SANDIA REPORT

e V. , o C o s
SAND96-0732 « UC-705 Fele o
Unlimited Release : LR Y6 (00

Printed March 1996 ~eT)

'+ The Technology Information Environment
with Industry™ System Description

Richard Detry, Glenn Machin

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-84AL85000

Approved for public l’e|ea§§&iétﬁbuﬁ0“ is unlimited.

SF29000(8:51) DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED ‘99” M ﬂ S T E ﬁ

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Ozk Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: A01

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND96-0732 : Distribution

Unlimited Release Category UC-705
Printed March 1996

The Technology Information Environment with
Industry " System Description

Richard Detry and Glenn Machin
Scientific Computing Systems Department
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

The Technology Information Environment with Industry (TIE-In™) provides users with
controlled access to distributed laboratory resources that are packaged in intelligent user
interfaces. These interfaces help users access resources without requiring the user to have
technical or computer expertise. TIE-In utilizes existing, proven technologies such as the
Kerberos authentication system, X-Windows, and UNIX sockets. A Front End System
(FES) authenticates users and allows them to register for resources and subsequently access
them. The FES also stores status and accounting information, and provides an automated
method for the resource owners to recover costs from users. The resources available
through TIE-In are typically laboratory-developed applications that are used to help design,
analyze, and test components in the nation’s nuclear stockpile. Many of these applications
can also be used by U.S. companies for non-weapons-related work. TIE-In allows these
industry partners to obtain laboratory-developed technical solutions without requiring them
to duplicate the technical resources (people, hardware, and software) at Sandia.

Intentionally Left Blank

i

Contents

Acronyms e e X
Introduction e e 1
. TIE-In Technical Overview................................ 3
Kerberos Authentication Service e R 4
. Front End System e e e 4
Gateway Servicec.ovuiiiennan. e N 4
X11Gateway ...ovvvreimernenneennnnnn. e 5
CommonFile Systemottt 5
Common Services SYSIEIm vvtnn ettt e 5
ApPPHCAtion SEIVETttt e e 6
Multiple Organizational Realms 6
System Diagram e e 7
Communication Network e e 7
Connecting to TIE-In e e e i 10
Charging Customers......... e e 11
TIE-InSecurity i, R 13
Authentication e R e 13
User Authentication e e 13
Access Control e e 16
User Registration R PN 17
User AuthenticationLevel e e 17
Access Control List via the Front End System 18
Access Control List on the Application Server 18
The X11Gatewayccvutiniiniiniiinniinennnneennennns 18
Magic Cookies e, e et 19
Notificationcocieunen... et 20
Interactive Collaborative Environment 20
Loggingc.iioL.. e e 20
SYSIOZ ¢ oo e e R |
TAS LOggINg ..ottt it it e e 21
Change Logso e 21
Session LoggIng . ..ovvint it i e e e 22
Security SCrPLS - .o vt ittt i e e 23
Information Verificationiiiiiiiiiiiiianan. 23
Employee Verification X |
. Nonemployee Verificationoouviiieeinennnnnn.. 23
Charge Account Verification ceree... 24
. Projects ... e R e 24
Session Manager Process Description 25
User Authentication e e 25

The Main Window it .25

Obtaining Status and Accounting Information 27

Modifying the User Profile Information 27
Adding or Removing Applicationscovieniinninn.y 27
UsSer ReGiStrationvviteien e ieieineieeenneeaaannennnns 28
Resource Request Manager Process Description 29
Request Processingcooiuiiiiiiiiiiiiiniiiinn, 29
SubmitRequest i i e 30

Delete Task Requesto, 30

Add AccountRequest i it 31

Delete AccountRequest o il 31
Handling Abnormal Casescvviiiineninenenen.n 31
Gateway Service Process Description 33
Gateway Requestsottt ittt 33
Gateway Reply . ..o it i i i e 35
Accounting Manager Process Description 37
AddReqUeStS . ..ottt i e i e s 37
Information Requeststtt 37
Update Requests oviet ittt ittt i e e 37
Database Tables and Informationo, 38
TIE-In Profile Manager Process Description 39
TPMAddRequestottt it it ieieineneaennn 39
TPM Information Request o i in.n. 40

- TPMDeleteRequestcoo it 42
TIE-In Application Server Process Description 43
Communication withthe RRM oo, 43
The ConfigurationFile PP 44
Supported AuthenticationLevels oo, 44
Description of a Submit Request Message 45
The Local Authorization Policy, 45
Checking the Number of Current Tasks 45
Creatingthe Status File it 46
Setting the Home Directory 46
Establishing the Environmentc0euueennn.. 46
Changing the RootDirectoryot iiiiean.n.. 48
Setting the Process Owner e, 48
Executing the Applicationoiiiiiiiinnninn. 48
Monitoring the Status File, 48
Description of a Status Request Message 49
Description of a Delete Task Request Message 49
Description of an Add/Delete Account Request Message 50
Description of a Complete Acknowledgment Request Message 50
Recoveryof Active Taskscoviiniiniinnnennnnnnnn. 51
TASSystem Fileso i 51
The Configuration File: /fusr/etc/tiein.conf 51

TAS Statusfileformat il 54

The Valid Front End Systems File: /ust/etc/tiein_fes 55

iv

The Backup Directory: /usr/adm/tirrs_requests 55

The Kerberos Key File: /ust/etc/tiein_vSsrvtab 55
The Required IP Services: /etc/servicescoovvvevenvvnnn.. 56
The Kerberos Configuration File: /etc/krb.conf................ 56
The Kerberos Realms File: fetc/krbrealmsc..L ... 56
TIE-In Common File System 57
Motivation behindthe CFS i, 57
Implementationouiiniiiiiiiiii i 57
The CFS Mount Processcooiiiiiiiiiinineninennnnans 58
Authenticationofthe Userot iiiiien... 58
Initialization of the mnt_auth Process 58
Authorization of the User and the Application Server........... 60
Mounting the Directory i, 62
The MountPointt iinen... 63
Mounting on an Add or Delete Request 63
Operationof the NFSServer i, 64
Unmounting a File System e 65
SECUtY TeStS « o v v vttt ittt et ettt et e 66
Mount Authentication Test oo, . 66
NFS Authentication Testcooiiiiiiiiiiiiiiiiinann. 67
Special Considerations for Application Developers 67
Specifying the User’s Home Directorycooat.. 68
Performanceoouiiniiniiiin it 68
Future Workt i i e 71
Interprocess Communication 73
Communication Between the SMandthe RRM 73
SubmitRequestttt it 73
Delete Task ReqUESt ... ovvinneie it iiiee i iiiaeennns 74
Add AccountRequest il 74
Delete AccountRequestt 75
Communication between the AcctM and the SMandRRM 76
AddRequestot e e 76
Information Request.cvuinerineinniiieennannnn. 76
UpdateRequestcoiiniiiiiiiiiiiiii i, 77
Communication between the RRMandaTAS 77
SubmitRequestot 77
StatusRequest i 78
Delete Request e e e 79
Complete Acknowledgment..............coiiiiiiniiinn... 79
Add AccountRequestcoiiiiiiiiiiiii i 80
Delete AccountRequest, 80
TAS StatusReply e e 81
Communication between the SM, RRM, andthe TPM 81
AddRequest...... ..ottt i e 81
InformationRequest. oo, 82
Delete REQUESt . ..ot vii ittt ittt ettt e i 82
v

Communication Between the CFSand the TAS 83

MountRequest oottt 83
UnmountRequest. oo iniiiin it iiiiiiieenann. 83
Communication Between the SM and Xforward 84
Conclusion i 87
Future Developmentsttt inieenennn. 87
DCE Apphicationsc.coiiuniniiniiinnnnnnnnanns. 87
CORBA Applicationscveutmieuennennenennenennenns 88
Supporting Different Platforms 88
References i 89
Bibliography 91
Computer Securitycooiiiiiiniinnan., e 91
Databasesottt e e 91
Distributed Computing Environment 91
Network File System i, 92
Programminguuururumnnoiiieianaenananeenn. 92
XWIndow Systemoviiniiiiiiiiiii it 92
Appendix A: MessageFormats 93
Appendix B: TIE-In User and System Requirements 125
Appendix C: Utility Programs and Scripts 127
Appendix D: The TIE-In Database Tables 131

Figures

1. Schematic diagram of the TIE-In system infrastructure. 3

2. TIE-Insystemdiagram.cooiiuninnunennnnnenennn. 8

3. User authentication with SecurID. 15
4. Obtaining services on behalf of thewuser. 16
5. Themain TIE-InWindow. i i, 26
6. Initialization of the mnt_auth process.co.... 59
7. Authorization of the user and the application server. 61
8. Mounting the user’s home directory. 63
9. Tlustration of the tie_home mountpoint. 64
10. Operationof thenfs_server. oo, 65

vii

Tables

1. System Infrastructure Network Protocols. 9

2. TIE-In FES System Parameters 11
3. Current Session Information.cooviiiiininnenennen... 22
4. Request types sent bythe SMtothe RRM............ 29
5. Request types sent by the RRMtothe TAS 30
6. Request types sent by the RRMtothe AcetM 31
7. Description of TPM add request Dametypes.ovvvvvnenennnn.. 39
8. Description of TPM information request nametypes 41
9. Description of TPM delete request nametypes. 42
10. The Messages sent from the RRMtothe TAS.................... 43
11. Valid AuthenticationLevels.......... o i, 44
12. The Arguments Passed to the Local Authorization Script 45
13. Environment Variables setbythe TAS 47
14. The Arguments Passed to the add/delete Account Script............ 50
15. The initialization information senttomnt_auth. 59
16. The information sent by the TAStomnt_auth.................... 61
17. Results of CFS vs. NFS read performance: Test1................. 69
18. Results of CFS vs. NFS read performance: Test2................. 69
19. Results of CFS vs. NFS write performance: Test3 69
20. Results of CFS vs. NFS write performance: Test4 70
21. Results of CFS vs. NFS write performance: Test5 70
22. Results of CFS vs. NFS write performance: Test6 71
23. Xforward request operation types and return values 85
24. Description of the Database Tableuser_info 131
25. Description of the Database Table user_group_ids 133
26. Description of the Database Table user_charge_accounts........... 133
27. Description of the Database Table user_applications. 134
28. Description of the Database Table application_info................ 135
29. Description of the Database Table application_groups 135
30. Description of the Database Table application_addresses 136
31. Description of the Database Table application_costs. 136
32. Description of the Database Table application_consultants. 137
33. Description of the Database Table application_access.............. 137
34. Description of the Database Table active_tasks................... 138
35. Description of the Database Table active_units................... 139
36. Description of the Database Table completed_tasks 140
37. Description of the Database Table completed_units 141
38. Description of the Database Table archived_tasks................. 142
39. Description of the Database Table archived_units................. 143
40. Description of the Database Table registration_info 144
41. Description of the Database Table registration_charge_info......... 145
42. Description of the Database Table registration_logins.............. 146
43. Description of the Database Table application_group_list. 146

viii

44. Description of the Database Table charge_account_info............ 146

45. Description of the Database Table project_info................... 147

46. Description of the Database Table project_access................. 148

47. Description of the Database Table current_sessions 148
ix

TIE-In System Description

Acronyms

AcctM - Accounting Manager

ADaPT - Advanced Design and Production Technologies
API - Application Programming Interface
ASCI - Accelerated SuperComputing Initiative
CFS - Common File System

CORBA - Common Object Request Broker Archltecture
CSS - Common Services System

DCE- Distributed Computing Environment
DFS - Distributed File System

DOE - Department of Energy

EON - External Open Network

EVE - Enterprise Viewing Environment

FES - Front End System

GW - X11 Gateway

KAS - Kerberos Authentication Service

ICE - Interactive Collaborative Environment
IP - Internet Protocol

IRN - Internal Restricted Network

ISN - Internal Secure Network

KDC - Key Distribution Center (kerberos)
MFES - Master Front End System

NES - Network File System

NTP - Network Time Protocol

OSF - Open Software Foundation

PC - personal computer, IBM compatible and Macintosh
PPP - Point-to-Point Protocol

RPC - remote procedure call

RRM - Resource Request Manager

SCIS - Service Center Information System
SIDS - SecurlID server

SLIP - Serial Line Internet Protocol

SM - Session Manager

SME - small or medium sized enterprise

TAS - TIE-In Application Server

TCP - Transport Control Protocol

TGT - Ticket-Granting Ticket (kerberos)
TIE-In - Technology Information Environment with Industry
TPM - TIE-In Profile Manager

UDP - User Datagram Protocol

WFO - Work for Others

WS - workstation

X11GW - X11 Gateway

Introduction

The Technology Information
Environment with Industry System
Description

Introduction

The Technology Information Environment with Industry (TIE-In) provides a new
mechanism for working with a distributed set of users: remote electronic access to
packaged technical solutions. This mechanism focuses on providing the nonexpert with
guided solutions embedded in intelligent user interfaces, while minimizing the investment
required to utilize these technologies. Technical solutions available through TIE-In include
such capabilities as computational simulation, modeling and design, and development and
testing facilities. These solutions can benefit not only internal Sandia employees, but the
manufacturing, energy, acrospace, electronics, and automotive industries as well.

By utilizing modern information and computer technologies, TIE-In employs existing
capabilities and expertise to provide practical and timely outreach to its customers. This
outreach effort provides users with an on-line, on-demand service, which offers proven
solutions to a wide variety of problems in a practical setting. The emphasis is on providing
users with solutions using technologies at the national laboratories without requiring that
users have a lot of technical expertise or high-performance computers. These technologies
are packaged with intelligent user interfaces and include education and training materials,
on-line help documents, expert systems and databases, guided software tools, and
distributed computing resources.

The TIE-In system is based on a number of key elements: packaging of applications with
intelligent user interfaces, controlled and secured on-line access to distributed laboratory
application servers, and use of established graphics protocols for multiplatform
compatibility. Intelligent user interfaces make it easier for lab-developed applications to be
used by more than just the application developers. In general, a scientist or engineer should
be able to use these technical applications without having to be a UNIX expert or spending
months learning the idiosyncrasies of a piece of technical software. This packaging is
especially important since TIE-In allows users to remotely access a wide variety of
different resources.

TIE-In uses an integrated system to perform user authentication and to control access to lab
applications and user files. By allowing users to run applications on computers that are
configured and maintained at the labs, a broader range of applications can be made
available to users. In contrast to traditional methods for distributing software, TIE-In
avoids many of the configuration and software support issues that arise when users try to

TIE-In System Description

run software on multiple platforms. This makes it practical to share packaged applications
with users without having to make a large commitment to port the application to a broad
range of potential user platforms. In addition, users gain the benefits of using applications
that are upgraded and maintained by the scientists and engineers that developed and
maintain the technology.

TIE-In was initially developed to on reduce barriers to working with small-to-medium-
sized enterprises (SME) to access a wide range of Sandia-developed applications. Since its
initial implementation in June 1994, it has been used by eight universities, six industrial
users and eight government users. Of these, six have been paying users with a total user fee
collection of over $50,000. While these external usage numbers are still low, the TIE-In
system is being heavily used by internal Sandia users to access a variety of corporate and
scientific applications. TIE-In is also being used as the authentication mechanism for users
from the other DOE laboratories to access Sandia’s classified resources via SecureNet.

The purpose of this report is to describe the main components of the TIE-In system.

TIE-In Technical Overview

TIE-In Technical Overview

. This section provides a general overview of the TIE-In system infrastructure. This includes
a discussion of the communication network, instructions on how to access TIE-In, and brief
descriptions of the processes that comprise the TIE-In system.

The TIE-In system infrastructure is composed of four key components: the Kerberos
Authentication Service (KAS), the Front End System (FES), the Common Services System
(CSS), and the TIE-In Application Server (TAS). Figure 1 shows the relationship between
the components of the infrastructure and the underlying network.

Kerberos
Front End ‘A}i‘f“_’"t_‘faff‘f’f se“”ce Common Services
...System N System_ ______
Session Manager J& - —;@roflle Manage),\%
v

ccounting Manag@/

Gateway Services!
X111 CFS

[

-

o

Apgllcatlon
erver -

UNIX System + ;

Process
Data Flow

Firewall Router

- -

.......................

Figure 1.

Schematic diagram of the TIE-In system infrastructure.

TIE-In System Description

Kerberos Authentication Service

Authentication is the key to the security of TIE-In. TIE-In not only authenticates the user at
the Front End System, but authenticates all interprocess communication as well. This is
accomplished through the use of Kerberos tickets. Kerberos is an authentication scheme

developed by MIT for project Athena.! It uses a trusted third-party authentication
methodology utilizing private keys and has been used in Sandia’s Internal Secure Network
as a network-authentication service for a number of years. Each user and application
registered with TIE-In has a corresponding principal entry in the Kerberos Authentication
Service (KAS). The KAS issues tickets, which when presented to the server, authenticate
the user and the system that issued the request.

Additional authentication of users is available through the KAS by using one-time
password devices such as the Security Dynamics SecurID card. When users are further
authenticated with such a device, the KAS notes this in the Ticket Granting Ticket (TGT)
it issues. This information cannot be modified by any process except the KAS since the
TGT is encrypted in a key known only to the KAS. This same information is contained
within the tickets presented to the servers, thus allowing servers to make decisions based
upon the level at which the user was authenticated.

For more information about Kerberos, see “Authentication” in the “TIE-In Security”
section. :

Front End System

The Front End System provides the initial user interface to TIE-In applications. This
interface is provided through the Session Manager (SM), an OSF (Open Software
Foundation) Motif graphical user interface. The Session Manager performs user
authentication and initiates user application requests to the Request Manager, located on the
Common Services System. The Session Manager is also the user’s interface to the
Accounting Manager and the Profile Manager, also located on the Common Services
System. The Session Manager provides a wide range of administration tools for the TIE-In
system and application administrators.

Gateway Service

A key service provided by the Front End System is the Gateway Service. The Gateway
Service provides seamless access between applications and the user’s workstation or
desktop system.

TIE-In Technical Overview

X11 Gateway

The X11 Gateway (X11GW) provides seamless access from all applications to the user’s
workstation or PC. Applications may reside anywhere on the network and may move from
system to system.

X11 servers typically require users to specify the system that will be allowed access by way
of the xhost command or some similar mechanism, or open up access to all X11 clients.
This requirement would force all users to know or be notified of where each application
resides. To overcome this, the Front End System establishes an X11 gateway: for the user.
All applications send X11 data to the gateway, which then forwards it to the user’s X11
server. With the gateway, users only need to allow X11 access to the Front End System.
Since there is a slight decrease in performance associated with using the gateway, users
may override this feature by disabling it through the X11 Security button within their main
TIE-In window.

TIE-In also offers the user the ability to require notification of X11 access. When this
option is used, a notification window will appear on the user’s display prior to any
connections to the user’s X server by any of the TIE-In applications. The notification
window asks the user if he wishes to allow the access. By default this feature is turned off,
since it can be confusing to users.

The X11 gateway service incorporates the Interactive Collaborative Environment (ICE).
With ICE, users may specify X displays with which they wish to share the application. This
allows for collaborative design and interactive assistance with experts on TIE-In
applications.

Common File System

TIE-In’s Common File System (CFS) provides distributed file service access between
applications and a remote file system established for the user. This allows all applications
to read from and write to the user’s home directory. For a detailed discussion about the
CES, see the “TIE-In Common File System” section.

Common Services System

The Common Services System maintains all user and application information, and collects
accounting and usage information. All requests to Application Servers go through the
Common Services System. Three processes comprise the Common Services System: the
Request Manager, the Profile Manager, and the Accounting Manager.

The Request Manager is the intermediary between the Session Manager and all of the
Application Server processes. The primary function of the Request Manager is to relay
requests, status, and accounting information between the Session Manager, the Application

TIE-In System Description

Servers, and the Accounting Manager, while monitoring the states of active tasks. The

Request Manager takes Session Manager requests, places an identifier on them, and passes

them to the appropriate Application Server. This process also receives state and accounting
information from the Application Servers and passes it on to the Accounting Manager.

‘When active tasks are complete, the Request Manager notifies the Gateway Service to close

down any gateways established for that request. Occasionally, if status and accounting

information has not recently been received for an active task, the Request Manager will -
query the appropriate Application Server for updated status information.

The Profile Manager is the agent between the Session and Resource managers and the TIE-
In database. Its primary function is to write, update, and read all user and application
information to and from the database. All users making queries or updates are checked to
ensure that they have the permission to do so. Users are only allowed to modify certain
fields in their own user record. Similarly, application administrators are only allowed to
modify the records of applications for which they are the administrator. TIE-In
administrators can modify any information contained in the database.

The Accounting Manager maintains the state of application tasks, as well as accounting
information that may have been received by the Request Manager from the Application
Servers. The Accounting Manager is available to the users for inquiries concerning active
and completed tasks, as well as accumulated charges.

Application Server

The TIE-In Application Server is the process that runs on the machine serving the
application. It authenticates and validates incoming requests, performs the authorization
when users wish to register for or run an application, executes and monitors the application,
and returns status and accounting information back to the Request Manager. Local system
administrators have final control over who has access to an application. Through a local
configuration file, the Application Server will execute authorization and account setup
scripts, provided by the local administrators when users register for, or request to run, an
application. Local administrators may also elect to have the application run under a captive
account, or with a totally different root filesystem than other users of the system. A single
Application Server can handle many applications.

