicted by the
ANL model,5 which has been modified to account for a 1/4-power dependence on DO
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Figure 24. Dependence of CGRs of Alloy 600 and 690 specimens at 289 and 320°C on
maximum stress intensity (Kmqy) in HP deoxygenated water at load ratios of
{a) 0.2, (b} 0.6, and (c) 0.9, and (d) in oxygenated HP water at load ratios of 0.2,
0.6, and 0.9. Lines indicate dependence of CGRs of austenitic SSs in air on
Kmax predicted by ASME Code.

concentration in water of the environmnental contribution a epy to crack growth (Section 3.5).
Both figures indicate that the experimental data lie near or below predicted values for
austenitic SSs in air or water, respectively, for the loading conditions and DO concentrations
employed in these experiments. Crack growth information for nickel-base alloys in air will be
sought to obtain a comparison similar to that in Fig. 25. In particular, information on CGRs
of the materials in air at rates <10-10 m-s-1 are required to determine whether they also
deviate from the ASME-predicted air line.

3.4 CGRs of Mill-Annealed Alloy 600 and Thermally Treated Alioy 690 in Simulated
PWR Water at 289 and 320°C

The influence of dissolved hydrogen in simulated PWR water on CGRs of Alloy 600 and
690 specimens from the same heats of material was determined in another series of
experiments at 289 and 320°C. The water contained 450 ppm boron, 2.25 ppm lithium,
<2 ppb DO, and =3-58 cm3 Hgkg-! HoO. Because of problems encountered with the DC
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Figure 25. Corrosion fatigue data for Alloy 600 and 690 specimens in HP water at 289
and 320°C vs. (a) CGRs for SSs in air, predicted by ASME Code, and (b)
CGRs for SSs in water predicted by ANL model, both under same loading
conditions as in experiments. Lines represent identical CGRs for these alloys
in test environments and for SSs in (a) air and (b} water.
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Figure 26. Dependence of CGRs of Alloy 600 and 690 specimens at (a) 289 and (b) 320°C
on concentration of dissolved hydrogen in simulated PWR water at load ratio
of 0.8

potential-drop technique, crack length was determined by the compliance method with the
use of MTS clip gages. Tests were conducted at a load ratio of 0.8 and Knyax in the range
=30-39 MPa-ml/2, The results are given in Table 9 and plotted in Fig. 26.

CGRs decreased slightly as dissolved hydrogen concentration increased from 3 to
58 cm3-kg-1. The Alloy 690 specimen exhibited a higher CGR by a factor of =3 than Alloy 600
under these water chemistry conditions at both temperatures. A somewhat larger decrease in
the CGRs was expected, based on a predicted change in the thermodynamic stability of NiO
corrosion product on the alloys as the concentration of dissolved hydrogen in the water
increased or as the temperature decreased in these experiments. More experimental CGR data
are required to deduce whether these considerations are important in EAC of Alloy 600 and
other nickel-base alloys under PWR operating conditions.
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3.5 Dependence on AK of CGRs of Mill-Annealed Alloy 600 and Thermally Treated
Alloy 690 in HP and Simulated PWR Water at 289 and 320°C

Exploration of the dependence of CGRs of mill-annealed Alloy 600 and thermally treated
Alloy 690 specimens at 289 and 320°C on AK can be based on tests performed in HP and
simulated PWR water (Tables 8 and 9, respectively) at several load ratios. The results were
compared with predictions of the ANL model for crack growth of austenitic SSs in water.5
Briefly, the CGR @super in an aqueous environment is written as a superposition of a term
that represents the contribution of SCC under constant load dgcc; a corrosion—fatigue term a
env, representing the additional CGR under cyclic loading due to the environment; and a
mechanical fatigue term a,;;, representing fatigue—crack growth in air,

Asuper = AscC +env + Aair (5)