Multiple Organizational Realms

TIE-In can be scaled into multiple organizational realms. Each realm is responsible for
administration of its own Front End and Kerberos Authentication Systems. Users receive ,
authentication from their local realm, but they may still access applications in different

realms. This type of configuration allows organizations to share resources in a limited and

controlled fashion. The Common Services System is shared by all realms, which provides
information about users and applications in all realms. The Profile Manager will ensure

TIE-In Technical Overview

uniqueness of usernames and userids, which can be an area of concern when resources are
shared between organizations.

System Diagram

Figure 2 is a diagram of the TIE-In system, showing the communication between the main
TIE-In processes. In this diagram the Front End System, the Common Services System, and
the Kerberos Authentication Service are on the same workstation. This configuration is
referred to as the Master Front End System (MFES). In the current implementation of TIE-
In, the MFES resides on a Hewlett Packard 735 workstation named tiein.sandia.gov.

In the diagram, the Resource Request Manager (RRM), TIE-In Profile Manager (TPM),
and Accounting Manager (AcctM) comprise the Common Services System (CSS), while
the Front End System (FES) consists of the Session Manager (SM) and the gateways. The
KAS consists of the Key Distribution Center (Krb5kdc) and the administration daemon
(kadmind). Although it is not shown on the diagram, the RRM, TPM, AcctM, and TAS all
communicate with the KAS.

Figure 2 shows the messages that are passed between the main TIE-In processes. In each
case, the client process sends a request to the server process and receives a reply. The
formats of all the messages are given in Appendix A: Message Formats. The messages are
also discussed in more detail in later sections describing the main TIE-In processes.

Communication Network

TIE-In is designed to work across a Transport Control Protocol/Internet Protocol (TCP/IP)
network, with a router subsystem interconnecting the various subnetworks. This router
subsystem may act as a firewall between the outside network and the internal subnetwork.
The infrastructure of TIE-In works with these firewall routers by acting as a trusted agent
through which access between users and applications can be accomplished by secure,
authenticated, and controlled methods.

The Sandia network is comprised of primarily two subnetworks: the External Open
Network (EON) and the Internal Restricted Network (IRN). The Master Front End System
is located on the External Open Network. The EON has network connections to the Internet
as well as to the Internal Restricted Network. Applications may be located on either the
EON or the IRN. The Master Front End System also acts as the Kerberos Authentication
Service for user and request authentication. The EON backbone utilizes an interconnection
subsystem of routers to connect local area networks to the backbone. In some cases, such
as with the interconnection of the IRN to the EON, these routers have been configured to
restrict data connections. The restriction placed on these routers will only allow
connections between certain systems or networks and limit the connection to specific
network protocol ports. This feature provides additional security by limiting data
connections to known paths. For some applications this capability may be a requirement.

TIE-In System Description

LS 8 4 8 % L 8 8 8 88N %8 8 8 8 3 8% 0 8 N 8 80 83 0 88 8 8 30 0N N8 8 8 S AN\

Master Front End System (tiein.sandia.gov)

|
‘ Krb5kdc Kerberos

‘ Authentication
' Service

Workstation y (KAS)

- —— -y

T OTOVETONON
A
\
\
\
\
\
¢
\
\
\
\
\
\
\
\
\
\
\
\
\
\
)
\
\
\
A

KRB_AS_REQ

(A T o - - -

R
\
\
N
\
\
\
\
\
\
\
\
\
\
\
Fr—— = = — = ﬂ=
- TIE-In Profile\| \
TIE_AUTH REQ Manager | :
4_&_4_' TPM
: S] M TIE_A'TH_RFPLY () : :
\ ession Manager - \
L--—f,-.____l: (SM) espor e (Accounting \I\
\| Manager I\
\ - | (AcctM) |=
N r——gt1g8-——2 1 I3 I\
\ L o = < . |\
\I L | = 3 | g = :
\! K il ittt I R |-
I |l ~ [|\
\| Pl E \
. §= Satewayq | | Resource Request Manager |:
: N1 ! (RRM) "\
S] css I\
: \ L _—— e — — —— - JN
: N ;] P - - \
g ~¢\\ “‘s E\
N ‘ = “\\
: . ’0 '
"“"

TIE-In Application
e...is{ Application Server
i!.ll’*—__" (TAS) ___dae=

\\\‘\\\\\\\\““ ““““
"

Figure 2. TIE-In system diagram.

The network protocols and ports used throughout the TIE-In System Infrastructure are
defined and listed in Table 1. The Source/Process column reflects the source of the data and
the process that created it. The Destination/Process column reflects the destination for the
data and the process that will receive it. The last column reflects the actual port or ports to
be used for the data transmission.

TIE-In Technical Overview

Table 1. System Infrastructure Network Protocols

Source/Process | Destination/Process 1;:;2231(Type Port Value
WS/telnet FES/SM i TCP 23
FES/SM WS/telnet P TCP >1023
FES/SM WS/Xserver P TCP 6000
WS/ Xserver FES/SM P TCP >1023
FES/SM KAS/krbSkdc P UDP 88
KAS/krbSkdc FES/SM P UDP >1023
FES/SM KAS/kadmind 14 TCP 751
KAS/kadmind FES/SM 1P TCP >1023
FES/SM RRM P TCP 1955
RRM FES/SM ip TCP >1023
MFES/RRM FES/SMlog jig UDP >1957
MFES/RRM App/TAS P UDP 1956
App/TAS MFES/RRM P UDP 1957
App/TAS KAS/krb5kdc IP UDP 88
KAS/krb5kdc App/TAS IP UDP >1023
App/TAS KAS/kadmind P TCP 751
KAS/kadmind App/TAS P TCP >1023
App/application FES/X11GW 1P TCP 6000-6100
FES/X11GW WS/Xserver P TCP 6000
WS/Server FES/X11GW 1P TCP >1023
FES/X11GW App/application 1P TCP >1023
FES/SM MFES/TPM P TCP 1956
MFES/TPM FES/SM P TCP >1023
FES/SM MFES/AcctM P TCP 1957
MEES/AcctM FES/SM 1P TCP >1023
MFES/RRM MFES/AcctM 13 TCP 1957
MFES/AcctM MFES/RRM P TCP >1023

TIE-In System Description

——

Table 1. System Infrastructure Network Protocols (Continued)

L Network
Source/Process | Destination/Process Protocol Type Port Value
WS/mount MEFES/mnt_server IP TCP < 1023
WS/mount MFES/mnt_server P UDP <1023
WS/nfs MFES/nfs_server P UDP 2049
where

WS User’s workstation/PC

FES Front End System

MFES Master Front End System

KAS Kerberos Authentication Service

App Application

SM Session Manager

RRM Resource Request Manager

TAS TIE-In Application Server

TPM TIE-In Profile Manager

AcctM Accounting Manager

X11GW X11 Gateway Service

TCP Transport Control Protocol

UDP User Datagram Protocol

SMiog Session Manager Message Logging

Connecting to TIE-In

Access to TIE-In can be accomplished through the Internet or via a modem. For those users
with direct access to the Internet, connecting to TIE-In is a two step process. First, the user
will need to allow access to their local Xserver by the Front End System. This is
accomplished on UNIX workstations by issuing the command

xhost tiein.sandia.gov.

On a PC, the X-Windows package normally provides some mechanism for maintaining an
access control list. Simply add tiein.sandia.gov to this list.

The user can then use telnet to connect to tiein.sandia.gov (132.175.133.1). On a UNIX
workstation, this is accomplished by issuing the command

telnet tiein.sandia.gov.

The method for initiating a telnet session on a PC depends upon the TCP/IP software being
used, so users will have to consult their documentation. Prior to executing the telnet

10

TIE-In Technical Overview

command, UNIX users should ensure that their DISPLAY environment variable is set to
their local workstation.

After the telnet connection is established, the Front End System will attempt to present an
authentication window to the user. If it is unable to do so, it will prompt the user, through
the telnet session, to enable access with the xhost command. If the authentication window
still cannot be established, the user will be informed of the requirements for connecting to
the Front End System and the telnet session will be closed.

Access from systems that do not have direct Internet connections can be accomplished
through a Xyplex Terminal Server. The terminal server is enabled for Serial Line Internet
Protocol (SLIP) and Point-to-Point Protocol (PPP). A bank of seven modems is connected
to the terminal server. Users with the appropriate hardware and software can connect to the
terminal server by dialing (505) 844-4414. The modems have a baud rate of 14.4K and can
handle most industry standard protocols, including data compression. The terminal server
requires a username and password, which is the same username and password required for
accessing the TIE-In FES. Once connected, the terminal server will provide a prompt such
as “132.175.133.2>” which indicates the IP address of the terminal server port the user is
connected to. The user enables SLIP or PPP within the terminal server by issuing the
command

set port internet slip enable Or set port internet ppp enable.

At this point the connection acts as a node on the External Opén Network. Some additional
parameters that the user’s software may need to know are shown in Table 2.

Table 2. TIE-In FES System Parameters

Parameter Value

X11 Gateway’s IP address 132.175.133.254

TIE-In domain name .sandia.gov
IP addresses for the sandia.gov | 134.175.109.2, 134.175.109.4, 132.175.133.1
nameserver

To establish a connection to the Master Front End System, simply use the telnet command
described above (telnet tiein.sandia.gov).

Charging Customers

TIE-In offers the applications the ability to charge its customers. The cost of running the
application is set by the application administrator using the Session Manager. The

11

TIE-In System Description

application can specify up to seven unique accounting types. Typical items for which to
charge include CPU utilization, memory utilization, storage, and connection time. The
application can also charge a monthly-fee. The cost is defined on a per-unit basis. The
number of units of each type is returned by the TAS process serving the application. The
cost-per-unit is then multiplied by the number of units to obtain the cost for this accounting
type. The costs for all defined accounting types are then added to obtain the total cost for
the task.

The actual cost transfer from the application to the customer is accomplished using
Sandia’s Service Center Information System (SCIS). SCIS records are generated by TIE-
In on a weekly basis. The records are then uploaded and run through the SCIS system. The
charge number provided by the user when he ran the task is the one to which the cost will
be transferred. If the customer is a Sandia employee, the charge number will simply be a
CASE number. If the customer is not a Sandia employee, he must be with an organization
that has either signed a User Facility agreement with Sandia or established a Work for
Others (WFQ) agreement with DOE and Sandia. The agreements authorize the user to run
one or more specific TIE-In applications. Associated with the User Facility or WFO
agreement is a Service Action Number that identifies the customer. All applications are
assigned a Service Center Activity, which uniquely identifies the application to SCIS. The
charge number for the user is then comprised of the concatenation of the Service Center
Activity (four characters) and the Service Action Number (six characters). When a record
with a CASE number of this type is processed by SCIS, it correctly transfers the cost of the
task from the application to the customer.

12

TIE-In Security

TIE-In Security

This section discusses the security aspects of TIE-In. Security was designed into TIE-In
from the beginning and has been strengthened throughout the development and
maintenance phases of the project.

Authentication

Authentication verifies that a user is who he or she claims to be. It can be accomplished by
asking for something the user knows (such as a username and password), something the
user has (such as a SecurID card), or something biometrically unique to the user (such asa
fingerprint or a retinal scan). Authentication is an essential part of the security of TIE-In
and is performed by the Kerberos Authentication Service (KAS). The KAS authenticates a
user by asking for a username and password and, in some cases, a SecurID passcode.

User Authentication

When a user attempts to log on to the TIE-In Front End System and establish a session, the
user will be prompted for his or her username, password, and possibly a SecurID passcode.
This information is used to authenticate the user. The user can be authenticated at one of
three levels:

(1) Kerberos Version 5
(2) Kerberos Version 5 or SecurID
(3) Kerberos Version 5 and SecurID

The user’s authentication level is set by a TIE-In administrator. If the user’s authentication
level is Kerberos Version 5 only, the user will be prompted for a username and password
only. For the other two levels, the user will also be prompted for a SecurID passcode. If the
user’s authentication level is set to the second level, the user will be prompted to enter a
SecurlID passcode. The user may, however, choose not to enter a passcode. If the user’s
password is valid, he will be authenticated at the Kerberos Version 5 level only and a
session will be established. In this case, the user will not be able to access any applications
that require SecurID authentication, but will be able to access applications that only require
Kerberos authentication.

The third level of authentication is the most secure. In this case, the user must enter a valid
password and a valid passcode, or the authentication will fail. Thus, in order for an imposter
to log in as this user, the imposter would have to know not only the user’s password, but
also the user’s SecurID pin number. In addition, the imposter would have to physically have
the user’s SecurID card. All TIE-In administrators are required to be authenticated at this

13

TIE-In System Description

level. This is simply because TIE-In administrators can view and change all information
stored in the TIE-In database, so unauthorized access must be prevented.

Figure 3 shows a simplistic view of how a user who provided a SecurID passcode is
authenticated. In this figure the user is the client. In part (a) of the figure, the user has
provided his username, password, and passcode to the Session Manager. The Session
Manager converts the user’s password into a key, K. The user’s SecurlD passcode is then
encrypted using K. The client’s name (the username), the encrypted passcode, and a
request for a Ticket-Granting Ticket (TGT) is sent to the Kerberos Authentication Service
(KAS). The KAS looks up the client’s key from its database and uses it to decrypt the
passcode. The passcode is then sent to the SecurID server (SIDS) for verification.

Figure 3, part (b) shows the return path of the authentication procedure. If the passcode sent
to the SIDS is valid for the user, the SIDS sends a reply to the KAS indicating that the
passcode is valid. The KAS then creates a session key for use between the client and the
KAS, K¢ kas» and generates the requested Ticket-Granting Ticket, Tyg;. Within the Ty, the
KAS sets a flag to indicate that the client has been authenticated with a SecurID passcode.
It also stores K¢ xag in the Ticket-Granting Ticket. The Ty is then encrypted using the
private key of the KAS, Ky 4 5. Both the session key and the ticket are then encrypted using
the client’s private key, K. The Session Manager can now decrypt the information returned
by the KAS using the client’s private key, K.. The user has now been authenticated.

Figure 4 shows how the Session Manager can obtain network services on behalf of the user
by using the user’s Ty, An example of this is when the user requests to run an application.

The SM must send a message, containing an appropriate ticket, to the Resource Request
Manager.

In part (a) of Figure 4, the Session Manager is requesting a ticket to be used to request a

service from the server. The Session Manager sends the Tyg, encrypted in Kg 4 g, along with
the server name and an authenticator, A. The authenticator contains information, such as a
timestamp and the name of the user, which can be used to check for replay attempts and to
validate the identity of the requestor. If the identity of the user in the authenticator does not
match the identity in the ticket, the ticket request is denied. The request will also be denied
if the timestamp in the authenticator is more than 5 minutes away from the current time

(timestamp - current_time > 5 minutes). The authenticator is encrypted in the session key
between the client and the KAS, K¢ xas, While the Ty, is encrypted in the private key of
the KAS, Kgs. When the KAS receives a request for a service ticket, it decrypts the Tyg

and the authenticator, verifies that the information matches, and checks the expiration time
in the Ty to ensure that the ticket is still valid.

14

TIE-In Security

@ Client,{Passcode }Kc, Tgt rc:quest> @ Passcode @
(@)

{Kcxas {Tipt} Kgas}Kc KAS g 2ss/Fail @
(b)

SM Session Manager

KAS Kerberos Authentication Service

SIDS SecurID Server

K¢ Client Private Key

KKAS KAS Private Kcy

Tigt Ticket Granting Ticket

Kckas Session Key between Client and KAS

{IK Object encrypted in key K

Figure 3. User authentication with SecurID.

After the KAS has verified the Ty, and the authenticator, it generates a ticket for the server,
Tserver- As shown in Figure 4, part (b), Tgepver is encrypted in the server’s private key, Kg.
The KAS also generates the session key for the client and server, K¢ g, and places a copy
of this key into Tgeryer. Both Teeryer and K¢ g are then encrypted in K¢ g o, the session key
between the client and the KAS. The client now has the ticket required to talk to the server.

Figure 4, part (c) shows the client requesting a service from the server using the ticket,
Tserver Obtained in the previous step. The client again generates an authenticator, encrypts
itin K¢ g, and sends it, along with Ty, to the server. The server decrypts the ticket and
the autbenticator. It then verifies that the information matches, that the time limits have not
been exceeded, and that the ticket is still valid. It then performs the requested service.

15

TIE-In System Description

(@)
V
¢ UTserver}Ks: Ke st ras @
® Tserver CONtains
Kes
S
A AT K
@ {A}Kc s { Tserver}Ks @
(©)
KAS Kerberos Authentication Service
Kxas KAS Private Key
Tige Ticket Granting Ticket
Kckas Session Key between Client and KAS
Kg Server Private Key
Kcs Session Key between Client and Server
Tserver Ticket for Server
A Authenticator
{IK Object encrypted in key K

Figure 4. Obtaining services on behalf of the user.

Access Control

Access to an application can be controlled with a number of different methods. Each
method is independent of the others. The main access control methods are

(1) requiring users to register for the application
(2) setting the user authentication level
(3) providing an access control list via the Front End System

(4) providing an access control list on the application server

Each of this methods will now be discussed in more detail.

16

TIE-In Security

User Registration .

Application administrators have the option of requiring users to register for the application
before being able to run it. When a user registers for an application, his request is sent to
the TAS process on the application server. The TAS process will execute a registration
script if one has been specified in the configuration file. In this script, the administrator can
do a number of things to control access. For example, he can maintain a list of users who
are allowed to register for the application. Users who are not on the list will have their
request denied and will not be able to access the application.

If there is not a registration script specified in the configuration file but the application is
set up to require users to register, a mail message will be sent to the application
administrator when a user submits a registration. This allows the administrator to decide if
the person should have access to the application on a user-by-user basis. For more
information about the registration script, see “Description of an Add/Delete Account
Request Message” in the “TIE-In Application Server Process Description” section.

User Authentication Level

The application administrator must specify the level at which users of the application must
be authenticated. If the user is not authenticated at this level, he will not be allowed to
access the application. The authentication level is set in two places: the application’s entry
in the Front End System database and in the configuration file on the application server.

The authentication level can be set to one of three levels, with the first level being the
weakest authentication and the third level being the strongest:

(1) Kerberos Version 5
(2) Kerberos Version 5 or SecurlD
(3) SecurlD

If the user has been authenticated at a level greater than that required by the application,
access to the application will be granted.

Both the application administrator and the TIE-In administrators can set the authentication
level for the application on the Front End System. This authentication level is checked
against the user’s authentication level before any requests are sent to any of the application
servers. If the user’s authentication level is less than the required level, the user will receive
an error message indicating that his level of authentication was too weak.

Even if the user has been authenticated at the proper level as specified in the Front End
System, the user must also have been authenticated at the appropriate level as specified for
the application in the configuration file. Since this file resides on the application server,
only the application administrator can modify the required authentication level. If the
application can run on more than one server, each server has a configuration file and can
therefore set the required authentication level for the application on that server. This allows
one server to require only Kerberos authentication, while another server can require
SecurID authentication. If the user tries to run the application but has not been

17

TIE-In System Description

authenticated at the level specified in the configuration file, he will receive an error
message indicating that he does not have permission to run the application.

Access Control List via the Front End System

The TIE-In Front End System offers the application administrator the option of creating an

access control list for the application. If a user is not on the access control list, he will not 5
even be aware that the application exists. He will not be able to get information about it,

register for it, or attempt to run it. When the administrator wants to give access to a user,

he can simply add him to the access list. The user can then register for the application, and

if the registration is successful, he can then run the application.

Access Control List on the Application Server

The access control list on the Front End System is a good method for limiting access to an
application. The one disadvantage of this method is that TIE-In administrators can also add
users to the access control list of an application. While this does not really pose a problem,
amethod exists that gives the application administrator final authority over which users can
run the application. This method is to provide a local authorization script, which will be
‘executed by the TAS when a user requests to run the application.

The application administrator can use the local authorization script to maintain an access

control list on the server, independent of the access control list on the Front End System.

Thus, even if a user is on the access control list on the Front End System, he must also be
on the local access control list or his request will be denied.

An application can use the local authorization script in conjunction with the registration
script to maintain an access control list. When a user registers for an application, his name
can be added to the access control list. When the user then runs the application, his name
can be verified against the access control list before allowing him to run the application.
When the user removes the application from his list, his name can then be removed from
the access control list. This is a simple method to ensure that anyone attempting to run the
application has registered for the application, without being too restrictive about who can
access the application.

For more information about the local authorization script, see “The Local Authorization
Policy” in the “TIE-In Application Server Process Description” section.

The X11 Gateway

The TIE-In Front End System and all of the associated TIE-In applications use X Windows
for their Graphical User Interfaces. This provides a common presentation method between
all of the applications. A couple issues had to be resolved, however, before TIE-In could
use X in a seamless manner.

18

TIE-In Security

In the current Sandia computing environment, systems that reside on the External Open
Network (EON) or on a network external to Sandia cannot access a user’s X server if it
resides on the Internal Restricted Network. The X packets are blocked at the packet-
filtering router, commonly known as the diode, separating the EON from the IRN.
Therefore, a mechanism had to be developed to allow seamless flow of X Window data
between the EON and the IRN.