The SCC term was obtained from a correlation given in U.S. Nuclear Regulatory Commission
(NRC) Report NUREG-0313, Rev. 2, January 1988. The correlation was based largely on data
in water that contained 8 ppm DO at impurity levels typically higher than those found in
currently operating plants. To account for additional data at 200 ppb DO and more
representative impurity levels, the CGR is taken as one-third that given in NUREG-0313:

agce =2.1x 10713 K2.161 (m-s-1) 8 ppm DO (6)
dsce = 7.0x 10714 K2.161 (m-s-1) 200 ppb DO,

where K is the stress intensity factor in MPa-m1/2. The contribution from SCC is assumed to

be negligible for deoxygenated HP water and for PWR primary-water-chemistry conditions;
consequently, the CGR is given by

& = Aeny + 8- 7)

The air term, based on the work of James and Jones,13 is given by the current ASME Code
Section XI correlation at 288°C as

dar =3.43x10712S(R)AK®S /TR
SR) =1+1.8R R<0.8 @)
= -43.35+57.97R R >0.8

where Tg is the rise time in s of the loading wave form, R is the load ratio (Kmin/Kmax), and

AK is Kmax — Kmin. Following Shojil4 and Gilman et al.,15 the corrosion-fatigue term is
assumed to be related to a,;; through a power law

deny = AT, ©)

The values of the coefficient A and the exponent m for water with 200 ppb DO at 288°C
were obtained by an empirical power-law-curve fit to the existing data for austenitic SSs at
R <0.9, where cyclic loading dominates and the stress corrosion term in the superposition
model (Eq. 5) can be ignored. The values are

A =45x10°5 (10}
m=0.5

for CGRs in m-s~! and K in MPa-m1/2. In water that contains 8 ppm DO at 288°C, an
empirical power-law—curve fit to the available data gives
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A =15x10% (11)
m = 0.5.

As was mentioned previously, the dependence of CGRs of austenitic SSs on DO
concentration [O2] follows an =[02]1/4 relationship over this range of oxygen concentra-
tions.11.12  The results for Alloys 600 and 690 in Figs. 22c and 23e also exhibit this
dependence on DO. To compare model predictions with CGRs in water that contains low DO
levels, the values of A at 200 ppb and 8 ppm were fit to a power-law relationship and the
constant A in Eq. 9 is given by the relationship

A =1.08 x 105 (DQ)0-287, (12)

From Eq. 8, it is evident that a,; exhibits a complex dependence on R; therefore, the
predicted dependence of the crack growth rate a on AK can be obtained from Egs. 7-9, and 12
at differing values of R. Figure 27 shows the predicted dependence of a on AK in 288°C
water that contains 1 ppb DO at several R values between 0.2 and 0.95, a rise time of 12 s,
and Kmax between 3 and 100 MPa-m!/2. At R values <0.8, the curves do not differ
significantly, whereas, at higher R values, the range of a is wider for a given AK.

10-75"""""“""I""I"" 3
e w3
e : Kmsf?m(::%m ] Figure 27.
] o p:b Dependence of CGR at 288°C on AK for R of
§ 0.2, 0.8, and 0.95 in water containing 1 ppb
. E DO, predicted by ANL model
095
—--08
......... 02
PSS ETIRIITEN SU T A IS I ST AT S VAT
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AK (MPa m'®)

The relative contribution of the a,; and a epy terms in the model at several R values
between 0.2 and 0.95 is shown in Fig. 28. At AK values ~>5 MPa-m!/2, mechanically induced
crack growth, i.e., a,;;, is the major contributor to the rate, whereas, at values =<5 MPa-m1/2,
the 4 ¢ny term is similar in magnitude to 4,;,.. At low AK, i.e., 3-5 MPa-ml/2, 4, and aenv
are =1 x 10710 m -s71 over the entire range of R. Thus, to explore EAC of these materials,
experiments should be conducted at low AK and at Kmax > KThreshold, where significant
enhancement in the rates should occur.

Experimental CGR data for Alloys 600 and 690 from Tables 8 and 9 can be compared with
model predictions. Figures 29 and 30 show the dependence of CGRs of mill-annealed Alloy
600 and thermally treated Alloy 690 specimens at 289 and 320°C on AK at constant load
ratios in deoxygenated HP and simulated PWR water, respectively. The experiments were not
conducted by adjusting (increasing) AK at constant R values, rather, the data were obtained by
adjusting R at a given Ky ax, in which Knpax increases slowly as crack length increases during
the course of the experiments. The data in both environments are consistent with the trend
lines depicted in the figures; however, in some instances, experimental CGRs for Alloy 690 at
high R (0.9) lie significantly below the trend lines. The current results on Alloy 690 were
obtained from a heat that has a relatively low yield stress when compared with that of Alloy
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Figure 28. Contribution of air and deoxygenated-water terms in model to crack growth rate
at 288°C vs. AK at load ratios of (a) 0.2, (b) 0.8, (c) 0.9, and (d) 0.95

600 (=232 vs. 327 MPa at 320°C). Because mechanically driven crack growth can be
correlated with yield stress, this could be simply a heat-to-heat variation. The data at several
load ratios also suggest that there is a threshold AK at which rates increase significantly with
a minimal increase in AK, and then increase more slowly as AK increases in a manner
consistent with model predictions. At load ratios <0.8, it appears that CGRs of the Alloy 690
specimens are slightly higher than those of Alloy 600; however, at an R of 0.9 the rates for
both alloys are similar. Threshold AKs are indicated in Figs. 27 and 28 and the values are
plotted vs. load ratio in Fig. 31. The dependence of AKThreshold On load ratio for both alloys in
deoxygeriated water at 289 and 320°C is given by the equation

AKth = 32.0 (1-R). (13)
Crack growth experiments will be conducted on specimens from other heats of the alloys

at high load ratios, including constant load (R = 1.0), to determine the effect of yield stress on
the rates, and whether Alloy 690 exhibits lower rates than Alloy 600 at higher R values.
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Figure 29. Dependence of CGRs- of Alloy 600 and 690 specimens in deoxygenated HP
water on AK at (a) and (b) 289, and (¢} and (d) 320°C

3.6 Morphology of Crack Path and Surface of Alloy 600 and 690 Specimens

Morphology of corrosion-fatigue cracks in the Alloy 600 and 690 specimens listed in
Tables 6-9 has been determined. The 1TCT specimens were sectioned vertically, and one-half
of each specimen was split in the plane of the crack in liquid nitrogen. Corrosion-product
films were removed from the fracture surface by a chemical process to reveal the morphology
of the underlying material. The intact portion of the specimen that encompassed the crack
was polished and etched to corroborate the mode of crack propagation and also to determine if
crack branching had occurred during the test. The total crack lengths at the end of the test
were consistent with values obtained by DC potential-drop and compliance techniques.

Figures 32-37 show the fracture surface, fracture morphology, and crack path in the
crack-tip region of the specimens. The Alloy 600 specimen (Table 6), which has a very small
grain size, exhibited intergranular cracking in oxygenated water (Fig. 32). The crack path in
the Alloy 600 specimen in which the environment at the beginning and end of the experiment
was simulated primary PWR, with an intermediate period of oxygenated HP water (Table 7),
revealed transgranular cracking under all conditions (Fig. 33). The Type 316NG and
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Figure 30. Dependence of CGRs of Alloy 600 and 690 specimens in simulated PWR water
on AK at (a) and (b) 289, and (c) and (d) 320°C
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sensitized Type 304 SS specimens also exhibited a transgranular mode of crack propagation
during tests in simulated PWR water and in oxygenated HP water.® Intergranular cracking of
the sensitized Type 304 SS specimen in oxygenated water was not observed because of the low
load ratio in most of the tests.
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CRACK TIP REGICN

ALLOY 600 HEAT TREATMENT LOAD CONDITIONS ENVIRONMENT
Spec. No. IN-1 Mill anneated Kmaz = 28-36 MPanl/2 200-300 ppb DO
Heat No. J422 R = 0.60-0.95 0-200 ppb Chromate
Freq. = 0.077 Hz 0-100 ppb Sulfate
OUTER
, }/SURFACE