The second issue related to using X Windows is that most X11 servers require the user to
specify all systems that are allowed to access the user’s display. Alternatively, the user can
specify that all X11 clients can access his display. The latter case is highly undesirable,
because it allows any system to access the user’s display. This can be a problem because it
is relatively easy to capture a user’s display once given access to it. Thus, an intruder can
easily capture the user’s display without the user being aware of the attack. This potential
security hole can be closed by having the user specify only those systems that are allowed
to access his display. This is typically done with the xhost command on UNIX systems, and
with an access list on most PC X-Windows packages. This approach, however, would
require the user to know all of the systems on which the various TIE-In applications reside.

Both of the above mentioned problems are solved by using an X11 gateway. When a user
selects an application through the Session Manager, an X11 gateway is established. All
applications send X11 data to the gateway, which then forwards it onto the user’s X11
server. The diode separating the EON from the IRN has been configured to allow the TIE-
In machine, on which the gateway processes run, to access X11 servers that reside on the
IRN. Thus, seamless access between the EON and the IRN is achieved. In addition, using
the gateway means that only the TIE-In machine needs to be given access to the user’s X11
server.

Use of the X11 gateway does incur a performance penalty of 10 percent to 50 percent. Thus
if a user does not want to use the gateway for performance reasons, the capability exists to
easily disable it through the main TIE-In window. Efforts are underway to reduce this
performance penalty.

Magic Cookies

When access is granted to an X11 client, all users on the client are given access. Thus, it
would be possible for an unauthorized user on the client to access the user’s X11 server. To
solve this problem, TIE-In implemented the use of magic cookies. The concept of magic
cookies was developed at MIT and is included in X11 release 5 (X11RS5).

When a user runs an application, the X11 gateway process creates a magic cookie, which
is simply a 32 character key. The magic cookie is then associated with the user and with the
proxy display created for the user by the gateway. This information is sent from the X11
gateway process to the Session Manager. The Session Manager then forwards the
information to the TIE-In Application Server (TAS) process running on the application
server. The TAS appends the proxy display and the magic cookie to a file named

/tmp/. Xauthority_username, where the username is the TIE-In username of the user. If the
file does not exist, it will be created. The permissions on the file are set so that only the user

19

TIE-In System Description

has read/write permission. Thus another user on the system cannot view the file and obtain
the magic cookie.

Before the TAS executes the application, it sets two environment variables: DISPLAY is
set to the proxy display created for the user, and XAUTHORITY is set to the user’s
.Xauthority file. When the application is executed, it reads the magic cookie from the
.Xauthority file for the proxy display and presents it to the gateway process for
authentication. If it matches, the application is allowed to access the user’s X11 server. If
it does not match or if it is an empty cookie, access to the user’s server is denied. In this
manner, authentication of the X11 client is brought down to the user level.

Notification

TIE-In offers the user the ability to require notification of X11 access. When this option is
used, a notification window will appear on the user’s display prior to any connections to
the user’s X server by any of the TIE-In applications. The notification window asks if the
user wishes to allow the access. By default this feature is turned off, since it can be
confusing to users.

Interactive Collaborative Environment

Incorporated into the X11 gateway service is the Interactive Collaborative Environment
(ICE). With ICE, users may specify X displays with which they wish to share the
application. This allows for collaborative design and interactive assistance with experts of
TIE-In applications.

Logging

Extensive logging is performed by TIE-In. The messages generated by logging are helpful
in determining the activity on the system, watching for problems, and problem debugging.
The types of logging performed by the various TIE-In processes are discussed below.

Syslog

All of the TIE-In processes utilize the syslog mechanism for performing extensive logging.
The processes that perform logging include the Session Manager, the Resource Request
Manager, the Profile Manager, the Accounting Manager, and the three processes that
comprise the Common File System. The X11 gateway service and the Kerberos
authentication service log messages as well.

All messages are written to a common file, /usr/adm/tiein.log, on the Front End System. By
using the UNIX tail command, TIE-In administrators are able to view the messages that are
written to this file as soon as they are written. Thus, if there is a problem, it is usually
quickly detected by a TIE-In administrator.

Various types of messages are logged by the different processes. The Session Manager logs
a message when a user makes a connection to the Front End System, when a user

20

TIE-In Security

_ successfully logs in (thus initiating a session), and when a user logs out (ends the session).
The RRM, TPM, and AcctM all log messages when they initiate or receive a request and
when they send or receive a reply. Included in the log message is the type of request or the
status of the reply. Thus it is very simple to determine what requests are being sent and if
the request was successfully serviced. These processes also log a steady state message,
which is simply a message to indicate that the process is still running. The X11 gateway
service logs a sequence of messages when establishing a proxy display on behalf of the
user. It also logs a message when the proxy display is closed.

The Kerberos Authentication Service logs a variety of messages. The most useful messages
are those that indicate when the Key Distribution Center (KDC) has issued a service ticket
and when a user has failed authentication. The most common cause of an authentication
failure is when the user has forgotten or incorrectly typed his or her password. If multiple
failures occur within a short time, an administrator will usually call the user. This is to
ensure that the user has been trying to log in, and if so, has forgotten his password. If he
has, a TIE-In administrator can easily reset it for him.

The messages written to the log file provide a very useful mechanism used by the TIE-In
administrators to get a current picture of the state of the system. They also make it easy to
quickly detect any errors, thereby increasing the reliability of the system.

TAS Logging

The TIE-In Application Server process also performs logging. If it is able to write to syslog,
it does so. In this case the file resides in /usr/adm/tirrs.log on the application server. If it
cannot write to syslog, an alternate method is available to write to stdout. To accomplish
this, the application administrator should simply kill the #irrs processes, set the
TIE_TIRRS_DEBUG environment variable to 1 (one), then restart the firrs process and
redirect the output to a file.

The TAS logs a message when it receives a request, when it sends a reply, and when an
error occurs. It also periodically logs a steady state message. This information can be very
useful in debugging a problem.

For more information on the TAS, please see the “TIE-In Application Server Process
Description” section.

Change Logs

Another important logging feature of TIE-In is the tracking of who made what changes to
any user information, application information, or project information. These logs show
what fields were changed, by whom, and when the changes were made. Whenever an
update is performed, the Profile Manager writes a message to a file in the /usr/adm
directory on the Front End System. One file is for changes made to user information, one
file for changes made to application information, and one file for changes made to project
information. These logs can be helpful in auditing or in resolving any conflicts over who
made what changes and when the changes were made.

21

TIE-In System Description

The authority to make changes is tightly controlled by the TIE-In system. Normal TIE-In
users can only make changes to a limited number of fields in their own user record. An
application administrator can make changes to any applications for which he is listed as the
administrator. Similarly, changes to projects can only be made by a user who is listed as the
project manager for the project. A TIE-In administrator can make changes to any user,
application, or project information.

Session Logging

When a user logs into the TIE-In Front End System, a session is initiated for that user.
‘When a session is initiated, information about the session is written to a database table. The
entries in the table can only be viewed by TIE-In administrators. Administrators use this
information to determine who is logged into TIE-In. The information stored in the database
table and displayed to the administrator is shown in Table 3.

Every session is assigned an identifier that uniquely identifies the session. The identifier
can be used to retrace a user’s actions during the session, including what applications he
ran. The session identifier is composed of a number of fields that, when combined, will
uniquely identify the session for all time. The format of the identifier is

user_display:session_pid:start_date:start_time

where user_display is the IP address of the user’s X-Window display, session_pid is the
process id of the session on the Front End System, start_date is the date the session was
initiated, and start_time is the time the session was initiated.

Table 3. Current Session Information

Field Name Description

session_id the session id of the session

user_name the username of the owner of the session

user_display the IP address of the user’s display

fes the name of the Front End System to which the user
logged in

start_time the time the session was started, which is the time the
user logged in

‘When a user exits the TIE-In system, the information stored in the database about the user’s
session, along with the time the user exited the session, is logged to a file. This file can then
be used by an administrator to obtain information about all completed TIE-In sessions.

22

TIE-In Security

Security Scripts

A number of scripts are run automatically on the tiein machine (tiein.sandia.gov) that
extract pertinent information from the log files and mail the information to the TIE-In
administrators. The information extracted includes

(1) the names of systems outside of the Sandia environment that made connections
to TIE-In,

(2) the names of all users who logged into the TIE-In Front End System during the
current week,

(3) the names of all users who logged into the TIE-In terminal server during the
current week,

(4) the IP addresses of systems who made a connection to the tiein machine with
the source route option set, and

(5) detailed statistics about which users ran what applications at what time.

With the exception of the detailed statistics, the above information is generated and mailed
to the TIE-In administrators once a week. The detailed statistics are mailed once a week.
This information simply helps the administrators determine who has been using TIE-In,
what applications they are running, and when they are running them.

Information Verification

Employee Verification

When a Sandia employee submits a TIE-In registration, the user’s social security number
is verified against a file containing all current Sandia employees. If a match is not found,
the user’s registration is rejected. The most recent version of the employee file is obtained
daily to minimize any lag time for new employees. If the user is determined to be a Sandia
employee, the registration is accepted.

Each night, all registered TIE-In users that Sandia employees or contractors are checked
against the employee file to ensure that they are still an active employee/contractor. If a user
is determined to no longer be an active employee or contractor, his account is disabled and
a mail message is sent to all TIE-In administrators. Once the user’s account is disabled, he
will not be able to log in. After receiving the mail message, a TIE-In administrator will
investigate and delete the user’s account if necessary.

Nonemployee Verification

For those users who are not Sandia employees or contractors, the information provided on
the registration form is verbally verified with the user. In addition, each of these users must
have a Sandia sponsor who can verify their need to use the TIE-In system and provide
reasonable assurance that the user is trustworthy. Periodically, these users and their
sponsors are contacted to determine if they still require a TIE-In account. If not, the account
is deleted.

23

TIE-In System Description

All users who will be accessing applications on the Internal Restricted Network must have
a SecurlD card. External users requesting a SecurlD card must complete a Central
Computing Resource Request form, sign it, and return it to a TIE-In administrator. The
TIE-In administrator will then obtain the signature of the supervisor of the user’s Sandia
SpONSOr.

Charge Account Verification

All users are required to provide a valid charge account before being able to access any
applications. When a user inputs a CASE number, it is verified against the list of all valid
CASE numbers. The most recent version of the valid CASE number file is obtained nightly
from Sandia’s finance organization to ensure that the latest information is being used. Each
night, all CASE numbers stored in the TIE-In database are checked against the valid CASE
file. If a CASE number is no longer valid, all users who have provided that CASE number
will be required to input a new, valid CASE number. This process ensures that all CASE
numbers being used are valid.

Projects

TIE-In uses the concept of projects to help organize external customers. The driving force
behind the creation of projects was the method that TIE-In uses to charge external
customers. External customers must sign a contract with Sandia and provide money at the
time of entering into the contract. At this time, a project identifier is created for the users
from the external organization. Associated with the project identifier is the dollar amount
of the contract, the charge account to be charged, and an access control list. The access
control list specifies which users are allowed to charge to the project identifier. The charge
account number is typically a service action number created in the Sandia business office
at the time the contract was signed. This number will be used to transfer costs from the
application to the customer. The dollar amount of the contract is decremented each time a
project member runs an application that charges its users. The dollar amount is also
checked before a project member can run an application to help ensure that there is enough
money left to cover the cost of running the application.

All external customers must have a project identifier in order to run any of the TIE-In
applications. This helps to ensure that all external customers are representing a valid

external organization and are truly interested in one or more of the applications available
through TIE-In.

24

o

Session Manager Process Description

Session Manager Process Description

The Session Manager (SM) is the interface between the user and the rest of the components
of TIE-In. The SM communicates with all other manager processes, as well as with the
Kerberos Key Distribution Center and the X11 Gateway. The message formats for the
exchange of information between the SM and the other components of TIE-In are provided
in Appendix A: Message Formats. The following sections describe the various functions
performed by the SM.

User Authentication

When the user first connects to TIE-In, a session is created for the user. This session is
controlled by the Session Manager process. Prior to establishing the session, the Session
Manager uses the access control file /iein/etc/gw_acl to verify that the display with which
itis about to establish a session is allowed. The access control file contains a list of systems
and networks that are allowed to access TIE-In.

The first thing the user must do in the session is present his username and password. The
SM takes this information and submits a request to the TIE-In Profile Manager (TPM) for
information about the user. If the TPM does not return any information about the user, the
user is denied access to TIE-In. Otherwise, the SM sends the information returned from the
TPM to the Kerberos Authentication Service (KAS). The KAS attempts to validate the
information and, if successful, returns a Kerberos ticket to be used in subsequent
application requests by the user. From the profile information returned by the TPM, the SM
determines if the user has a hardware authentication device (SecurID card). If so, the user
is prompted to enter the passcode from that card. If he does not provide the passcode, he
may still be logged in but will be denied access to any applications that require hardware
authentication of its users. If the user enters the correct passcode, he is logged in and
presented with the main TIE-In window.

The Main Window

The main TIE-In window is shown in Figure 5. This is a selection-based window listing all
the facilities that the user may access. The window has three main components:

* The upper component is the authorized application list. This list contains the
applications available to the user.

* The middle component allows the user to perform general administration functions
such as changing his Kerberos password, obtaining status and accounting information
on current and prior tasks, modifying his profile information, and turning on or off the
X11 Gateway or X11 access notification.

25

TIE-In System Description

Figure 5. The main TIE-In Window.

» The third component of the main window, located on the bottom, is the message area
for error and informational messages. This area is equipped with scrollbars, allowing
the user to scroll back and examine earlier messages.

Running an Application

The most common use of the Session Manager is to submit a request to run an application.
When a user selects an application to run, the SM formats a request and sends it to the
Resource Request Manager (see the "Resource Request Manager Process Description”
section for more details). The RRM responds back with a status message. If the request was
successfully processed, the application will soon appear on the user’s window and a
message will be written to the message area on the user’s TIE-In screen. If the request was
not successfully processed, an error message will be displayed in a separate information
window on the user’s screen. Once the application appears on the user’s screen, the TIE-In

26

Session Manager Process Description

window is no longer necessary, but it can be used to obtain status information and perform
administrative functions, as discussed below.

Obtaining Status and Accounting Information

From the main window, the user can obtain status and accounting information about active
and completed tasks by selecting the Status/Accounting button (see Figure 5). When the
user presses this button, the SM issues a message to the Accounting Manager asking for the
information requested by the user. The user can request information on active tasks,
completed tasks, archived tasks, or all tasks. He can limit the search by selecting a time
period, selecting a particular application, or requesting information about a specific task.
The Accounting Manager returns the information to the SM, which then creates a status
window on the user’s display.

Modifying the User Profile Information

The TIE-In Front End System maintains information specific to each user, such as full
name, address, phone, e-mail address, etc. This information is referred to as the “user
profile.” Through the Session Manager a user can modify some of his profile information,
such as phone number, e-mail address, etc. When the user is done modifying his profile,
the SM sends the updated information to the TIE-In Profile Manager.

Adding or Removing Applications

When a user logs in for the first time, he will be presented with a list of applications that
are open for use by all registered TIE-In users. Applications can be added or removed from
this list by selecting the Application Registration button on the main TIE-In window. A
new window is displayed on the user’s screen that allows applications to be added or
removed. When the user selects an application to be added, the Session Manager sends a
request to the Resource Request Manager. The RRM in turn sends a request to the
appropriate TIE-In Application Server, which will execute an add account script for the
application if one exists. This script may or may not add the user. Many applications are
not open to all TIE-In users, and therefore may deny a user an account. If this occurs, a
message indicating that the user’s account could not be added is propagated back to the SM
and displayed on the user’s screen. In addition, a mail message will be sent to both the
application administrator and the TIE-In administrator indicating that the user failed the
accounting script. If the user’s account was successfully created, the application is added
to his application list.

When a user requests the removal of an application from his application list, the Session
Manager again sends a request to the Resource Request Manager. The RRM in turn sends
a request to the appropriate TIE-In Application Server, which will execute a delete script

27

TIE-In System Description

for the application if one exists. A success or failure message is then propagated back to the
user. If successful, the application is removed from the user’s list.

User Registration

The Session Manager provides the interface for a user to submit a registration for a TIE-In
account. The user simply fills in an electronic form that asks for the user’s full name,
address, phone number, etc., and the Session Manager sends the information to the Profile
Manager for storage. The Session Manager then notifies the TIE-In administrator, via a
pop-up window, that a registration has been submitted.

The TIE-In administrator uses the Session Manager to register a user. The Session Manager
displays a form that contains the user’s information and prompts the administrator to enter
a username and userid for the user. The administrator can also enter additional information,
such as an account expiration date, the user’s realm, the user’s home directory, etc. When
the administrator is done entering the information, the Session Manager sends a request to
the Profile Manager to register the user. The Profile Manager then places the information
in the TIE-In database.

28

Resource Request Manager Process Description

Resource Request Manager Process

Description

The Resource Request Manager (RRM) provides the network interface between the
applications and the Front End System. The RRM communicates with the Session Manager
(SM), the Accounting Manager (AcctM), and the TIE-In Application Server (TAS). The
messages sent between the processes are described in Appendix A: Message Formats. The
types of requests sent from the SM to the RRM, from the RRM to the TAS, and from the
RRM to the ACCTM are described in Tables 4, 5, and 5, respectively.

Table 4. Request types sent by the SM to the RRM

Request Type

Request Description

RRM_SUBMIT_REQ

sent when the user initiates a request to run an application

RRM_STATUS_REQ

sent when the user inquires about the status of an active
task

RRM_DELETE_REQ

sent when the user wants to delete an active task

RRM_ADD_ACCT

sent when the user adds an application to her application
list

RRM_DEL_ACCT

sent when the user removes an application from her appli-
cation list

Request Processing

When the RRM receives a request from the Session Manager (Table 4), it sends a similar
request to the appropriate TAS (Table 5). The request is then placed on a waiting list until
a reply message is received from the TAS. The TAS replies to the RRM and indicates the
request was processed successfully or that an error occurred. In either case, the status of the
request is sent back to the SM and on to the user. The request is then removed from the
waiting list or placed on an active task list that is maintained by the RRM.

TIE-In System Description

Table 5. Request types sent by the RRM to the TAS

Request Type Request Description

TIRRS_SUBMIT_REQ sent when the RRM receives a submit request from the
SM

TIRRS_STATUS_REQ sent when the RRM receives a status request from the SM

TIRRS_DELETE_REQ | sent when the RRM receives a delete request from the SM

TIRRS_ADD_ACCT sent when the RRM receives an add account request from
the SM

TIRRS_DEL_ACCT '| sent when the RRM receives a delete account request from
the SM

TIRRS_COMPL_ACK sent when the RRM receives a message from a TAS indi-
cating that a task has completed. This request is used to
inform the TAS that the RRM received the final informa-
tion.

Submit Request

When the user selects an application from his application list, the SM sends a submit
request (RRM_SUBMIT_REQ) to the RRM. If the request is processed successfully by the
TAS, the RRM notifies the Accounting Manager that a new task has been submitted by
sending ita ACCT_ADD_REQ message. The RRM will periodically receive updates from
the TAS containing the status and the latest accounting information for the task. This
information is also sent to the Accounting Manager through a ACCT_UPDATE_REQ
message. When the task completes, the TAS sends a message to the RRM that contains the
final accounting information. The RRM removes the task from its active task list and sends
the accounting information to the Accounting Manager.

Delete Task Request

Through the Session Manager, the user is able to delete an active-task. This is typically
unnecessary since the user is usually able to exit from the application. The situation may
arise, however, that the application and the user’s X server break communication and the
application does not immediately recognize that the connection has been lost. In this case
the user may use the Session Manager to delete the task. When this option is selected, the
SM sends a delete task request (RRM_DELETE_REQ) to the RRM. The RRM passes the
request to the appropriate TAS by sending it a TIRRS_DELETE_REQ request. The TAS
sends a hang-up signal to the specified task and returns a status message indicating that the
delete was successful or that an error occurred. This information is then sent back to the

30

Resource Request Manager Process Description

SM and on to the user. If the delete is successful, the RRM will soon receive a status
message from the TAS containing the final accounting information for the task. This
information is then sent to the ‘Accounting Manager.

Add Account Request

When the user attempts to add an application to his application list, the SM sends an add
account request (RRM_ADD_ACCT) to the RRM. The request is reformatted and sent to
the appropriate TAS in a TIRRS_ADD_ACCT request. If the application has an add
account script, it is executed by the TAS and the status (success or failure) is returned to
the RRM, which passes it back to the SM. If the user’s account was successfully added, the
application will be placed on the user’s application list. Otherwise, a message is returned
to the SM indicating that the user’s account could not be added.

Delete Account Request

When a user removes an application from his application list, the SM sends a delete account
request (RRM_DEL_ACCT) to the RRM, which reformats it and sends it to the appropriate
TAS via a TIRRS_DEL_ACCT request. If the application has a delete account script, it is
executed by the TAS and the status (success or failure) is returned to the RRM. This status
is then passed back to the SM and the user. If the user’s account was successfully deleted,
the application is removed from his application list.