-

BUCTILE

sS0C
| FATIGUE

FRACTURE SURFACE FRACTURE MORPHOLOGY

Figure 32. Crack path, fracture surface, and fracture morphology of 1TCT
specimen of Alloy 600 (No. IN-1) after crack growth experiment in
oxygenated HP water and oxygenated water containing
chromate, sulfate, 2-butanone-oxime, or ethanolamine at 289°C

CRACK TIP REGION

ALLOY 600 HEAT TREATMENT LOAD CONDITIONS ENVIRONMENT
Spec. No. IN-2 Mill annealed Kmax = 29-31 MPm1/2 HP Water: 6 ppm DO and
Heat No. J422 R = 0.2-1.0 PWR: 450 ppm B, 2.25 ppm L4,
Freq. = 0.077 Hz at R <1.4 4-45 cn® Hz kg~1H20
OUTER

gy SURFACE

&

FRACTURE BURFACE FRACTURE MORPHOLOGY

Figure 33. Crack path, fracture surface, and fracture morphology of 1TCT

specimen of Alloy 600 (No. IN-2} after crack growth experiment in
HP water and simulated PWR water at 289°C
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ALLOY 600
Spec. No. 187-07
Heat No. NX8197

HEAT TREATMENT
Mill annealed

LOAD CONDITIONS
Kmax = 31-35 MPm1/2
R=0.2-1.0

ENVIRONMENT
<0.005-7.5 ppm DO
0-53 crt Ho kgl RO

Freq. = 0.077 Hz, R <1.0

OUTER SURFACE

0.06-0.09S .cm™1

o

CRACK TP REGION FRACTURE SURFACE FRACTURE MORPHOLOGY
Figure 34. Crack path, fracture surface, and fracture morphology of 1TCT
specimen of Alloy 600 (No. 197-07) after crack growth

experiment in HP water at 289 and 320°C

ALLOY 690 HEAT LOAD CONDITIONS ENVIRONMENT
Spec. No. HG-07 TREATMENT Kmaz = 31-39 MPanl/2 <0.005-7.5 ppm DO
Heat No. NX8662HG-34  Mill annealed plus R =0.2-1.0 0-53 cr? Hykg 1,0
715°Cfor 5 h Freq. = 0.077 Hz, R <1.0 0.06-0.09S-cm™1

(}UTER}UF{?ACE ’
- :

DUCTILE

S

CRACK TIP REGION FRACTURE MORPHQLOGY

FRAUTURE S8URFACE

Figure 35. Crack path, fracture surface, and fracture morphology of 1TCT
specimen of Alloy 690 (No. HG-07) after crack growth
experiment in HP water at 289 and 320°C

ALLOY 600
Spec. No. 19709
Heat No. NX8197

HEAT TREATMENT
Mill annealed

LOAD CONDITIONS
Kpmax = 30-33 MPml1/2
R=0.8
Freq. = 0.077 Hz

ENVIRONMENT
PWR; <2 ppb DO
2-58 co¥ Hp kgl BO
450 ppm B, 2.25 ppm Li

CUTER SURFACE

o

{ &32 . . 4 /_%,»r@“"ﬂ

s

CRACK TIP REGION FRACTURE SURFACE

FRACTURE RMORPHOLOGY

Figure 36. Crack path, fracture surface, and fracture morphology of 1TCT
specimen of Alloy 600 (No. 197-09) after crack growth
experiment in simulated PWR water at 289 and 320°C
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ALLOY 690 HEAT TREATMENT LOAD CONDITIONS ENVIRONMENT
Spec. No. HG-09 Mill annealed plus Kmax = 31-41 MPal/2 PWR; <2 ppb DO
Heat No. NX8662HG-39 715°C for 5h R = 0.80 . 2-58 cn® Hop kg_l H20
Freq. = 0.077 Hz 450 ppm B, 2.25 ppm Li

QOUTER SURFACE
N g

B/2
DUCTILE

GRACK TiP REGION FRACTURE SURFACE FRACTURE MORPHOLOGY

Figure 37. Crack path, fracture surface, and fracture morphology of 1TCT
specimen of Alloy 690 (No. HG-09) afler crack growth
experiment in simulated PWR waler at 289 and 320°C