Table 6. Request types sent by the RRM to the AcctM

Request Type Request Description
ACCT_ADD_REQ sent when a new task has been successfully submitted to
‘ an application
ACCT_INFO_REQ sent when the RRM requires information about the current
state of a task

ACCT_UPDATE_REQ sent when the RRM receives an update message from the
TAS

Handling Abnormal Cases

After submitting a request to the TAS, the RRM waits for a reply. If it does not receive a
reply from the TAS in a specified time, it reissues the request. If no response is received
after three attempts, the SM is notified that the resource is not available. The RRM may
initiate its own status request if it has not received, within the last 30 minutes, a status
message from the TAS. This will handle the abnormal case when the TAS returns a status
or reply message that is not received by the RRM.

31

TIE-In System Description

If the RRM receives an update from a TAS for a task that is not listed on either the active

or the waiting lists, the RRM will ask the Accounting Manager for the current state of this

task by submitting a ACCT_INFO_REQ request. If the Accounting Manager has no record

of this task, then the message from the TAS is ignored. If the Accounting Manager has a

record for this task, the new information will be passed back to the Accounting Manager.

If the message from the TAS is an update, the task is added to the active task list. The RRM

will maintain file copies of the active list and waiting list for recovery purposes. B

In the event that the Accounting Manager does not respond to a message sent by the RRM, 3
the RRM will place the message on a queue. When the Accounting Manager is restarted,

the RRM will send all of the messages on the queue in the order that they where originally

received. This prevents any status or accounting information from being lost.

32

Gateway Service Process Description

Gateway Service Process Description

The Gateway Service is a server process that establishes gateways for a variety of network
communication protocols. The program, based on Digital Equipment Corporation’s public
domain xforward code, allows for the creation of proxy gateways for X, Transport Control
Protocol (TCP) and User Datagram Protocol (UDP), and the Network File System (NFS)
(through the use of the Common File System). The use of a gateway allows network
communication in a more secure environment. For Sandia, the gateway allows network
communication to take place between the Internal Restricted Network and the External
Open Network. The Gateway Service is based on the typical client/server model, in which
clients issue requests to the Gateway Service, which performs the request and returns the
results of the operation to the client. In the TIE-In infrastructure the clients are the Session
Manager and Request Manager. However, the Gateway Service can also be used by clients
outside of TIE-In. At Sandia, the program xallow can be used to make requests to the
Gateway Service to create an X proxy, so that X window applications on the EON can
communicate with displays on the IRN. The protocol used to communicate with the
Gateway Service is provided in Appendix A: Message Formats.

Gateway Requests

A request made to the Gateway Service consists of the following information:

€3] Authentication Credentials
) Server

3) Operation

@) List of Clients

Anthentication Credentials:

These are tokens that identify and authenticate the user making the request. The
protocol provides a type field as part of the credentials, so that any number of
authentication types could be used. However, the only supported type is Kerberos
Version 5.

Server:

For all gateway types other than CFS, this consists of the string “server:port” where
“server” is either the system name or IP address of the server, and “port” is the TCP or UDP
port the server is listening to. This identifies the network connection to which UDP packets
or TCP connections sent to the proxy will be forwarded. By default, the server and the client
sending the gateway request must be the same unless special exceptions are given to the
client through the GW_systems_acct entry in the /tiein/etc/gw_acl file. Session managers

33

TIE-In System Description

and Request Managers are given special exception since they must create and remove X
proxies between various applications and displays.

For a gateway type of CFS, the server filed will contain the string
“NFS_directory:application:username:userid.” The NFS_directory is the user’s home
directory to be mounted by the specified application. The username and userid are the
user’s TIE-In user name and userid.

eration;

The operation actually specifies the type of gateway(proxy) to establish, and some of
its characteristics. The following is an annotated list of the available operations:

. Create an X11 proxy with a notification window.

. Create an X11 proxy without a notification window.

. Create an X11 proxy with a notification window and using a generated MIT
magic cookie for user authorization. See “Magic Cookies” in the “TIE-In
Security” section.

. Create an X11 proxy without a notification window but using a generated MIT
magic cookie for user authorization.

. Create a shared X proxy (ICE).

. Create a UDP proxy.

. Create a TCP proxy.

. Create an NFS proxy - For this proxy the server consists of the string
“NFS_directory:application:username:userid”’ For more information on the NFS
gateways see the “TIE-In Common File System” section.

. Close down any proxy gateways associated with the passed server and the user

-identified in the request. Closing a proxy means that once all connections to the
proxy are terminated, the proxy is destroyed.

. Terminate any proxy gateways associated with the passed server and the user
identified in the request.

The Gateway Service can restrict which systems and/or networks can create a particular
type of gateway. This is done by way of the /tiein/etc/gw_acl file. This file contains entries
for each operation, and restrictions can be placed on networks or particular systems in a
network as to whether that site can create a particular proxy gateway. For example, the
following entries indicate that all of network 134.253.14 can create an X proxy gateway
except 134.253.14.205.

GW X11 Proxy Create:134.218.14.0:
-GW X11 Proxy Create:134.218.14.205: v

List of Clients: .
This is the list of hosts or IP addresses that will be allowed to connect or send data to
the proxy gateway. All other systems will be denied access to the proxy.

34

Gateway Service Process Description

Gateway Reply

After processing the request the Gateway Service sends back a reply (see “Gateway Service
Reply” in Appendix A: Message Formats). The reply will indicate whether or not the
request was successful and will contain a reply string which, in most cases, will contain the
“TP_address:port” of the proxy server. For secure X proxies using magic cookies, the string
will be in a format suitable for the xauth utility. For NES proxies the string will consist of
the proxy NFS mount point to be used by the application.

TIE-In System Description

Intentionally Left Blank

36

Accounting Manager Process Description

Accounting Ménager Process Description

The Accounting Manager (AcctM) maintains the database of active, completed, and
archived tasks. The manager listens on TCP port 1957 for TIE_ACCT_REQ messages
from the Session Manager (SM) or the Resource Request Manager (RRM). The message
formats for the TIE_ACCT_REQ and TIE_ ACCT_REPLY messages are provided in
Appendix A. The Accounting Manager will only respond to messages originating from a
valid Front End System or an authorized RRM process. Three types of messages may be
submitted to the AcctM: add (ACCT_ADD_REQ), info (ACCT_INFO_REQ), and update
(ACCT_UPDATE_REQ).

Add Requests

An add request is submitted to the AcctM by the RRM whenever a user successfully
submits a task to a TAS. Information about the task is stored in the database. For an add
request, credentials must be provided with the request to authenticate the originator of the
request.

Information Requests

Information requests are submitted by the SM on behalf of a user or administrator. Users
can extract information based on the application, task state (active, completed, or archived),
start and stop times, or a specific task id. Additional search fields are provided for
application and TIE-In system administrators. Application administrators are restricted to
retrieving information about tasks that have been submitted to the application under their
administration. TIE-In administrators can retrieve information about any task.
Authorization does take place to ensure that a user can only view information about his own
tasks and an application administrator can only view information about his own
application.

Update Requests

Update requests are submitted to the AcctM by the RRM. The RRM periodically receives
information about tasks from the various TIE-In Application Servers and passes the
information on to the AcctM for storage in the database. If the task has completed, the
AcctM moves it from the active task list to the completed task list.

37

TIE-In System Description

Database Tables and Information

The specific information stored in the database is shown in Appendix D: The TIE-In
Database Tables. The tables involved are active_tasks, active_units, completed_tasks, and
completed_units.

38

TIE-In Profile Manager Process Description

TIE-In Profile Manager Process
Description

The TIE-In Profile Manager (TPM) maintains the database describing the characteristics of
TIE-In users and resources. The manager listens on TCP port 1956 for TIE_AUTH_REQ
messages from the Session Manager (SM) or the Resource Request Manager (RRM). The
message formats for the TIE_ AUTH_REQ and TIE_AUTH_REPLY messages are
provided in Appendix A: Message Formats. TIE_AUTH_REQ messages can be submitted
to the TPM with any of the following request types: add (AUTH_REQ_ADD), info
(AUTH_REQ _INFO), or delete (AUTH_REQ_DEL). For add or delete requests,
credentials must be provided in order to authenticate the originator of the request.

TPM Add Request

The Session Manager submits AUTH_REQ_ADD request-type messages to the TPM
whenever information about a user, an application, or a project is created or modified. In
addition, whenever a user logs into the Front End System (initiates a session), information
about the session is sent to the database for storage. Note that an add request is used for
updates as well as for adding new information. When an add request is received, the TPM
determines if there is already an entry in the database for the specified user or application,
and, if so, performs an update rather than an add.

The TPM determines which type of information is to be added or updated by examining a
field in the TIE_AUTH_REQ message called nametype. Table 7 describes the nametypes
used in association with an add request and for what purposes they are sent. In the actual
request, the nametype is prefixed by TIE_AUTH_NAMETYPE_.

Table 7. Description of TPM add request nametypes

Nametype Description

USER sent when a TIE-In administrator registers a user and whenever the
user or a TIE-In administrator modifies the user’s information,
including the user’s profile, the user’s application list, charge
account numbers, etc.

TIE-In System Description

Table7. Description of TPM add request nametypes (Continued)

Nametype Description

RESOURCE sent when a TIE-In administrator creates an entry for an applica-
tion or modifies an existing application’s information, including
server information, flags, charging information, etc.

REG_USER sent when a user submits a registration for a TIE-In account or ,
when a TIE-In administrator archives the user’s registration

PROJECT sent when a TIE-In administrator creates a project or modifies an
existing project’s information

SESSION sent when a user logs into a TIE-In Front End System, thus initiat-
ing a session

APP_ACCESS | sent when a TIE-In administrator modifies the access control list
for an application

APP_CONS sent when a TIE-In administrator modifies the list of consultants
for an application

For the format of the TIE_AUTH_REQ message, sce Appendix A: Message Formats. The
database tables are discussed in Appendix D: The TIE-In Database Tables. When a user’s
profile information is added or updated, the effected tables are user_info,
user_charge_accounts, user_applications, and user_gids. For additions of and updates to
an application’s profile information, the effected tables are application_info,
application_costs, application_addresses, and application_groups. When a user submits a
registration or the registration is archived, the effected tables are registration_info,
registration_charge_info, and registration_logins. The current_sessions table is written to
when a session is initiated, while the application_access and application_consultants
tables are written to when an application’s access list or consultant list is modified,
respectively. '

TPM Information Request

Both the Session Manager and the Resource Request Manager obtain a variety of -
information from the database by sending AUTH_REQ_INFO type messages to the TPM.

The information that can be obtained includes information about a user, an application, or .
a project.

The TPM determines which type of information is being requested by examining a field in
the TIE_AUTH_REQ message called nametype. Table 7 describes the nametypes used in

40

‘ W

TIE-In Profile Manager Process Description

association with an information request and for what purposes they are sent. In the actual
request, the nametype is prefixed by TIE_AUTH_NAMETYPE _.

————— e
— ——e e — — —_— ——

Table 8.

Description of TPM information request nametypes
Nametype Description

USER sent when information about a user is requested

RESOURCE sent when information about an application is requested

REG_USER sent when a TIE-In administrator requests to view a user’s registra-
tion

PROJECT sent when information about a project is requested

PROJECTS sent when a list of all projects is requested

SESSION sent when information about the currently active sessions is
requested (this information can only be viewed by TIE-In adminis-
trators)

APP_ACCESS | sent when the access list for an application is requested

APP_CONS sent when the list of consultants for an application is requested

MF_USER used to obtain a list of all registered users that match a specified
flag value

NMF_USER used to obtain a list of all registered users that do not match a spec-
ified flag value

MF_RESRC used to obtain a list of all applications that match a specified flag

ADM_RESRC | used to obtain a list of applications for which a specified user is the
application administrator

APP_USERS used to obtain the list of users who are registered for the specified
application and that are within the specified filter

CON_APPS used to obtain the list of applications for which the specified user is
a consultant

When the TPM receives a request for information, it determines which type of information
is desired and calls a function in the database library to extract the information from the
database. The information is then packaged into a TIE_ AUTH_REPLY message and sent
back to the caller. The format of the TIE_ AUTH_REPLY message is discussed in
Appendix A: Message Formats, and the functions in the database library are described in
Appendix D: The TIE-In Database Tables.

TIE-In System Description

TPM Delete Request

The Session Manager sends delete requests to the TPM to delete a user, an application, a
project, or a user’s registration. Only TIE-In administrators are authorized to submit this
type of request to the TPM. Once again, the TPM determines which type of information is
to be deleted by examining the value of the nametype field in the AUTH_REQ_DEL
message. The different nametypes are shown and described in Table 7. In the actual
request, the nametype is prefixed by TIE_AUTH_NAMETYPE _.

Table 9. Description of TPM delete request nametypes

Nametype Description

USER sent when a TIE-In administrator requests the deletion of a user’s
account :

RESOURCE sent when a TIE-In administrator requests the deletion of an appli-
cation

REG_USER sent when a TIE-In administrator successfully registers a user or
requests the deletion of the user’s registration

PROJECT sent when a TIE-In administrator requests the deletion of a project

SESSION sent when a user logs out of the TIE-In Front End System, thus ter-
minating a session

When the TPM receives a AUTH_REQ_DEL message, it calls the appropriate function in
the database library to delete the information from the database. The functions in the
database library are discussed in Appendix D: The TIE-In Database Tables.

When a user’s account is deleted, the affected database tables are user_info,
user_charge_accounts, user_applications, and user_gids. When an application is deleted,
the affected tables are application_info, application_costs, application_addresses, and
application_groups. When a user’s registration is deleted, the affected tables are
registration_info, registration_charge_info, and registration_logins. Deleting a project
affects the project_access and project_info tables, while deleting a session affects the
current_sessions table.

42

TIE-In Application Server Process Description

TIE-In Application Server Process
Description

The TIE-In Application Server (TAS) is the interface between the application’s Graphical
User Interface and the Resource Request Manager (RRM). Its function is to authenticate
the received request, check any local authorization policy with regard to the user submitting
the request, execute the application, and return status information on active and completed
tasks.

The Front End System project will provide a TAS for a subset of hardware platforms
(currently Sun, HP, and SGI). This server will be based on the model described here. An
application may establish their own TAS, but they must conform to the protocol and
message formats exchanged between the RRM and the TAS.

Communication with the RRM

The TAS listens for messages from the Resource Request Manager on IP/UDP port 1955,
and sends replies back to port 1956 on the Common Services System. These messages,
discussed earlier in the section “Resource Request Manager Process Description,” are
described in Appendix A: Message Formats and are labeled TIE_TIRRS_REQ and
TIE_TIRRS_REPLY. When a request is received by the TAS, the message is decoded and
the credentials are validated. If the credentials provided fail the validation process, then the
TAS will generate a TIE_TIRRS_REPLY message. The status field will be set to
RRM_AUTHFAIL and an appropriate description as to what the problem was will be
placed in the info field.

The RRM sends six different types of messages to the TAS, as shown in Table 10. Each of
these message types is discussed below.

Table 10. The Messages sent from the RRM to the TAS

Message Type Message Description
TIRRS_SUBMIT_REQ sent when a user runs the application
TIRRS_STATUS_REQ sent when the RRM needs information about an
active task

TIRRS_DEI,_REQ sent when a user wants to delete one or more of
his active tasks, or when a TIE-In administrator
wants to delete one or more active tasks

TIE-In System Description

Table 10. The Messages sent from the RRM to the TAS (Continued)

Message Type Message Description
TIRRS_ADD_ACCT sent when a user attempts to add the application
to his application list
TIRRS_DEL_ACCT sent when a user removes the application from
his application list
TIRRS_COMP_ACK this message type is used by the RRM to notify

the TAS that it has received the information
about a task that has completed

The Configuration File

The TAS reads information about how to execute and manage an application from a
configuration file that resides on the machine running the application. The name of the
configuration file is /usr/etc/tiein.conf, and it consists of 12 fields separated by colons. The
first field contains the name of the application. When a request is received from the RRM,
the TAS will search the configuration file for an application name that matches the name
in the application field of the request. The configuration file is discussed in detail later in
this section. (See “The Configuration File: /usr/etc/tiein.conf” under “TAS System Files.”)
The discussion below describes how the configuration file dictates the operation of the TAS
for each of the message types.

Supported Authentication Levels

Regardless of the message type, the TAS verifies that the authentication level of the request
meets or exceeds the level specified in the configuration file. The valid authentication
levels are shown in Table 11. These levels can be logically ORed if more than one
authentication level is supported. For example, if either Kerberos version 5 authentication
or SecurID authentication is acceptable, the value for this field in the configuration file
should be the logical OR of the hex values 2 and 4, which is 6.

Table 11. Valid Authentication Levels

Value Authentication Level
2 Kerberos version 5 authentication is required
4 Securld authentication is required

The authentication level is the level at which the user, or in some cases the RRM, has been
authenticated. For message types TIRRS_COMP_ACK and TIRRS_STATUS_REQ, the

44

TIE-In Application Server Process Description

authentication level is that of the RRM. The RRM is authenticated using Kerberos
Version 5. For these message types a test is done to ensure that the RRM has been
authenticated at the Kerberos Version 5 level. This prevents unauthorized RRM processes
from sending messages to the TAS. For all other message types, the authentication level
contained in the message is that of the user submitting the request to run the application. In
this case, the user’s authentication level is checked against the supported authentication
levels as specified in the configuration file.

Description of a Submit Request Message

This is the most common type of message sent from the RRM to the TAS, as it is sent
whenever a user desires to run an application. This is also where most of the information
contained in the configuration file is used.

The Local Authorization Policy

After validating the credentials and testing the minimum authentication level, the TAS will
execute the local authorization policy specified in the configuration file for the application.
If the field is empty, the TAS will assume no authorization is necessary and will continue
processing the request. If the field is not empty, the TAS will execute the policy passing the
arguments as shown in Table 12. If the policy returns a non-zero exit status, the TAS
concludes that the user failed the local authorization policy and returns a reply message
with a status of AUTHFAIL. If the policy returns an exit status of zero, the TAS concludes
that the user successfully passed the authorization policy Using a local authorization policy
allows access control beyond simple authentication. A basic authorization policy could
simply check to see if the user’s name is included on a list contained in a file. The
complexity of the policy depends upon the needs of the application.

Table 12. The Arguments Passed to the Local Authorization Script

Agﬁ;n;z?t Argument
1 Name of the user submitting the request
2 Id of the user submitting the request
3 Address of the user submitting the request

Checking the Number of Current Tasks

Before running an application for an authorized user, the TAS checks to see if the
maximum number of current tasks is already running. The maximum number of current

45

TIE-In System Description

tasks can be specified in the configuration file. If running another task would exceed the
specified maximum, the TAS returns a message to the RRM indicating that the task could
not be run at the current time. If the application does not need to limit the number of current
tasks, this field should be left blank in the configuration file. Note that it should not be set
to O since this would essentially disable the application.

Creating the Status File

Next, the TAS will establish a status file by which the application may pass accounting and
status information back to the TAS. The directory of this status file is taken from an entry
in the configuration file. The format of the status file is discussed later in this section. (See
“TAS Status file format” under “TAS System Files.”) The value of this field in the
configuration file can contain the string $user, which will be expanded to the username of
the user submitting the task. This allows the status files for different users to be placed in
different directories.

The pathname specified in the configuration file is appended with the filename
tie.task_id.tas_task_id, where task_id is the task identifier issued by the RRM that was
contained in the request message, and tas_task_id is assigned by the TAS, which in most
cases will be the process id of the executed application.

If this field is left empty in the configuration file, the status file will be placed in the home
directory. The home directory is also controlled via the configuration file and is discussed
in the next paragraph. The name of the status file is passed to the application through the
TIE_STATUS_FILE environment variable when the application is executed.

Setting the Home Directory

After creating the status file, the TAS will set the current working directory to the directory
specified in the configuration file. This directory is know as the home directory. This field
can contain any valid directory path on the local system. The string $user may also be used
in the specification of the home directory. In such cases the user’s username will be
substituted for the string. For example, suppose the user “rdetry” submits a request and the
home directory field contains the path /users/tiein/Suser. The TAS will substitute rdetry for
Suser and use /users/tiein/rdetry as the home directory for tasks run by the user rdetry. In
addition, the special string ~3user can also be used within this field. This string will expand
to the home directory defined for $user in the local system’s /etc/passwd file. Status files
will be placed in the home directory if a separate path is not specified in the configuration
file for their placement.

Establishing the Environment

The next step the TAS performs is establishing the environment for the application. The
TAS sets the environment variables shown in Table 13. In addition, a file may be specified
in the configuration file that contains additional environment variables to be set by the TAS

46

TIE-In Application Server Process Description

prior to executing the application. Again, the string Suser may be used in this file
specification. The file itself should contain a list of environment variables, one per line, in
the form: -

NAME=VALUE

where NAME is the environment name such as PATH and VALUE is the value for that
variable, such as /bin: /usr/bin.

Table 13. Environment Variables set by the TAS

Environment Variable Name

Environment Variable Value

DISPLAY set to the Xserver display of the user

TIE_USER set to the requesting user’s username passed in the
request

TIE_USERID set to the string representation of the user’s id

passed in with the request

TIE_USER_ADDR

set to the users account IP address. This may not be
the same as the IP address associated with the
display.

TIE_USER_SSN

the social security number of the user. This will be
empty if the user is not a US citizen.

TIE_USER_EMAIL_ADDR

the electronic mail address of the user

' TIE_REQ_ID

set to the value of req_id passed with the request

TIE_TIRRS_REQ_ID

set to the tirrs_req_id which the TAS will assign. In
most cases, this value will be the process id of the
executed program.

TIE_XSERVER_KEY

(optional) set to the value of the MAGIC-COOKIE
to be used in establishing windows onto the user’s
display

TIE_XFER_KEY

(optional-future)

TIE_BANDWIDTH

(optional) set to the maximum bandwidth of the
user’s network connection in bits per second

TIE_STATUS_FILE

filename to which the application should output
status information

KRB5CCNAME

the name of the local credentials cache file when a
user submits a request with forwardable credentials

XAUTHORITY

the name of the xauthority file which contains the
magic cookie

47

TIE-In System Description

Changing the Root Directory

The TAS offers applications the option of an additional level of security by allowing the
specification in the configuration file of a new root directory. This feature can be used to
prevent users from accessing the normal root directory. It is, however, somewhat difficult
to use. If a new root directory is specified, all the commands and files required by the
application must exist in the new root directory. In addition, the fields in the configuration
file that specify the pathname of the application and the status file directory must be
prefixed by the new directory. If a new root directory is specified in the configuration file,
the TAS sets the new root directory by using the chroot command.

Setting the Process Owner

The TAS determines the process owner of the application by using the info in the configu-
ration file. Valid values for the process owner include any user listed in /etc/passwd, the
string Suser, or the string $local_user. If $user is used, the TAS will execute the application
with the userid provided in the userid field of the request. If $local_user is used, the TAS
will execute the application with the userid of the user contained in the password file on the
local system. If any other username is specified, the TAS retrieves the userid of the user
from the local /etc/passwd file. The userid is then used to set the ownership of the applica-
t10n.

Executing the Application

Finally, the TAS will execute the application program as indicated in the configuration file.
The application field should contain the full path name of the application program, along
with any arguments to the application. Upon successful execution the TAS will place this
task on an active task list, which it will maintain until the application terminates.

Monitoring the Status File

As mentioned before, the TAS uses a status file to communicate status and accounting
information about a task to the RRM. The application can assume responsibility of the
status file or leave this responsibility to the TAS. An entry in the configuration file is used
to specify the child type. The value of this field can only be the string DIRECT_CHILD or
the string INDIRECT_CHILD. In the first case, the TAS will assume the management
responsibilities of the application. That is, after executing the application, the TAS will
wait for it to complete. Upon completion, the TAS will update the status file, indicating that
the application has completed. It will also write out the number of seconds that the
application was running. This information is passed back to the RRM and on to the
Accounting Manager. In the case of an INDIRECT_CHILD, the application itself is
responsible for updating the status file. While this requires more work from the application
developers, it also offers the opportunity for enhanced accounting procedures.

48

TIE-In Application Server Process Description

The format of the status file is such that up to seven accounting unit types may be set. The
suggested unit types are

(1) Storage usage

(2) Memory usage

(3) CPU usage

(4) Connect time

(5) Technology Application definable

(6) Technology Application definable

(7) Technology Application definable
The application must fill in the desired fields in the status file with the appropriate values.
If an application is not charging for a particular unit type, the field should be set to 0. The
actual charge amounts are defined using the Front End System by a qualified application

administrator. Thus the information in the status file is used, along with the charging
information, by the Accounting Manager to determine the appropriate charges for the task.

Running as an INDIRECT_CHILD has the advantage that the status file can be updated
while the task is still active. The TAS will detect when a status file has been modified, and
it will then send a reply to the RRM with the latest information from the status file. A task
running as a DIRECT_CHILD does not have this capability. In this case, the only time the
status file is updated is upon completion of the task. It is up to the application to determine
which child type is most desirable.

Description of a Status Request Message

The Resource Request Manager will periodically send messages to the TAS asking for the
status of a particular task. After checking the authentication level of the RRM as described
above, the TAS simply reads the status file that corresponds to the task specified by the
RRM. It then determines the state of the task, either active or completed, and returns the
state along with the latest accounting information to the RRM. The RRM then passes the
accounting information to the Accounting Manager to store in the database.

Description of a Delete Task Request Message

The TIE-In Session Manager has an option that allows a user to delete one or more of her
active tasks. It also allows a TIE-In administrator to delete one or more active tasks,
regardless of the task owner. This is accomplished through the RRM. The RRM sends a
delete task message to the TAS. The TAS verifies that the user requesting that a task be
deleted is the owner of the task or a TIE-In administrator. If the user passes this test, the
TAS sends a hang-up signal (SIGHUP) to the process id of the specified task. The process
id of the task is obtained from the status file. Note that applications executed by the TAS
must properly handle the hang-up signal. Also, if the application executed by the TAS starts
another process, it is important that the new process id be written to the status file.

49

TIE-In System Description

Description of an Add/Delete Account Request
Message

When a user adds an application to his application list, the RRM sends an add account
message to the TAS. Similarly, when a user removes an application from his list, the RRM
sends a delete account message to the TAS. When the TAS receives this type of message,
it checks the authentication level of the user as described above, and then executes the
account script if one has been specified in the configuration file. This script can be used to
set up or remove an account for a user. The arguments passed to the program or script are
shown in Table 14. If the program or script returns a non-zero exit status, the TAS assumes
the user’s account was not successfully added or deleted. If a zero exit status is returned,
the TAS will report back that the account was successfully added or deleted.

Table 14. The Arguments Passed to the add/delete Account Script

Argument .
Number Argument Description

1 the string add for an add request, or the string delete for a
delete request

2 the user’s username

3 the user’s userid

4 the user’s group ids, in the form gidl,gid2....,gidn or -1 if
the user has no group ids

5 the user’s social security number; may be empty if the user
is not a US citizen

6 the user’s directory to be mounted; may be empty if the
user did not specify such a directory

Description of a Complete Acknowledgment
Request Message

When a task completes, the TAS sets the status field of the reply message to indicate that
the task has completed. When the RRM receives a reply for a task that has completed, it
sends a complete acknowledgment message to the TAS. When the TAS receives this type
of message, it removes the status file for the task. This is done so that the TAS does not
remove the status file containing the final accounting information for a task until it is sure
that the RRM has received this information. The TAS continues to send replies to the RRM

50

TIE-In Application Server Process Description

for a completed task until it receives a complete acknowledgment message or a large
specified time-out period is exceeded.

Recovery of Active Tasks

Recovery of active tasks due to the termination of the TAS is achieved by maintaining a
file copy of the active task list. Upon recovery of the TAS, the active task list can be re-
established. The TAS will identify those processes that are still active, monitor the progress
of those processes through their status files, and report back to the RRM.

TAS System Files

This section contains a description of the files used by the TAS and their formats.

The Configuration File: /usr/etc/tiein.conf

The configuration file is used by the TAS to retrieve the necessary information for it to
execute and maintain an application. If the contents of any field require the use of the *:”
character, then that character should be prefaced with the character “\”. An entry may span
multiple lines if the end of line is prefixed with the “\” character. White space may be

present only at the beginning of a field. Comments can exist above or below an entry, but
not within. All comments should be preceded by the # character. The entire entry must be
no longer than 1024 characters. Fields may be empty; in those cases the word “(Optional)”

will be stated in the field description. The format of an entry is as follows:
application_name: direct_child_flag: local_authorization_script: process_owner:\
home_directory:status_file_directory: environ_file: application args:\
add/delete script: supported_authentication_levels: change_root_directory:\
max_number_of_running_tasks

Field Descriptioﬁ:
application_name: Name of the application. This name must match the
application name provided in the TIE_TIRRS_REQ
message.
direct_child_flag: Set to either DIRECT_CHILD or INDIRECT_CHILD. A

direct child is managed by the TAS, which makes updates to
the status file. An indirect child requires that the application
make the necessary updates to the status file.

local_authorization_script: (Optional) The script or program to be executed that will
perform any local authorization against the user or user’s
system. Arguments passed to the program will be user’s

51

TIE-In System Description

Process_owner:

Home_directory:

Status_file_directory:

user name, user’s numeric id, and the IP address of the
user’s system. If this field is empty then no local
authorization will be performed.

The name of the owner of the application process to be
executed by the TAS. The name given in this field will be
looked up in the /etc/passwd file and the UID associated with
that name will be the owner of the executed application. If
the name given is the string $user, then the user’s numeric id
passed down with the request from the RRM will be used.

The full pathname of the directory that the TAS will set the
current working directory to, prior to executing the
application program. The string $user may be used in the
description of the pathname, in which case the user’s user
name will be substituted. Additionally, the string ~$user
may be used. This string will be expanded to the home
directory defined for $user in the local system’s /etc/passwd
file.

(Optional) The full pathname of the directory that will
contain the status file for this task. The actual status file will
have the name tie.task_id.tas_task_id, where task_id is the
task identifier issued by the RRM that was contained in the
request message, and fas_task_id is assigned by the TAS,
which in most cases will be the process id of the executed
application. The string $user may be used within the
pathname. If this field is empty, the status files will be placed
in the home directory.

Environ_file: (Optional) The full pathname of a file that contains
environment variables to be established for this application.
The information contained in this file is described above.
The string $user may be used within the pathname, in which
case the user’s username will be substituted.

Application: The full pathname of the application, followed by any
arguments, to be executed by the TAS.

Add/Delete script: (Optional) Program or script for adding and deleting
accounts. See the description above for more information.

Supported Authentication

levels: The level or levels of authentication required of a user in

order to run the application. Values here can be 2 for
Kerberos 5, 4 for Securld, 8 for STKEY, or a combination.

52

TIE-In Application Server Process Description

Chroot Directory: (Optional) The directory to which the TAS will set the root

directory (/) prior to executing the application.

Maximum number of

running tasks: (Optional) This value dictates the maximum number of tasks
that can be simultaneously running. If no limit is to be
imposed, this field should be left blank. If set to 0, no tasks

will be run.

Examples:

This is a valid configuration file, located in /usr/etc, named tiein.conf.
The following is an entry for the resource named mpp_login.
mpp_login: \
DIRECT_CHILD: \
fusers/tiein/bin/auth_script: \
$user: \
~$user: \
A\
A\
fust/bin/X11/xterm: \
fusers/tiein/bin/add_user: \
2:\
A\
25
#
The following is an entry for the resource Xdemos.
#
Xdemos: \
DIRECT_CHILD: \
/tiein/config/authorize_user: \
tiein_g: \
/tiein/home: \
/tiein/home: \
/tieinfhome/env_file: \
fust/bin/kerberos/xdemos: \
/tiein/config/add_account: \
2:\
A\
10

53

TIE-In System Description

TAS Status file format

The status file will be located in the directory specified in the /usr/etc/tiein.conf file, with
the name tie.task_id.tas_task_id, where task_id is the task id assigned by the RRM and
tas_task_id is the task id assigned by the TAS. The status file is initially created by the
TAS. In the case of a direct child, the TAS will make the updates to the status file. In the
case of an indirect child, the application is responsible for the updates to the status file. The
format of the status file is as follows:

completed(1/0):pid(optional):Completion message:units of unit type 1:\
units of unit type 2:units of unit type 3:units of unit type 4:units of unit type 5:\
units of unit type 6:units of unit type 7 ;

Field Descriptions:
Completed(1/0): Set to value “1” or “0”. If task has completed, the value will
be 1; otherwise the value is 0.
Pid: (Optional) The process id to send the SIGHUP signal to

when the user or administrator submits a delete task.

Completion message: Brief message indicating the completion status of the
application. If errors occur, this message will be used to
inform the user as to the reason for the error.

Units of unit type [1-7]: (Optional) The seven fields containing integers describing the
number of units used by the task for unit types one through
seven. If the fields are empty then the value is assumed to be
0. The suggested unit types are

1: Storage Usage

2: Memory Usage

3: CPU Usage

4: Connect Time

5: Technology Application definable
6: Technology Application definable
7: Technology Application definable

The following are all valid formats for a status file:

0:0:initial entry:0:0:0:0:0:0:0

0:12341:initial entry:::::::

0:6452:task 1s still active:0:0:0:7260:0:0:0
1:0:task has completed:0:0:0:126941:0:0:0
1:0:task has completed:145:16:523:290453:12:0:0

54

TIE-In Application Server Process Description

The Valid Front End Systems File: /usr/etc/tiein_fes

When the TAS receives a request, it also receives information about the Front End System
that submitted the request. In order to verify that the request is from a valid Front End
System, the TAS uses the file /usr/etc/tiein_fes. This file simply contains a list of all of the
valid Front End System names or IP addresses. When a request is received, the TAS
attempts to match the front end system that sent the request with a name or an address in
this file. If a match is found, the request is processed, otherwise the request is rejected.

Example:

The following is a valid /usr/etc/tiein_fes file. In this case, all three entries refer to the same
machine.

#

List of TIE-In Front-End System names: you can use addresses, primary names or
aliases

134.218.37.137
tiein
sahp103

The Backup Directory: /usr/adm/tirrs_requests

This directory must exist for the TAS. This directory is used to maintain a file copy of the
list of active tasks. This list is used to restore the active list in memory in case the TAS is
shutdown while there are active tasks. This directory should be owned and modifiable only
by root. '

The Kerberos Key File: /usr/etc/tiein_v5srvtab

This file contains the keys used for Kerberos authentication of requests going to and from
the RRM. When a request is received from the RRM, the TAS sends the credentials
provided with the request, along with the key stored in this key file, to the Kerberos
Authentication Service for authentication. If the authentication fails, the request is denied.
This file should be owned and readable only by root. The key is stored as binary
information, so it cannot be edited using a text editor. In order to change the key, the
ksrvutil program must be used. This program is distributed along with the TAS executable
file.

55

TIE-In System Description

The Required IP Services: /etc/services

The following services need to be provided (added to the /etc/services file) for TIE-In.

tiein - 1956/udp # Communication with the FES
kerberos 88/udp # Kerberos 5 authentication
kerberos_adm 751/tcp # Kerberos 5 administration

The Kerberos Configuration File: /etc/krb.conf

The kerberos configuration file, /etc/krb.conf, contains information used by the TAS and
the ksrvutil program to communicate with TIE-In’s Kerberos Authentication Server. This
communication is necessary so that the TAS can perform authentication of requests
received from the RRM. It is also used by the ksrvutil program to change the kerberos key
in the local key file (fusr/etc/tiein_vSsrvtab).

The kerberos configuration file will already exist if the machine serving the application is
using the Kerberos Authentication System. If this is the case, the line shown below must be
added to the file. If this file does not exist, it should be created and should contain the entry
shown below. The required entry:

Sandia. EON.RSN tiein.sandia.gov admin server

At the present time, the only valid kerberos realm for TIE-In is Sandia.EON.RSN. In the
future, cross-realm authentication will be supported, at which time a local Kerberos
Authentication Service can be used.

The Kerberos Realms File: /etc/krb.realms

If the machine serving the application is already using the Kerberos Authentication System,
a new file is required that defines in which realm the TIE-In Kerberos Authentication
Service resides. The file is the kerberos realms file, /etc/krb.reaims. This file may already
exist. If so, simply add the line shown below. If the file does not exist, create and add the
line shown below. The required entry:

tiein.sandia.gov Sandia. EON.RSN

56

TIE-In Common File System

TIE-In Common File System

The TIE-In Common File System (CES) provides a common file space to TIE-In users. It
was designed to operate in a secure and seamless manner. The CFS is currently
implemented using the Network File System (NFS) Version 2 and mount Version 1.

Motivation behind the CFS

A common file system is a necessary part of TIE-In for many reasons. First, users can run
many different applications, each of which may require input files and generate one or more
output files. Without a common file system, each of these applications will read and write
files from and to the user’s local home directory on the system that is serving the
application. Thus, a user may end up with multiple files residing on multiple systems. With
a common file system, all of the input and output files from all of the applications can be
written to the user’s common, network-mounted home directory.

Most TIE-In applications do not run as a process owned by the user, but as a process owned
by a common user such as tiein. Thus, the CFS is required to perform the necessary
translation between the user running the application and the user’s username and userid on
the remote file system. If this were not done, the application’s attempt to read from or write
to a mounted file system would fail.

NES is generally viewed as being insecure and many routers block NFS and mount packets
from systems outside of the local domain. The CFS improves the security of NFS and acts
as a gateway so that NFS packets can be passed through a firewall. Instead of opening up
the router to all mount and NFS packets from all remote systems, the router can be
configured to allow these packets from the TIE-In Front End System only, resulting in a
less vulnerable network configuration.

Another reason for the necessity of the CFS is to reduce the number of systems to which a
file server must export a user’s home directory. The CFS makes it possible to export the
user’s home directory to only one system (the TIE-In Front End System), as opposed to
each of the systems on which the various applications of interest to the user are located.

Implementation

The Common File System consists of three processes:

(1) mnt_auth - performs authorization of the user and the system requesting to
mount the user’s home directory
(2) mnt_server - accepts and translates the remote procedure calls (RPC) issued by

57

L ...

TIE-In System Description

the mount command on the application server and the responses by the mount daecmon on
the user’s file server

(3) nfs_server - accepts and translates the RPCs issued by the application server
and the NFS daemons on the user’s file server.

In addition to these processes, the TIE-In Application Server (TAS) plays an important role
in the Common File System. The TAS is a process that runs on the application server. The
TAS issues the mount command, but before doing so it sends some authorization

information to the mnt_auth process. The purposes of and the interaction between each of
these processes will become clear as the operation of the Common File System is discussed.

The mnt_auth, mnt_server, and nfs_server processes need access to some common
information about which systems have what directories mounted on whose behalf, and
what translation needs to occur. This interprocess communication is implemented using
shared memory.

The CFS Mount Process

There are four main steps required for an application to mount a user’s home directory:

(1) authentication of the user
(2) initialization of the mnt_auth process
(3) authorization of the user and the application server

(4) mounting the directory

Each of these steps will now be discussed in more detail.

Authentication of the User

The first step is for the user to be successfully authenticated by the TIE-In Front End
System. Authentication is used to verify the identity of the user and is accomplished using
the Kerberos Authentication System and, if so specified, a SecurID hardware device. This
is a simple but important step in the security of the CFS.

Initialization of the mnt_auth Process

Initialization of the mnt¢_auth process occurs when the user selects an application to run. If
the application has been set up to mount the user’s home directory (this is accomplished by
a TIE-In administrator setting a flag via the TIE-In Session Manager), the Session Manager
will send a message to the xforward process containing information about the user and the
authorized application servers. The xforward process then sends this information to the
mnt_auth process. This communication is shown in Figure 6.

58

TIE-In Common File System

|
User I
; |

TIE-In Front End System

—._ [nit Request -
Session Manager (xforward)

~nit Reply N~ ,
Proxy Init
dlrectory info

C mnt_auth)
-

Figure 6. Initialization of the mnt_auth process.

I
I
!
!
I
|
|
!
|
!

|
|
!
I
i
I

The initialization request sent from the Session Manager to the xforward process contains
Kerberos credentials for the user which are validated by xforward to ensure that the request
was sent by an authenticated user running a valid Session Manager. The initialization
information is then sent from xforward to mnt_auth via a UNIX socket connection, since
these processes will always reside on the same system.

The initialization information is shown in Table 15. The information, with the exception of
the list of authorized addresses, is sent as a single string separated by colons (:) which is
parsed by mnt_auth. The file server and directory fields specify the user’s home directory,
which will be mounted by the mnz_server process. The file_server_uid is the user’s TIE-In
assigned user id and is used in the mapping from the process owner of the application to
the file owner (the user). It is therefore a requirement that the user id of the user on the
file server is identical to his TIE-In user id. If this were not the case, the mapping could
not be done properly and the application would be denied access to the user’s home
directory.

Table 15. The initialization information sent to mnt_auth

Name Description
file server the name of the server on which the user’s home
directory resides
directory the name of the user’s home directory, located on

the above server

application name the name of the application that is mounting the
user’s home directory

59

TIE-In System Description

Table 15. The initialization information sent to mnt_auth (Continued)

Name Description

file_server_username the user name of the vser on the file server (this
must match the user’s TIE-In user name)

file_server_uid the user id of the user on the server (this must
match the user’s TIE-In user id)

authorized addresses the list of IP addresses that are authorized servers
for the application

The list of authorized IP addresses is obtained from the information about this application
that is stored in the TIE-In database. This list is used to ensure that a mount request is
accepted only from an authorized system. The list is necessary because it is not yet known
which of the potential servers will run the application.

The application name and the file_server_username fields are used by mnt_auth to
generate a proxy directory, which is returned to the Session Manager. The Session Manager
sends the proxy directory to the TAS with the submit request. The proxy directory will be
used in the mount command executed by the TAS. The format of the proxy directory is
cfs_hostname:/application_name/file_server_username, where cfs_hostname is the fully-
qualified name of the machine on which the CFS processes are running. The proxy is
necessary because the application server will actually mount the proxy directory, which
results in the mount command being sent to the CFS. When a mount RPC is received, the
CFS uses the proxy directory as an index into a table from which the user’s actual file server
and directory are obtained and subsequently mounted.