The Alloy 600 and 690 specimens from the CGR experiments in HP water (Table 8) with a
range of DO concentrations and in low-oxygen water with several concentrations of dissolved
hydrogen exhibited transgranular modes of crack propagation (Figs. 34 and 35, respectively).
The specimens from the CGR experiments in simulated PWR water (Table 9} also revealed
predominately transgranular crack propagation (Figs. 36 and 37}. The transgranular mode of
crack propagation can be attributed to the strong contribution of mechanical cyclic loading in
tests at a load ratio of 0.8.

4 Summary and Conclusions

Fracture-mechanics CGR tests were conducted on compact-tension specimens of mill-
annealed Alloy 600 and mill-annealed and thermally treated Alloy 690 in oxygenated water
and in deoxygenated water that contained boron, lithium, and low concentrations of dissolved
hydrogen at 289 and 320°C.

Several tests were conducted on mill-annealed Alloy 600 and sensitized Type 304 SS
specimens in simulated BWR water at conductivities of =0.08-8.3 uS-cm~1. Small amounts of
chromate and sulfate (<200 ppb) and two amines (1-5 ppm) in water that contained =200 ppb
DO produced small but measurable changes in the CGRs of the sensitized Type 304 SS
specimens but had virtually no effect on the CGR of the mill-annealed Alloy 600 specimen at a
load ratio of 0.95. The CGRs of Alloy 600 and sensitized Type 304 SS were virtually the same
under conditions where EAC occurred in both materials, i.e., when the stress intensity K
exceeded a threshold value at a given load ratio. The average CGR of the Alloy 600 and
sensitized Type 304 SS specimens was =2.3 x 10-10 m-s~1 at an R of 0.95 and Kpax of
>30 MPa-m!/2 under these water chemistry conditions. This average rate is consistent with
numerous determinations of EAC of sensitized Type 304 and nonsensitized Type 316NG SS
specimens in oxygenated water at 289°C under similar loading conditions. The observation
that different materials, e.g., Alloy 600, sensitized Type 304, nonsensitized Type 316NG, and
CF-3, CF-8 and CF-8M grades of cast SSs, exhibit the same CGR in oxygenated water, despite
significant differences in material chemistry, microstructure, and mode of crack propagation,
suggests that crack propagation is controlled by the rate of cathodic reduction of DO with a
concomitant anodic dissolution process at the crack tip. Experimental data for the three
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specimens were compared with predictions from an ANL model for CGRs of SSs in water® and
the ASME Section XI correlation for CGRs in air at the Kmax and load ratio values in the
various tests. The data for both materials were bounded by the two curves.

The crack growth behavior of Alloy 600, Type 316NG, and sensitized Type 304 SS was
investigated in simulated PWR water at high load ratios, where an environmental contribution
to cracking may be significant. Tests were conducted at 289°C in water that contained
450 ppm boron and 2.25 ppm lithium (added to the feedwater as H3BO3 and LiOH), 4-45 cm3
Hg kg1 H20, =1 ppb DO, and 750 ppb hydrazine. The CGR data for the specimens were
compared with predictions from the ANL crack-growth model that was modified to account for
a very low DO concentration in simulated PWR primary-system water. With the exception of
one data point for the Alloy 600 specimen, the experimental results in water were bounded by
the ANL model prediction and the “air line” for austenitic SSs from the ASME Code Section XI
correlation.

Several CGR tests were performed on this set of specimens in HP water that contained
=6 ppm DO at load ratios between 0.2 and 1.0. CGRs in this environment were also compared
with predictions of the ANL model for crack growth in oxygenated water and with the air line
from the ASME Section XI correlation at the Kpax and load ratio values for the specimens.
Once again, the experimental data were bounded by the two curves and the ANL model
provides a good upper-bound estimate of the CGRs at all load ratios.