During this step, mnt_auth generates a timestamp that will be checked when the
authorization information is received from the TAS. If the time at which the authorization
request is received is not within the specified time window, the authorization will fail. The
timestamp is also used to remove stale entries from the shared memory table. An entry can
become stale if the TAS process is not running on the application server. In this case, an
authorization request is never sent from the TAS to mnt_auth, the timestamp expires, and
the information is removed when another initialization request is received.

Authorization of the User and the Application Server

Prior to performing the mount, the TAS sends some information to mnt_auth for
authorization. The information is sent via a TCP socket and contains the user’s Kerberos
credentials that are validated by mnt_auth to ensure that the request originated from an
authenticated user and a valid TAS process. Figure 7 shows the communication between
the TAS and mnt_auth, and Table 16 shows the information that is sent from the TAS to
mnt_auth.

60

TIE-In Common File System

r-ﬁq)ﬁ-lichtiEn_Se_rvEr-1 lr Common File §y§tz’:§n-l

I
! Mnt_auth Request |

|
|
l ™ Mnt_auth Reply |

Figure 7. Authorization of the user and the application server.

The proxy directory is used by mnt_auth as an index into a table in which the initial
information sent by the Session Manager is stored. If the proxy directory does not exactly
match the one generated by mnt_auth in the initialization step, the table lookup will fail and
this in turn causes the authorization to fail. From the table, mnz_auth obtains the username
and user id of the user on the user’s file system (file_server_username and file_server_uid),
as well as the list of authorized system addresses. The username and user id are verified
against the file_server_username and file_server_uid fields in the request. If either does not
match, the authorization fails. In addition, the file_server_username is compared to the
username in the Kerberos credentials contained in the request. If it does not match, the
authorization fails. This test ensures that the user has been authenticated.

If the above tests are successful, the address of the system that sent the request is then
checked against the list of authorized system addresses. If it is not on the list, the
authorization fails. In addition, the timestamp set during initialization is checked to verify
that the authorization request has been received within the specified time window. If the
request was received outside of the window, the authorization fails. Otherwise, the
timestamp is reset to the current time so that the timing can be verified when the mount
request is received from the application server.

Table 16. The information sent by the TAS to mnt_auth

Field Description
proxy_directory the proxy directory generated by mnt_auth in the
initialization step
app_owner_name the username of the owner of the application process

on the application server

app_owner_uid the user id of the owner of the application process on
the application server

61

TIE-In System Description

Table 16. The information sent by the TAS to mnt_auth (Continued)

Field Description

file_server_username the user_name of the user on the file server (must
match the user’s TIE-In username)

file_server_uid the user id of the user on the file server (must match the
user’s TIE-In userid)
app_server_address the IP address of the application server

If all of the tests are successful, mnt_auth stores the app_owner_name, app_owner_uid,
and the address of the application server in the table. The app_owner_name field contains
the name of the user that is the owner of the application when it is executed. Similarly, the
app_owner_uid field contains the userid of the owner of the application. This information
is essential for the operation of the nfs_server. The nfs_server maps the app_owner_uid to
the file_server_uid so the permissions will be correct in the user’s home directory.

Mounting the Directory

If the authorization in the previous step is successful, the TAS then mounts the proxy
directory (via the execvp command). The mnt_server process of the CFS takes the place of
the normal mount daemon. It registers with the portmapper and looks identical to a mount
daemon to the application server. The communication between the application server, the
mnt_server process, and the file server is shown in Figure 8.

When the mnt_server receives a mount RPC, the first thing it does is read information from
the table using the proxy directory as an index. This information includes the file server and
the user’s directory on the file server. It then verifies that the system that sent the mount is
the system that was authorized by mnz_auth in the previous step. If it is not, an error
message is logged and the mount fails. Otherwise, mnt_server then checks the timestamp
to verify that the mount was received within the allowable time window. If it was not, an
error message is logged and the mount fails.

The mnt_server process then determines if this server/directory combination has already
been mounted. If it has not, mnt_server writes some additional information to the shared
memory table for this proxy directory. It then issues a mount RPC to the user’s file server,
requesting to mount the user’s home directory. If the mount is successful, the file handle of
the directory is returned to mnt_server. This file handle is stored in the table and a proxy
file handle is created. The proxy file handle contains indices into the shared memory table.
This makes the operation of the nfs_server faster, since it can quickly determine the
server/directory combination to which to send the NFS RPC. The proxy file handle is then
returned to the application server, and the mount successfully terminates.

62

TIE-In Common File System

™ “Application Server | ™ “Common File ™ “File Server

I I System I

| TAS I |
proxy_dlrectory

I fetc/mount pro;t:y_dire-.,tmyI (mnt server) I___d_:r_egtgrw { mountd > I

I proxy file handle | ﬁle handle 1 I

b o e - ——_— | b e e o — 49 0 e —— - -l

Figure 8. Mounting the user’s home directory.

If the server/directory combination has already been mounted by mnt_server when the
mount RPC is received from the application server, the application server is added to the
list of systems that have this server/directory mounted. In this case the proxy file handle
that is already stored in the shared memory table is returned. The server/directory
combination will have already been mounted if the user is already running the application
on another application server or another application that mounts the user’s home directory.

The Mount Point

The user’s home directory is mounted on the directory tie_home undemeath the local home
directory specified for the user in the application’s entry in the TIE-In configuration file
(fusr/etc/tiein.conf) on the application server. It is not mounted directly over the local home
directory specified for the user in case the application wants to have some setup or
configuration files in the user’s area, but not on a remote system. This may be done for
security or for performance reasons. It also allows the application to write intermediate files
to the user’s local home directory, and then move the final output to the user’s remote home
directory upon completion of the application.

Figure 9 shows the directory structure described above. The TAS executes the application
from the directory specified as the home directory for the user. This is shown in the figure
as TIE_HOME. The user’s remote home directory is mounted on the tie_home directory
underneath TIE_ HOME.

Mounting on an Add or Delete Request

The previous section described how the CFS mounts a user’s home directory when the user
runs an application. The CFS also mounts the user’s home directory when he adds the
application to his application list and when he removes the application from his application
list. The mount is performed in these cases because the application may have some
configuration or default files that need to be placed in the user’s directory when he first adds
the application to his list. Similarly, if the user removes the application from his list, the
application may need to remove some files from the user’s home directory.

TIE-In System Description

TIE_HOME

N

local files and tie_home
directories

Figure 9. Tlustration of the tie_bome mount point.

‘When the user attempts to add an application to his list, he does not yet have a home
directory on the application server. Therefore, the CFS cannot mount his home directory
on a remote system to the tie_home directory underneath his local home directory as is done
when the user runs an application. Therefore, his home directory on the remote system is
mounted on a temporary mount point. The name of the temporary mount point is passed by
the TAS to the application’s add/delete account script as the seventh argument. Thus, if the
script needs access to the user’s remote directory, it can be accessed via the temporary
mount point. When the add/delete account script terminates, the user’s home directory is
unmounted.

Operation of the NFS Server

The NFS server process (nfs_server) accepts NFS RPCs from the application server,
performs some necessary translations, and sends an NFS RPC to the file server (see
Figure 10). The information contained in the RPC depends upon which NFS procedure is
to be called on the file server, but in general a file handle for the file of interest is provided.
The file handle is a proxy file handle that is used by nfs_server to quickly access the file
server’s information in the shared memory table.

The first step performed by nfs_server is to verify that the system sending the RPC is one
of those on the list of systems that have been previously authorized and have successfully
mounted the corresponding proxy directory. If the system fails this test, an error message
is logged and RPC_AUTHERR is returned. The nfs_server process also verifies that the
user id in the RPC matches the app_owner_uid. If there is a mismatch, an error message is
logged and RPC_AUTHERR is returned.

64

TIE-In Common File System

Apgllmtlon Common File " "File Server |

! erver | | System | I I

O | e e)
n S server |<———>‘ nis

!_ ! (mapped) _:

Figure 10. Operation of the nfs_server.

If the RPC passes these tests, nfs_server then determines the file server to which this RPC
is to be sent, and retrieves the correct file handle to be used. Depending upon the NFS
procedure being called, the uid in the request may have to be translated to the uid of the
user on the file server (from app_owner_uid to file_server_uid). This translation is
performed if necessary, and the RPC is sent to the file server. When a response is received,
the uid may have to be translated back to the uid of the owner of the application on the
application server (from file_server_uid back to app_owner_uid). This translation is
performed if necessary, and the results of the RPC to the file server are returned to the
application server that initiated the request. For more information about the NFS
procedures, see the document Network File System: Version 2 Protocol Specification,

published by Sun Microsystems.?

As with the nfsd process, many nfs_server processes can be running simultaneously to
achieve greater response. The default number of nfs_server processes is four, but this can
be changed easily at run time.

Unmounting a File System

Prior to executing an unmount, the TAS will send an authorization message to the mnt_auth
process, informing it that a umount will soon be executed. Included in the authorization
message is the proxy directory that is to be unmounted. The mnt_auth process looks up the
table entry for this proxy directory and verifies that the system that sent the authorization
message is one that successfully mounted the proxy directory. If it is, mnz_auth sets a flag
indicating that a umount RPC is to be expected soon. It also sets a timestamp, which is
checked by mnt_server when the umount RPC is received.

The TAS issues a umount command (via the execvp command) when an application
completes, or in that case of an add or delete account request, after the add/delete account
script has completed. If the user is running the application more than once, the umount is
sent only at the completion of the last running application.

When the umount RPC is received by mnt_server, it first verifies that the RPC was sent by
an authorized system. It then checks the mount flag that will have been set by mnt_auth to
indicate that an unmount is pending, and verifies that the unmount has been received within
the allowable time window. If both of these tests are successful, mnt_server removes the

65

TIE-In System Description

table entry for this proxy directory. It then checks to see if this is the last application server
that has this server/directory combination mounted. If it is, it sends a umount RPC to the
server requesting to unmount the user’s home directory. If this is not the last system to have
this server/directory combination mounted, it simply returns an RPC to the calling system
indicating that it has successfully unmounted the proxy directory.

Security Tests

A number of tests were performed to ensure that the TIE-In File System is secure. The
greatest potential threats that were identified include (1) an unauthorized system being able
to mount the user’s home directory, and (2) an unauthorized system or user being able to
intercept and reissue the NFS RPCs. Since the TIE-In CFES is based upon NFS, some of the
security problems present in NFS are also present in CFS. The greatest threat is the lack of
a strong authentication of the RPCs. The authentication level used is AUTH_UNIX, which
is simply a username and userid. This authentication mechanism can potentially be
defeated by sending low-level RPCs containing another user’s username and userid to the
file server. The CFS helps to eliminate this threat by ensuring that the RPCs are coming
from the system that performed the mount. Thus, only another user with root access on the
application server could be a threat, and this type of threat is virtually impossible to
eliminate.

Mount Authentication Test

Two tests were performed to ensure that an unauthorized system cannot mount a user’s
home directory. For the first test, the TIE-In Application Server process running on an
authorized system (sahp165) was stopped. The application was then executed, and an
attempt was made to mount the proxy directory, created for the user by the CFS, from an
unauthorized system (sass498). The attempt failed. The message returned to sass498 was
that the server was busy. A message appeared in the TIE-In log file indicating that an
unauthorized system attempted to mount the proxy directory of the user. The message
includes the IP address of the unauthorized system. A mount request was also issued from
the authorized system (sahp165), but this was denied as well. The reason for this is that an
additional authorization message must be sent from the TAS prior to the mount request
being sent. Since the TAS was not running, the authorization message was not sent so the
mount request was denied.

For the second test, the TAS was modified to sleep for 60 seconds in between sending the
mount authorization message and performing the mount. In addition, the time window
between receiving the authorization request and the mount request was increased to 70
seconds. While the TAS was sleeping, a mount request was sent from an unauthorized
system (sass498). Again, the mount request failed with the message server busy and an
error message was logged. When the mount request was issued from the authorized system,
the mount was successful. This was expected; because once the mount authorization
message has been successfully sent, the system is authorized to perform a mount.

66

TIE-In Common File System

NFS Authentication Test

A test was performed to ensure that only authorized systems can successfully send NFS
remote procedure calls (RPC) to the CFS. A simple NFS client was created that sends a few
basic RPCs to the CFS. The client was run from a number of different systems at different
times to verify that only authorized systems can successfully send RPCs to the CFS. An
authorized system is one that has successfully mounted a file system on behalf of the user
through the CFS, and on which the application is running. For example, if user rdetry is
running the application Xdemos on sahp103, sahp103 is an authorized system. When the
NEFS test client was run on sahp103, the RPCs were successful. It is important to note,
however, that this required the knowledge of the proxy file handle, which was determined
from examining the code. Normally, the only way a file handle can be obtained is to snoop
the network.

The test was repeated when no applications were running on sahp103, and the RPC:s failed
with the message of “Permission Denied.” The same result occurred when the test was run
from sahp165 when an application was running on sahp103. The same result also occurred
when user gmachin ran the test while user rdetry was running an application on sahp103.

Thus, not only is the client’s address checked, but so is the uid of the user.

The only threat is again from a knowledgeable user with root access on a system running
an application. This type of user would also be able to cd to the user’s mounted file system
anyway, and therefore would never go through the trouble of creating a sophisticated NFS
client.

In order to successfully attack, the attacker would have to (1) get the root file handle, or the
file handle of the file of interest, (2) either execute the attack from the machine running the
application, or spoof as this machine, (3) obtain the uid of the process owner of the
application and set his credentials to this uid, and (4) have a detailed knowledge of NFS
RPCs and write a program to do the attacking.

Special Considerations for Application Developers

This section contains some information for application developers and maintainers. Most
of the information appears in other sections of this document, but it is repeated here for easy
reference.

The first step in setting up an application to mount a user’s remote file system is to modify
the flags in the applications entry in the TIE-In database. Only a TIE-In administrator can
make this modification. Once the modification has been made, the Front End System will
send the information required by the TAS to mount the user’s remote home directory when
the user runs the application, or requests that the application be added to or deleted from
his application list. This same process can be used to modify the application’s database
entry if the application no longer wants or needs to mount the user’s remote directory.

67

TIE-In System Description

‘When the user runs an application, his remote home directory is mounted on the tie_home

directory underneath his local home directory. The user’s local home directory is specified
in the TIE-In configuration file (/usr/etc/tiein.conf) and is typically created when the user
requests the addition of the application to his application list. Since the user’s local home
directory does not exist when he requests the addition of the application to his list, the
user’s remote home directory is mounted on a temporary mount point. The mount point is
passed to the add/delete account script as the seventh argument. When the add/delete
account script terminates, the remote directory is unmounted.

To achieve the best performance and reliability, the application might want to read and
write all intermediate files to and from the user’s local home directory. Files can be copied
to or from the remote home directory at the start and completion of the application. This
helps to ensure that important information is not lost if the connection to the file server is
lost. It will also help to achieve greater performance since reads and writes to a local file
system are faster than those to a mounted file system.

Specifying the User’s Home Directory

In the current implementation of the TIE-In Front End System, the user’s home directory
must be set by a TIE-In administrator. It cannot be set by the user. In the future, the user
may be able to specify a home directory for each of the applications on his list, but the
security implications of this have not yet been thoroughly investigated.

The user’s home directory can be a file system on his workstation’s local disk, or a file
system created for the user on a TIE-In file server. The latter case will probably be more
common since the first case requires the ability of the application server to mount the user’s
local disk. This is unlikely due to the increasing presence of firewalls. In addition, for
external users it is likely that the network bandwidth between an application server and a
TIE-In file server will be better than the bandwidth between the application server and a
user’s local disk. Internal Sandia users, however, may find it useful to mount a local disk.

Performance

One of the main requirements in the design of the CFS was to avoid dramatically slowing
down the performance of NFS. This was achieved by using shared memory for the
interprocess communication, and designing the tables in such a manner so that they could
be rapidly accessed. Some slowdown was unavoidable of course, since twice as much
network communication must take place, as well as security tests and mappings of the user
id and server address.

Some tests were performed to determine the overhead of going through the CFS as opposed
to using NFS directly, and the results are shown in Tables 17 through 22. In Test 1, shown
in Table 17, the read performance was tested. A 1.25 Mbyte file was copied from a mounted
file system to a local file system using NFS alone and while using CFS. In this case the

68

TIE-In Common File System

application was running on an HP Workstation (sahp165), and the home directory was on
a Sun Solaris workstation (sass498). For all tests the CFS was running on another HP
workstation (sahp103).

Table 17. Results of CFS vs. NFS read performance: Test 1

of nfs_servers | CFS Avg. time (secs) | NFS Avg. time (secs) | Overhead (%)
1 15.0 11.6 29.30
4 12.5 11.6 5.04
6 12.8 11.9 7.56
8 12.1 11.9 1.68
10 12.2 11.6 5.17

In test 2, shown in Table 18, the same test was performed except the application was
running on a Sun Solaris workstation (sass498) and the home directory was on an HP

workstation (sahp165).

Table 18. Results of CFS vs. NFS read performance: Test 2

of nfs_servers | CFS Avg. time (secs) | NFS Avg. time (secs) | Overhead (%)
1 11.1 11.1 0.00
4 12.5 11.4 7.89
6 11.1 11.1 0.0
8 11 11 0.0
10 11.1 11.1 0.0

In test 3, shown in Table 19, the write performances were compared. The setup is the same
as in test 1, but in this case the 1.25 Mbyte file was copied from the local disk to the

mounted file system.

Table 19. Results of CFS vs. NFS write performance: Test 3

of nfs_servers CFS Ave. time NFS Avg. time Overhead (%)
(secs) (secs)
45.6 12 280.0
4 12.1 11.9 2.54
69

TIE-In System Description

———

Table 19. Results of CFS vs. NFS write performance: Test 3 '(Continued)

of nfs_servers CFS (I:Le\;gs) time NES (‘:g;gs) time Overhead (%)
6 11.9 11.9 0.0
8 11.9 11.9 0.0
10 12.1 12 0.83

In test 4, shown in Table 20, the write performance was repeated using the same system
configuration as in test 2.

Table 20. Results of CFS vs. NFS write performance: Test 4

of nfs_servers CES (‘::i) time NES (?:i)time Overhead (%)
1 11.5 11.3 1.77
4 12 11 9.09
6 12 11 9.09
8 12.3 11.1 10.81
10 12 11 9.09

In test 5, shown in Table 21, the read/write performance of the CFS was compared to that
of NFS alone. The system configuration was the same as in test 1, but in this case the 1.25
Mbyte file was copied from the mounted file system to another file on the mounted file
system.

R ——

Table 21. Results of CFS vs. NFS write performance: Test 5

of nfs_servers CES (‘:‘:‘i) time NFS (‘:;i .)time Overhead (%)
1 47.2 21.6 118.52
4 26.2 21.3 23.00
6 26.7 215 24.12
8 274 215 27.44
10 274 214 28.04

70

TIE-In Common File System

- In test 6, shown in Table 22, test 5 was repeated using the system configuration described
in test 2.

e ottt e —————————————— e —
e ——— e e ——e ey

Table 22. Results of CFS vs. NFS write performance: Test 6

of nfs_servers CFS (‘:‘;i ') time NFS (‘:f;gs') time Overhead (%)
1 20 15 25.00
4 18.7 14.9 20.03
6 174 14.8 17.57
8 16.8 15.1 10.76
10 17.2 15.5 10.97

The results of the performance test indicate that the overhead is quite low (0 to 10 percent)
for straight reading and writing, but increases significantly for mixed reading and writing
(10 to 25 percent). The operation of most TIE-In applications is such that mixed reading
and writing will rarely occur. In the majority of cases, files will be loaded from the user’s
home directory, some processing will occur, and an output file will be written back to the
user’s home directory. In these cases, the performance of the CFS is such that the slowdown
will be negligible. Even a slowdown of 25 percent is quite acceptable, given the fact that
without the CFS, accessing the user’s home directory is not possible at all.

Future Work

The performance of the CFS will be closely monitored and improvements will be made
when possible. Since it is difficult to determine just how the CES will be used and how it
will perform during testing, it was designed so that many parameters can be set at run time.
Different combinations of the parameters will result in different performances.

The current implementation of the CFS uses NFS Version 3 and mount Version 1. In the
future, the CFS will have to support NFS Version 3 and mount Version 2. In addition, if the
Distributed Computing Environment (DCE) becomes widely used, the CFS will also have
to support DCE’s Distributed File System (DFS).

TIE-In System Description

Intentionally Left Blank

72

Interprocess Communication

Interprocess Communication

This section describes the communication that takes place between the various Front End
System processes, including the Resource Request Manager (RRM), the TIE-In Profile
Manager (TPM), the Accounting Manager (AcctM), the Session Manager (SM), and the
TIE-In Application Server (TAS). The format of the messages are discussed in Appendix
A: Message Formats.

Communication Between the SM and the RRM

The following describes the exchange that takes place between the SM and the RRM for
the various types of request messages, and possible reply messages for those requests. In
the diagrams below, flow towards the right indicates a request submitted by the SM to the
RRM, while flow towards the left indicates a reply from the RRM sent to the SM. The
labels on the arrows indicate the request or reply type, while STATUS indicates the status
of the reply.