Corrosion-fatigue experiments were conducted on mill-annealed Alloy 600 and mill-
annealed plus thermally treated Alloy 690 specimens in HP water to investigate the effects of
temperature, load ratio, DO, and dissolved hydrogen in water on CGRs. Crack growth
behavior of the two materials is quite similar under the conditions in these experiments. At a
load ratio of 0.6, the CGRs are not dependent on DO, which is indicative of a strong
contribution of cyclic loading to the rates. At a higher load ratio of 0.9, the CGRs decrease as
DO concentration decreases at 289 and 320°C. In all cases, the CGRs of both materials lie
near or below the air curve for austenitic SSs.

Several tests were conducted at 320°C in HP water that contained <5 ppb DO and =0, 2.2,
and 53 cm3-kg-! dissolved hydrogen. At a load ratio of 0.9, CGRs of both specimens were low
(0.5-1.3 x 10-!1 ms71) and dissolved hydrogen over the range of ~2-53 cm3 Ho'kg'! HoO did
not influence the rates at a Kmax of =34 MPa-m1/2. In contrast to results at lower load ratios
(i.e., £0.6), CGRs of Alloy 600 were greater than those of Alloy 690 by factors of
=2-5,

The influence of dissolved hydrogen in simulated PWR water on CGRs of Alloy 600 and
690 specimens from the same heats of material was determined in another series of
experiments at 289 and 320°C. The tests were conducted at a load ratio of 0.8 and Kmax in
the range =30-39 MPa-m1/2. The CGRs decreased slightly as the dissolved-hydrogen
concentration increased from 3 to 58 cm3-kg-l. Under these water chemistry and loading
conditions, CGRs of Alloy 690 were higher by a factor of =3 than the CGRs of Alloy 600 at both
temperatures.

The morphology of corrosion—fatigue cracks in the Alloy 600 and 690 specimens was
determined. In simulated BWR water that contained =200 ppb DO, the crack path in the Alloy
600 and sensitized Type 304 SS specimens was predominantly intergranular. The crack path
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in the Alloy 600, Type 316NG, and sensitized 304 SS specimens in which the environment at
the beginning and end of the experiment was simulated PWR primary-system water but in
which there was an intermediate period of oxygenated HP water, revealed transgranular
cracking. Intergranular cracking of the sensitized Type 304 SS specimen in oxygenated water
was not observed because of the low load ratios in most of the tests. In deoxygenated HP
water and simulated PWR water, predominately transgranular cracking occurred at load ratios
<0.9, which were used in most of the tests.

5 Future Work

Corrosion-fatigue tests will be performed on Alloy 600 and 690 specimens with differing
heat treatments (Table 1) to assess the influence of microstructure, viz., carbide distribution
and grain size, on CGRs in simulated LWR environments. Alloy 690 in the 20% cold-worked
condition will also be tested. Most of the experiments will be conducted at R >0.9 to maximize
the environmental contribution to crack growth even though CGRs decrease significantly at
high load ratios. These tests will confirm whether Alloy 690 exhibits lower CGRs than Alloy
600 at high load ratios, including constant load (R = 1.0). Because CGRs will be relatively low
(<5 x 10-1! m-s~1), each experiment will entail a longer test time (=>800 h) to obtain reliable
measurements for incremental crack depths =>150 pm or several grain diameters.
Experiments will be performed in air as well as in water to determine threshold stress
intensity values for crack propagation at high R values in both environments. Tests will also
be performed over a wider temperature range under conditions where EAC occurs, to quantify
the true activation energy for crack propagation. These results will make possible a more
quantitative assessment of the degree of environmental enhancement in water for the same
material, heat treatment, and loading conditions. The influence of the concentration of
dissolved hydrogen in water on crack growth will be investigated at high R values to determine
whether there is an abrupt decrease in CGRs over a regime of temperature and hydrogen
concentration where the NiO corrosion product is not thermodynamically stable. The results
will be compared with similar crack-growth information for austenitic SSs in air from Section
XI of the ASME Code and with values predicted by a correlation developed by ANL for EAC of
these steels in high-temperature water. If necessary, the correlation will be modified to better
reflect the properties of Alloys 600 and 690.
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