Submit Request

When a user selects an application from her application list, the SM sends a submit request
to the RRM. The RRM then reformats the request and sends it to the TAS that is serving

the selected application (see “Submit Request” in the “Resource Request Manager Process
Description” section). The request that is sent from the SM to the RRM is described below.

RRM_SUBMIT_REQ

- >
SM RRM
nl STATUS
where STATUS is one of the following:

RRM_SUCCESS: The request was successfully submitted to the TAS
and the user is now running the application.

RRM_AUTHFAIL: The user failed the authentication policy of the
application.

RRM_XFAIL: The application could not establish a connection with

the user’s workstation or PC.

RRM_RESRC_UNAVAIL: The application is currently unavailable.

73

TIE-In System Description

RRM_REQ_EXISTS: A task with the task id assigned by the RRM for the
submitted task is already running. This can occur
when communication between the RRM and the
TAS is slow. The RRM sends the submit request to
the TAS multiple times before giving up. Sometimes
the TAS has successfully processed the request but
the RRM has not received the reply before sending
out another submit request. When the new submit
request arrives, the task is already active.

RRM_RESRC_UNK: The application is unknown by the TAS. This
typically occurs when there is an error in the TAS
configuration file.

Delete Task Request

The SM has an option that allows the user to delete one or more of her active tasks. This
option can also be used by a TIE-In administrator to delete a task regardless of who owns
the task. When this option is selected, the SM sends a delete request to the RRM. The RRM
reformats the request and sends it to the TAS that is serving the application (see “Delete
Task Request” in the “Resource Request Manager Process Description” section). The
request sent from the SM to the RRM is described below.

RRM_DELETE_REQ

—-
SM ' RRM
i STATUS
where STATUS is one of the following:
RRM_SUCCESS: The specified task was successfully deleted.
RRM_AUTHFAIL: The user is not the owner of the task and not a TIE-
In administrator.
RRM_REQUNK: The specified task is not known by the TAS. This can

occur when a task completes just prior to the TAS
receiving the delete request.

RRM_RESRC_UNK: The application is not known by the RRM or the
TAS, or the TAS encountered an error while reading
the status file for the task.

Add Account Request

When a user attempts to add an application to her application list, the SM will send an add
account request to the RRM. The RRM reformats the request and sends it to the TAS (see
“Add Account Request” in the “Resource Request Manager Process Description” section).

74

Interprocess Communication

The TAS will execute the add account script if one was provided for the application. The
add account request sent from the SM to the RRM is described below.

RRM_ADD_ACCT

P
SM RRM
-
STATUS
where STATUS is one of the following:
RRM_SUCCESS: The account was successfully added.
RRM_AUTHFAIL: The request failed authentication or authorization

policies.
RRM_RESRC_UNAVAIL: The application is currently unavailable.

RRM_RESRC_UNK: The application requested is unknown by the TAS.

Delete Account Request

When a user attempts to delete an application from her application list, the SM will send a
delete account request to the RRM. The RRM reformats the request and sends it to the TAS
(see “Delete Account Request” in the “Resource Request Manager Process Description”
section). The TAS will execute the delete account script if one was provided for the
application. The delete account request sent from the SM to the RRM is described below.

RRM_DEL_ACCT

-
SM RRM
‘ STATUS
where STATUS is one of the following:
RRM_SUCCESS: The account was successfully deleted.
RRM_AUTHFAIL.: The request failed authentication or authorization

policies.
RRM_RESRC_UNAVAIL: The application is currently unavailable.

RRM_RESRC_UNK: The application requested is unknown by the TAS.

75

TIE-In System Description

Communication between the AcctM and the SM

and RRM

This section discusses the communication that takes place between the AcctM and the SM
and RRM for the various messages, and shows the possible replies.

Add Request

The RRM sends an add request to the AcctM when a user successfully submits a task. The

AcctM creates an entry in the database for the task.

ACCT_ADD_REQ

RRM

STATUS

where STATUS is one of the following:

ACCT_REPLY_SUCCESS:

ACCT_REPLY_FAILED:

Information Request

The RRM and SM will send information requests to the AcctM to obtain information about

a task or a group of tasks matching a set of criteria.

ACCT_INFO_REQ

AcctM

The request was successfully processed and
the information about the task has been
stored in the database.

The request failed and an error message is
provided in the reply.

SM

STATUS

where STATUS is one of the following:

76

AcctM

Interprocess Communication

ACCT_REPLY_SUCCESS: The request was successfully processed and
the reply contains the desired information.

ACCT_REPLY_NOENTITY: No tasks were found that match the specified
search conditions.

ACCT_REPLY_FAILED: The request failed and an error message is
provided with the reply.

Update Request

When the RRM receives an update from the TAS concerning a task, it will send the
information to the AcctM via an update request.

ACCT_UPDATE_REQ

>
RRM AcctM
< STATUS
where STATUS is one of the following:

ACCT_REPLY_SUCCESS: The request was successfully processed and
the information about the task has been
updated.

ACCT_REPLY_NOENTITY: No requests were found that match the
specified search conditions.

ACCT_REPLY_FAILED: The request failed and an error message is
provided with the reply.

Communication between the RRM and a TAS

The following describes the exchange that takes place between the RRM and the TAS for
the various types of request messages, and possible reply messages for those requests. Flow
towards the right indicates a request submitted by the RRM to the TAS, while flow towards
the left indicates a reply from the TAS sent to the RRM. The labels on the arrows indicate
the request or reply type, while STATUS indicates the status of the reply.

Submit Request

The RRM will send a submit request to the TAS when a user selects an application from
his application list.

TIE-In System Description

TIRRS_SUBMIT_REQ

-
RRM TAS
- STATUS
where STATUS is one of the following:
TIRRS_RRM_SUCCESS: The task was successfully submitted and the

application is now in control.

TIRRS_RRM_AUTHFAIL: The request failed authentication or authorization
policies.

TIRRS_RRM_XFAIL: Could not open display to users X server, request was
not submitted.

TIRRS_RRM_REQ_EXISTS: The task already exists and is executing. The reply
will contain the appropriate tas_task_id for the
previously submitted task.

TIRRS_RRM_RESRC_UNAVAIL: The task cannot be submitted due to lack of

resources. See info for further detail.

TIRRS_RRM_RESRC_UNK: The application requested is unknown by the TAS.

Status Request

The RRM will send a status request to the TAS at periodic intervals to determine the state
of a task.

TIRRS_STATUS_REQ

RRM | TAS
STATUS

where STATUS is one of the following:

TIRRS_RRM_REQ_UPDATE: The task is currently running and the account_info
field of the reply contains the current information, if
available.

TIRRS_RRM_AUTHFAIL: The request failed authentication or authorization
policies.

TIRRS_RRM_RESRC_UNAVAIL: The request cannot be fulfilled due to lack of
resources. See info for further detail.

TIRRS_RRM_RESRC_UNK: The application requested is unknown by the TAS.

78

Interprocess Communication

TIRRS_RRM_REQUNK:

TIRRS_RRM_REQCOMPL:

Delete Request

The specified task is not known on this system. It
may be that the task completed some time ago and
the TAS no longer has a record of its completion.

The task has completed and the account_info field of
the reply contains the final accounting information.

The RRM sends a delete request to the TAS when a user wishes to delete a current task.

TIRRS_DELETE_REQ

TAS

STATUS

where STATUS is one of the following:

TIRRS_RRM_SUCCESS:
TIRRS_RRM_AUTHFAIL:

The task was successfully deleted.

The request failed authentication or authorization
policies.

TIRRS_RRM_RESRC_UNAVAIL: The request cannot be fulfilled due to lack of

TIRRS_RRM_RESRC_UNK:
TIRRS_RRM_REQUNK:

TIRRS_RRM_REQCOMPL:

resources. See info for further detail.
The application requested is unknown by the TAS.

The specified task is not known on this system. It
may be that the task completed some time ago and
the TAS no longer has a record of its completion.

The task has completed and the account_info field of
the reply contains the final accounting information.

Complete Acknowledgment

The request type TIRRS_COMPL_ACK is an acknowledgment by the RRM to the TAS
that the task completed message was received. No response from the TAS is expected. The
TAS will keep the task on its active task list until a completed acknowledgment is received.

TIRRS_COMPL_ACK

TAS

79

TIE-In System Description

Add Account Request

The RRM will send an add account request to the TAS when a user attempts to add a new
application to her application list.

TIRRS_ADD_ACCT

-
RRM TAS
- =
STATUS
where STATUS is one of the following:
TIRRS_RRM_SUCCESS: The account was successfully added.
TIRRS_RRM_AUTHFAIL: The request failed authentication or authorization
policies.

TIRRS_RRM_RESRC_UNAVAIL: The request cannot be fulfilled due to lack of
resources. See info for further detail.

TIRRS_RRM_RESRC_UNK: The application requested is unknown by the TAS.

Delete Account Request

The RRM will send a delete account request to the TAS when a user removes an application
from her application list.

TIRRS_DEL_ACCT

RRM TAS
STATUS

where STATUS is one of the following:

TIRRS_RRM_SUCCESS: The account was successfully deleted.
TIRRS_RRM_AUTHFAIL: The request failed authentication or authorization
policies.

TIRRS_RRM_RESRC_UNAVAIL: The request cannot be fulfilled due to lack of
resources. See info for further detail.

TIRRS_RRM_RESRC_UNK: The application requested is unknown by the TAS.

80

Interprocess Communication

TAS Status Reply

The TAS will periodically send uninitiated status replies to the RRM. The accounting
information supplied with the reply is the latest available information and is passed on to
the AcctM.

RRM TAS
TIRRS_STATUS_REQ

The update will have a status of

TIRRS_RRM_REQ UPDATE: The task is currently running and the account_info
field of the reply contains current information.

TIRRS_RRM_REQCOMP: The task has completed and the account_info field
of the reply contains the final accounting
information.

Communication between the SM, RRM, and the
TPM

This section describes the communication that takes place between the TIE-In Profile
Manager and the Session Manager and Resource Request Manager.

Add Request

The Session Manager sends add requests to the TIE-In Profile Manager for a variety of
reasons as discussed in the “TIE-In Profile Manager Process Description” section. The info
field in the reply contains additional information about the status of the request, such as
why the request failed.

AUTH_REQ_ADD

SM TPM
< STATUS

where STATUS is one of the following:

TIE-In System Description

AUTH_REPLY_SUCCESS The information was successfully added or
updated.

AUTH_REPLY_NOENTITY The specified user or application does not
exist.

AUTH_REPLY_FAILED The information could not be added or
updated.

Information Request

Both the Session Manager and the Resource Request Manager obtain a variety of
information from the database by sending AUTH_REQ_INFO type messages to the TPM,
as discussed in the previous section. The info field in the reply contains additional
information about the status of the request, such as why the request failed.

AUTH_REQ_INFO

- STATUS

where STATUS is one of the following:

AUTH_REPLY_SUCCESS The information was successfully obtained.

AUTH_REPLY_NOENTITY The specified user or application does not
exist.

AUTH_REPLY_FAILED The information could not be obtained.

Delete Request

The Session Manager sends delete requests to the TPM in order to delete a user, an
application, or a user’s registration. The info field in the reply contains additional
information about the status of the request, such as why the request failed.

AUTH_REQ_DEL

SM TPM
- STATUS

where STATUS is one of the following:

82

Interprocess Communication

AUTH_REPLY_SUCCESS The user, application, or registration was
successfully deleted.

AUTH_REPLY_NOENTITY The specified user, application, or
registration does not exist.

AUTH_REPLY_FAILED The user, application, or registration could

not be deleted.

Communication Between the CFS and the TAS

This section describes the communication between the Common File System and the TIE-
In Application Server. The TAS will send messages to the mnz_auth process of the CFS,
and the mnt_auth process returns a reply to the message. The TAS sends two requests:
mount and unmount.

Mount Request

Prior to executing the mount command on the application server, the TAS will send a
message to mnt_auth to inform it of the impending mount. The mnt_auth process will
verify some of the information in the message, extract some of the information, and send a
reply back to the TAS.

MOUNT_REQUEST

TAS CES
il STATUS

where STATUS is one of the following:

MNT_AUTH__REPLY_N OSUCH_DIR The specified proxy directory does
not exist.

MNT_AUTH_REPLY_PERM The specified user or client does not have
permission to mount the specified proxy
directory.

MNT_AUTH_REPLY_TIME_ERR The request from the TAS has exceeded the
time limit set for the duration between the
initial message sent by the SM to mnt_auth
and the mount request message.

MNT_AUTH_REPLY_SUCCESS The request was successfully processed.

Unmount Request
Prior to executing the umount command on the application server, the TAS will send a
message to mnt_auth to inform it of the impending unmount. The mnt_auth process will

83

TIE-In System Description

verify some of the information in the message, extract some of the information, and send a
reply back to the TAS.

UNMOUNT_REQUEST

TAS CFS
- STATUS

where STATUS is one of the following:

MNT_AUTH_REPLY_NOSUCH_DIR The specified proxy directory does
not exist.

MNT_AUTH_REPLY_PERM The specified user or client does not have
permission to unmount the specified proxy

directory.
MNT_AUTH_REPLY_SUCCESS The request was successfully processed.

Communication Between the SM and Xforward

This section describes the communication between the Session Manager and the Xforward
process. The SM sends a variety of requests to the xforward process, which formulates and
returns the requested information.

Xforward Request

TAS " CFS

Xforward Reply

Inside the request is an operation. The possible operations and the value returned in the
reply are shown in Table 23. The return value is actually a one-byte string indicating
success or failure (XFORWARD_SUCCESS or XFORWARD_FAILED) followed by a
string containing the specified information.

84

Interprocess Communication

Table 23. Xforward reqdest operation types and return values

Operation Type

Return value

XFORWARD_ADD

the proxy display

XFORWARD_ADD_SECURE

the proxy display and the magic cookie

XFORWARD_ADD_UDP the proxy port
XFORWARD_ADD_TCP the proxy port
XFORWARD_ADD_NO_NOTIFY | the proxy display

XFORWARD_ADD_SECURE_NO
_NOTIFY

the proxy display and the magic cookie

XFORWARD_ADD_NFS_PROXY

the proxy home directory

XFORWARD_CLOSE

status (success/failure)

XFORWARD_DELETE

status (success/failure)

TIE-In System Description

Intentionally Left Blank

86

Conclusion

Conclusion

TIE-In provides a new mechanism for connecting a distributed set of users with a
distributed set of applications in an authenticated, secure manner. The TIE-In approach
focuses on providing the non-expert with guided solutions embedded in intelligent user
interfaces, while minimizing the investment required to utilize these technologies.

TIE-In has been in operation since June 1994. It currently has 29 integrated applications,
of which 21 are available to both internal and external customers. One of the applications
resides on a workstation at Lawrence Livermore National Laboratory, while the rest of the
applications reside on Sandia workstations. There are a total of 650 registered TIE-In users,
with approximately 45 users accessing the TIE-In system to successfully complete over
200 application requests per week.

Future Developments

In addition to continuing to bring a wide variety of applications into the TIE-In
environment, there are a number of future developments that will help align TIE-In with
the future of distributed computing.

DCE Applications

One probable future development effort of TIE-In is to make the various manager processes
(Accounting Manager, Profile Manager, Request Manager, and Application Server) into
DCE (Distributed Computing Environment) applications. This will allow the manager
processes to be used as network resources. Each manager process will have an application
programming interface (API) that will allow other projects to easily use TIE-In’s existing
processes.

In addition, the Distributed File System (DFS) component of DCE will provide a more
secure alternative to TIE-In’s current Common File System. This is because it provides a
checksum with each file, which prevents the modification of a file during transmission
between the server and the client.

This development effort is dependent upon having a DCE infrastructure, which is not in
place at this time. The infrastructure is, however, under development not only at Sandia,
but also at Los Alamos National Laboratory, Lawrence Livermore National Laboratory,
and the Defense Programs (DP) plants to support major DP projects like Advanced Design
and Production Technologies (ADaPT) and the Accelerated Super Computing Initiative
(ASCI).

TIE-In System Description

CORBA Applications

Another possible future development effort of TIE-In is to make the various manager
processes into CORBA (Common Object Request Broker Architecture) applications. This
approach would also allow the manager processes to be used as network resources. It would
be possible in the current environment to move towards CORBA applications. However,
there is nothing in the CORBA standard that addresses security issues, such as using
checksums, encryption, or Kerberos to secure the communication between the processes.
Thus, by integrating CORBA distributed application efforts to work with TIE-In, these
security requirements can be addressed.

Supporting Different Platforms

Currently, TIE-In provides Application Server processes for SunOS, Solaris, HP-UX, and
SGI-IRIX systems. An investigation is currently underway to determine the feasibility of
porting the TIE-In Application Server to the Windows NT platform. This would allow
applications to run under Windows NT in addition to UNIX. This would be a valuable
addition to TIE-In, as Windows NT applications are becoming more popular.

38

References

References

Isp Miller, B.C. Neuman, J.I. Schiller, and J.H. Saltzer, Section E.2.1: Kerberos
authentication and authorization system, Project Athena Technical Plan, MIT Project
Athena, Cambridge, Mass, Dec. 1987.

2Sun Microsystems, Inc., Network Filesystem Specification, RFC-1094, DDN Net-
work Information Center, SRI International, Menlo Park, CA.

TIE-In System Description

Intentionally Left Blank

90

Bibliography

»Bibliography

Computer Security

William R. Cheswick and Steven W. Bellovin, Firewalls and Internet Security, Addison-
Wesley, New York, 1994.

D. Borman, Telnet Authentication: Kerberos Version 4, RFC-1411, DDN Network
Information Center, SRI International, Menlo Park, CA.

J. Kohl, B. Neuman, The Kerberos Network Authentication Service (V5), REC-1510, DDN
Network Information Center, SRI International, Menlo Park, CA.

S.P. Miller, B.C. Neuman, J.I. Schiller, and J.H. Saltzer, Section E.2.1: Kerberos
authentication and authorization system, Project Athena Technical Plan, MIT Project
Athena, Cambridge, Mass, Dec. 1987.

Jeffrey 1. Schiller, Secure Distributed Computing, Scientific American, November 1994,
pp- 72 - 76.

Databases
Ingres Corporation, INGRES Database Administrator’s Guide, Release 6.4, December
1991.

Ingres Corporation, INGRES/Embedded SQL Companion Guide for C, Release 6.4,
December 1991.

Ingres Corporation, INGRES/SQL Reference Manual, Release 6.4, December 1991.

Patrick O’ Neil, Database Principles, Programming, and Performance, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1994.

Distributed Computing Environment
Harold W. Lockhart, Jr., OSF DCE, McGraw-Hill, Inc., New York, 1994.

Ward Rosenberry, David Kenney, and Gerry Fisher, Understanding DCE, O’Reilly and
Associates, Inc., Sebastapol, CA, 1992.

John Shirley, Wei Hu, and David Magid, Guide to Writing DCE Applications, O’Reilly and
Associates, Inc., Sebastapol, CA, 1994.

91

TIE-In System Description

Network File System

John Bloomer, Power Programming with RPC, O’Reilly and Associates, Inc., Sebastapol,
CA, 1992.

Hal Stem, Managing NFS and NIS, O’Reilly and Associates, Inc., Sebastapol, CA, 1991.

Hewlett-Packard, Co., Programming and Protocols for NFS Services, Fort Collins, CO,
1989.

Hewlett-Packard, Co., Using NFS Services, Fort Collins, CO, 1989.

Sun Microsystems, Inc., Network Filesystem Specification, RFC-1094, DDN Network
Information Center, SRI International, Menlo Park, CA.

Programming

David A. Curry, Using C on the UNIX System, O’Reilly and Associates, Inc., Sebastapol,
CA, 1991.

X Window System
Paul J. Asente and Ralph R. Swick, X Window System Toolkit, Digital Press, 1990.

David Flanagan, X Toolkit Intrinsics Reference Manual, O’Reilly and Associates, Inc.,
Sebastapol, CA, 1992.

Dan Heller and Paula Ferguson, Motif Programming Manual, O’Reilly and Associates,
Inc., Sebastapol, CA, 1994.

Paula Ferguson and David Brennan, Motif Reference Manual, O’Reilly and Associates,
Inc., Sebastapol, CA, 1993.

Adrian Nye, Xlib Programming Manual, O’Reilly and Associates, Inc., Sebastapol, CA,
1992.

Adrian Nye, XIib Reference Manual, O’Reilly and Associates, Inc., Sebastapol, CA, 1993.

Adrian Nye and Tim O’Reilly, X Toolkit Intrinsics Programming Manual, Motif Edition,
O’Reilly and Associates, Inc., Sebastapol, CA, 1992.

Robert Scheifler and Jame Gettys, X Window System, Digital Press, 1992.

92

Appendix A: Message Formats

Appendix A: Message Formats

Data Type Definitions

U32INT:
SINT:
NBO:
U32NBOINT:
STRING:
DATA:
length
data
NBODATA:
length
data
ACCTDATA:
type
units
unit_cost
NBOACCTDATA:
type

93

Unsigned 32 bit integer

Unsigned 8 bit integer

Network Byte Order - Most
significant byte

transmitted first.

Unsigned 32 bit Network Byte Order
integer

Sequential array of bytes.
U32INT

STRING (of size length)
U32NBOINT

STRING (of size length)
SINT

1: Storage

2: Memory

3: CpPU

4. Connect

5: TA definable

6: TA definable

7: TA definable
U32INT

NBODATA

S8INT

1: Storage

2: Memory

3: CPU

4. Connect

5: TA definable

6: TA definable

7: TA definable

TIE-In System Description

units NBOU32INT
unit_descr NBODATA
char_string: Sequential array of bytes terminated by zero valued byte.

USER_PROFILE
full_name NBODATA
comp_id_num NBODATA

The user’s full name.
The user’s company id number.

The following fields are used when the user is a Sandia employee.

org_num NBODATA The user’s organization number.
0rg_name NBODATA The user’s organization name.
emp_num NBODATA The user’s employee number.
mail_stop NBODATA The user’s mail stop.

The following fields are used when the user is not a Sandia employee.

department NBODATA The user’s department.

street NBODATA The user’s street address.

po_box NBODATA The user’s post office box.

city NBODATA The user’s city.

state NBODATA - The user’s state.

zip_code NBODATA The user’s zip code.

country NBODATA The user’s country.

email_addr NBODATA The user’s electronic mail address.

phone NBODATA The user’s phone number.

fax NBODATA The user’s fax number.

citizenship = NBODATA The user’s country of citizenship.

visa_num NBODATA If the user is not a US citizen, they
must provide a visa or passport
number.

ssn NBODATA The user’s social security number if
he is a US citizen.

home_dir NBODATA The user’s home directory that may
be mounted by an application.

realm NBODATA The user’s kerberos realm.

df_type U32INT The user’s distributed file type.

df_service_class U32INT

acct_limit

NBODATA

service_class U32INT

acct_expr_date NBODATA

The user’s distributed file service
class.

The user’s expenditure limit.

The user’s service class.

The user’s account expiration date.

Appendix A: Message Formats

CHARGE_ACCT
acct_type

acct_number

CHARGE_ACCTS
count
contents

KEY
encsize

contents
KEYBLOCK
key

type

CREDENTIALS
type

contents
endtime

sessionkey
tkt_cred

ENC_CREDS

CKSUM
type

SINT

NBODATA

U32INT
CHARGE_ACCT

SINT

NBODATA
KEY
SINT

S8INT

NBODATA
U32INT

KEYBLOCK
VOID *

S8INT

The account type, currently only
TIE_ACCT_TYPE_CASE. Future
values may include purchase orders,
charge cards, bank accounts, etc.
The account number.

The number of charge accounts.
The charge accounts.

The value of encsize is the length of
the original key. This is done because
the encryption/decryption will
change the length of the information.
If the value is O then contents are not
encrypted.

Limitation: the size of the key must
be <= 255 bytes.

The key in NBO.

Type of user credentials, one of

TIE_AUTH_NONE: 0
TIE_AUTH_KRB4: L
TIE_AUTH_KRBS: 2

The credentials.

The time at which the credentials are
not longer valid.

The session key.

Ticket pointer.

Encrypted CREDENTIALS.

Type of checksum. Acceptable types
are
TIE_CKSUM_NONE 0

TIE-In System Description

encsize

contents

CONSULTANT
user_name
full_name
email_addr
phone_num

CONSULTANTS
consultants

8INT

NBODATA

NBODATA
NBODATA
NBODATA
NBODATA

CONSULTANT

96

TIE_CKSUM_CRC_32 1
TIE_CKSUM_RSA_MD4 2
TIE_CKSUM_RSA_MD5 3

The value of encsize is the length of
the original checksum. This is done
because the encryption/decryption
will change the length of the
information.

Limitation - the size of the key must -

be <=255

Checksum of this request excluding
the cksum label. A Cksum type of
NONE will have a contents.length of
Zero.

The user name of the consultant.
The full name of the consultant.

The email address of the consultant.
The phone number of the consultant.

The list of consultants.

Network

Appendix A: Message Formats

TIE_RRM_REQ
IP/UDP send to port 1955
Label Type Description
length U32NBOINT Length of information to follow.
version SINT Version of TIE_ RRM_VERSION.
type SINT Type of request. Acceptable values;
RRM_SUBMIT_REQ 1
RRM_STATUS_REQ 2
RRM_DELETE_REQ 3
RRM_ADD_ACCT 4
RRM_DEL_ACCT 5
username NBODATA Name of user requesting application.
Must be unique, and assigned by the
Network Database. Lower case only.
userid U32NBOINT User Id of username. Must be unique,
assigned by the Network Database.
gids
count U32NBOINT Number of Group ids to follow.
gidl U32NBOINT Group Id 1 (Registered in the 13900
Database)
gidn U32NBOINT Group Id n where n = count
resourcename NBODATA Name of application requested.
Lower case only.
charge_acct CHARGE_ACCT The account to charge for the cost of

resource_address
type

address

auth_levels

SINT

NBODATA

U32NBOINT

the task.

Type of address contained in
resource_addresses.address.data.

Acceptable values;
TIE_ADDR_TYPE_NONE O
TIE_ADDR_TYPE IP 1

The address in ascii representation.
Example: the IP address
132.175.133.1 will have a length of
14, followed by the above null
terminated string.

Authentication levels supported by
this remote system. Acceptable
values can be established by
performing a logical OR of the
following values,

TIE-In System Description

credentials
rrm_credentials
session_logger

user_address

type

address

auth_levels
req_id

tirrs_req_id

request_flags
xserver_key

xfer_key
bandwidth

display
user_profile
forwarded_creds

extensions

ENC_CREDS
CREDENTIALS
NBODATA

8INT

NBODATA

U32NBOINT
U32NBOINT

U32NBOINT

U32NBOINT
KEY

KEY
U32NBOINT

NBODATA
USER_PROFILE
ENC_CREDS

NBODATA

98

TIE_AUTH_NONE:
TIE_AUTH_KRB4:
TIE_AUTH_KRBS:
TIE_AUTH_SID:

The user’s credentials.
The RRM'’s credentials.
Port through which messages are
logged

Users local account address. By
default it is the address from where
the connection originated. This may
not be the same as the display.

Type of address contained in
user_address.address.data.
Acceptable values;
TIE_ADDR_TYPE_IP 1
The address in NBO. Example: an IP
address will have a length of 4,
followed by the 32 bit NBO value
of the address.

Ignored by RRM

Value assigned by the RRM for this
task. For a request type of SUBMIT
this value is zero.

Value assigned by the TAS, which
identifies this task from the TAS
point of view. For a request

type of SUBMIT this value is zero.
Flags associated with this request.
The magic cookie key presented by
X application clients to the proxy X
server.

(Future use) Data surety key.
Maximum bandwidth of user’s
network connection. Used for
applications that may have
bandwidth requirements. A value of
zero means unknown.

User’s display name.

Info about the user.

Credentials forwarded from the
realm in which the user initially
performed authentication.

For future extensions to the protocol.

SO

Appendix A: Message Formats

cksum CKSUM The checksum for this request, which
will always be encrypted.

99

Network

TIE-In System Description

Label
length
version

type

status

info

username

userid

resourcename

req_id

tirrs_req_id

extensions
cksum

TIE_RRM_REPLY

IP/TCP send to a definéd port > 1023

Value
U32NBOINT
S8INT
S8INT

SINT

NBODATA

NBODATA

U32NBOINT

NBODATA

U32NBOINT

U32NBOINT

NBODATA
CKSUM

100

Description

Length of information to follow.
Version of TIE_RRM_REPLY.
Reply for request type of;
RRM_SUBMIT_REQ 1
RRM_STATUS_REQ 2
RRM_DELETE_REQ 3
RRM_ADD_ACCT 4
RRM_DEL_ACCT 5
Return status of request. Values:
RRM_SUCCESS 1
RRM_AUTHFAIL 2
RRM_XFAIL 3
RRM_REQUNK 4
RRM_REQCOMPL 5
RRM_RESRC_UNAVAIL 6
RRM_REQ_EXISTS 7
RRM_REQ_UPDATE 8
RRM_RESRC_UNK 9
Description from TAS providing
additional information with regard to
status.

Name of user requesting application.
Must be unique and assigned by the
Network Database. Lower case only.
User 1d of username. Must be unique
and assigned by the Network
Database.

Name of application requested.
Lower case only.

Value assigned by the RRM for this
task. For a request type of SUBMIT
this value is zero.

Value assigned by the TAS, which
identifies this task from the TAS
point of view. For a request

type of SUBMIT this value is zero.
For future extensions to the protocol.
The checksum for this reply, which
will always be encrypted.

Network

Appendix A: Message Formats

TIE_TIRRS_REQ

IP/UDP send to port 1955
Label Type
length U32NBOINT
version SINT
type S8INT
username NBODATA
userid U32NBOINT
gids*
count U32NBOINT
gidl U32NBOINT
gidn U32NBOINT
resourcename NBODATA

*
user_address

type

address

auth_levels

credentials

SINT

NBODATA

U32NBOINT
ENC_CREDS

101

Description

Length of information to follow.
Version of TIE_TIRRS_REQ.

Type of request. Acceptable values;
TIRRS_SUBMIT_REQ 1
TIRRS_STATUS_REQ 2
TIRRS_DELETE_REQ 3
TIRRS_ADD_ACCT 4
TIRRS_DEL_ACCT 5
TIRRS_COMPL_ACK 32
Name of user requesting application.
Must be unique and assigned by the
Network Database. Lower case only.
User Id of username. Must be unique
and assigned by the Network
Database.

Number of Group ids to follow.

Group Id 1 (Registered in the
Network Database)

Group Id n where n = count

Name of application requested.
Lower case only.

Users local account address. By
default it is the address from where
the connection originated. This
may not be the same as the display.
Type of address contained in
user_address.address.data.
Acceptable values:
TIE_ADDR_TYPE_IP 1
The address in ascii representation.
Example: the IP address
132.175.133.1 will have a length of
14, followed by the above null
terminated string.

Ignored

The user’s credentials.

TIE-In System Description

*x

req_id

tirrs_req_id

request_flags
*k
xserver_key

xfer_key**
bandwidth”

display*
user_profile
forwarded_creds

extensions
cksum

U32NBOINT

U32NBOINT

U32NBOINT
KEY

KEY
U32NBOINT

NBODATA
USER_PROFILE
ENC_CREDS

NBODATA
CKSUM

Value assigned by the RRM for this
task.

Value assigned by the TAS, which
identifies this task from the TAS
point of view. For a request type of
SUBMIT this value is zero. Request
types of STATUS_REQ and
DELETE_REQ should have non-
zero values.

Flags associated with this request.
The key presented by X application
clients to the user’s X server.
(Future use) Data surety key.
Maximum bandwidth of user’s
network connection. Used for
applications that may have
bandwidth requirements. A value of
zero means unknown.

User’s display name.

Info about the user.

Credentials forwarded from the
realm in which the user initially
performed authentication.

For future extensions to the protocol.
The checksum of the request. This
will always exist and be encrypted.

These fields are ignored on status and acknowledgment type of requests.
These fields may have a contents.length of zero, which indicates these keys are not

applicable.

102

Appendix A: Message Formats

TIE_TIRRS_REPLY

Network IP/UDP send to port 1956

Label
length
version
type

status

info

usérname

userid

resourcename

timestamp

req_id

Value
U32NBOINT
8INT
8INT

SINT

NBODATA

NBODATA

U32NBOINT

NBODATA

NBODATA

U32NBOINT

103

Description

Length of information to follow.
Version of TIE_TIRRS_REPLY.
Reply for request type of
TIRRS_SUBMIT_REQ 1
TIRRS_STATUS_REQ 2
TIRRS_DELETE_REQ 3
TIRRS_ADD_ACCT 4
TIRRS_DEL_ACCT 5

This information should have been
obtained from the TIE_TIRRS_REQ
message.

Return status of request. Acceptable
values

TIRRS_RRM_SUCCESS 1
TIRRS_RRM_AUTHFAIL: 2
TIRRS_RRM_XFAIL 3
TIRRS_RRM_REQUNK 4
TIRRS_RRM_REQCOMPL 5
TIRRS_RRM_RESRC_UNAVAIL 6
TIRRS_RRM_REQ_EXISTS 7
TIRRS_RRM_REQ_UPDATE 8§
TIRRS_RRM_RESRC_UNK 9
Description from TAS providing
additional information with regards
to status.

Name of user requesting application.
This information should have been
obtained from the TIE_TIRRS_REQ
message.

User Id of username. This
information should have been
obtained from the TIE_TIRRS_REQ
message.

Name of application requested. This
information should have been
obtained from the TIE_TIRRS_REQ
message.

Timestamp to identify when the reply
was sent.

Value assigned by the RRM for this

TIE-In System Description

task. This value should be obtained
from the TIE_TIRRS_REQ message.

tirrs_req_id U32NBOINT Value assigned by the TAS in
response to a submit request. This
value identifies this task from the
TAS point of view.
credentials CREDENTIALS The credentials of the TAS.
account_info
count U32NBOINT Number of entries to follow.
entryl NBOACCTDATA 1st accounting information.
entryn NBOACCTDATA Nth accounting record, where n =
count.
extensions NBODATA For future extensions to the protocol.
cksum CKSUM The checksum for this request, which
will always be encrypted.

104

Appendix A: Message Formats

TIE_AUTH_REQ

Network IP/TCP send to port 1956

Label Type Description

length U32NBOINT Length of information to follow.
version SINT Version of TIE_AUTH_REQ.

type 8INT Type of request. Acceptable values:

AUTH_REQ_INFO 1
AUTH_REQ_ADD 2 (Updates if

account exists)
AUTH_REQ DEL 3
name_type 8INT The type of name presented (all

actual flag names are preceded with
TIE_AUTH_NAMETYPE_):

USER 1
RESOURCE 2
MF_USER 3
NMF_USER 4
MF_RESRC 5
ADM_RESRC 6
REG_USER 7

session_id NBODATA Unique identifier of the user’s TIE-In
session

name NBODATA Name of user requesting application.

Must be unique and assigned by the
Network Database. Lower case only.

match_flags U32NBOINT Flags used to find matching users or
applications.
credentials The credentials with a type of

TIE_AUTH_KRBS.

The following records are only necessary for Add requests with name type of
TIE_AUTH_NAMETYPE_USER.

auth_levels S8INT Authentication levels supported.
Acceptable values can be established
by performing a logical OR of the
following values
TIE_AUTH_KRBS: 2
TIE_AUTH_SID: 4

userid U32NBOINT The user’s User Id. Must be unique
and assigned by the Network
Database.

flags U32NBOINT Flags defining the state of this

105

TIE-In System Description

gids
count
gidl

gidn
user_profile
def_charge_acct
charge_accts
user_resources

count
name
description

acct_type

acct_number

U32NBOINT
U32NBOINT

U32NBOINT
USER_PROFILE
CHARGE_ACCT
CHARGE_ACCTS

S8INT

NBODATA
NBODATA
SINT

NBODATA

account
TIE_USER_FLAGS_ACTIVE 1
TIE_USER_FLAGS_EXPIRED 2
TIE_USER_FLAGS_PW_-
EXPIRED 4

Number of Group ids to follow.
Group Id 1 (Registered in the
Network Database)

Group Id n where n = count
Information about the user.

The user’s default charge account.
All of the user’s charge accounts.
List of applications this user has
authorized access to

The number of resource.name
records to follow. The record name is
repeated “count” times.

The name of the application.
(Ignored by AuthM)

Default Account number type to use
against this application.

Default account number to use
against this application.

The following records are only necessary for Add requests for name types of
TIE_AUTH_NAMETYPE_RESOURCE,
TIE_AUTH_NAMETYPE_APP_ACCESS, and
TIE_AUTH_NAMETYPE_APP_CONS.

resource
name
description
groups

flags

NBODATA
NBODATA
NBODATA

U32NBOINT

106

The name of the application.
Description of the application.

The groups to which this application
belongs.

Flags defining the state of this
application
TIE_RSRC_FLAGS_ACTIVE 1
TIE_RESRC_FLAGS_REQ_DEL 2

Appendix A: Message Formats

TIE_RESRC_FLAGS_KEY_-

EXPIRED 4
administrator NBODATA User name of application
administrator
def_account_info
count U32NBOINT Number of records to follow
type SINT Accounting record type
unit_descc NBODATA Description of type
N charge NBODATA Advertised charge per unit

credit_acct_info CHARGE_ACCT The account to be credited when
payment is received from the user’s
of the application.

resource_addresses Lists the addresses of systems

supporting this application. This
record is only examined for Add
requests with a name_type of
RESOURCE.

count 8INT The number of address records to
follow. The records type, contents,
and auth_type are repeated “count”

times.
type SINT Type of address contained in
resource_addresses[n].address.data.
Acceptable values:
TIE_ADDR_TYPE_IP 1
address NBODATA The address in ascii representation.

Example: the IP address
132.175.133.1 will have a length of
14, followed by the above null
terminated string.

service_class U32NBOINT The type of service offered by this
application server.

auth_levels 8INT Type of authentication this entity
supports. See above for possible
values.

realm NBODATA The realm in which this application
server resides.

. consultants CONSULTANTS The list of users who are consultants

for this application.

The following records are only necessary for Add requests for name type of
TIE_AUTH_NAMETYPE_REG_USER. "

TIE-In System Description

flags

usernames

passwd
charge_accts
user_profile

U32NBOINT

NBODATA

NBODATA

CHARGE_ACCTS

USER_PROFILE

A combination of the following flags
that define the user. All flags are
prefixed with
TIE_AUTH_USER_FLAG:
SANDIA_EMP, US_CITIZEN,
SID_REQUESTED, BY_FAX,
BY_MAIL, ARCHIVED

A listing of up to three of the user’s
preferred login names.

The user’s initial password.

The user’s charge accounts.

The user’s profile information.

The following records are only necessary for Add requests for name type of
TIE_AUTH_NAMETYPE_PROJECT.

project_id
description

manager
status

charge_acct

access_list
count

name

NBODATA

NBODATA
NBODATA
U32NBOINT

CHARGE_ACCT

SINT

NBODATA

The identification string of the
project to be added.

A description of the project.

The username of the project manager.
The status of the project: used to
indicate whether or not the project is
active.

The charge account to which charges
incurred by the project will be
charged.

List of the usernames of the project
members.

The number of user name records to
follow.

The username of the user.

The following records are only necessary for Add requests for name type of
TIE_AUTH_NAMETYPE_SESSION.

session_id
display

start_time
fes

NBODATA
NBODATA

NBODATA
NBODATA

108

The identification string of the
session to be added.

The display of the user who initiated
the session.

The time the session was initiated.
The Front End System that the user

Appendix A: Message Formats

logged into to initiate the session.

user_name NBODATA The username of the user that

- initiated the session.

extensions NBODATA For future extensions to the protocol.
cksum CKSUM The cksum for this request. This will

always be encrypted.

TIE-In System Description

Network IP/TCP
Label
length
version
status

name_type

name
info

credentials
type

contents

TIE_AUTH_REPLY

Type

U32NBOINT

S8INT
S8INT

8INT

NBODATA
NBODATA

SINT

NBODATA

Description
Length of information to follow.

Version of TIE_AUTH_REPLY.
Results of request:
AUTH_REPLY_SUCCESS 1
AUTH_REPLY_NOENTITY2
AUTH_REPLY_FAILED 3

The type of name presented (all
actual flag names are preceded with
TIE_AUTH_NAMETYPE_):
USER

RESOURCE

USER

NMF_USER

MF_RESRC

ADM_RESRC

REG_USER

Name of user or application.
Information provided by
Authorization Manager
Credentials

Type of credentials, one of
TIE_AUTH_KRBS: 2
Network encoded credentials.

~N AN R W N

The following information is returned on information requests when the
name_type is TIE_AUTH_NAMETYPE_USER

auth_levels

userid
gids
count

SINT

U32NBOINT

U32NBOINT

110

Authentication levels supported by
this remote system. Acceptable
values can be established by
performing a logical OR of the
following values,
TIE_AUTH_NONE: 0
TIE_AUTH_KRB4: 1
TIE_AUTH_KRBS: 2
TIE_AUTH_SID: 4
User Id of the user.

Number of Group ids to follow.

Appendix A: Message Formats

gidl U32NBOINT

gidn U32NBOINT
charge_accts CHARGE_ACCTS
user_resources

count SINT

name NBODATA

description = NBODATA
charge_acct CHARGE_ACCT

flags U32NBOINT

Group Id 1 (Registered int the
Network Database)

Group Id n where n = count

The user’s charge accounts.

List of applications this user has
authorized access to

The number of resource.name
records to follow. The record name is
repeated “count” times.

The name of the application.
Description of the application.

The account number to charge for
this application.

Flags defining the state of this
account. All flag names are prefixed
with TIE_USER_FLAG_ and the
values are in Hexadecimal.

ACTIVE 1
EXPIRED 2
PW_EXPIRED 4
SANDIA_EMP 8
US_CITIZEN 10
SID_REQUESTED 20
BY_FAX 40
BY_MAIL 80
ARCHIVED 100
ADMINSTRATOR 8000

The following information is returned on information requests when the
name_type is TIE_AUTH_NAMETYPE_RESOURCE

resource
name NBODATA
description =~ NBODATA
flags U32NBOINT

administrator NBODATA

The name of the application.
Description of the application.

Flags defining the state of this
application
TIE_RESRC_FLAGS_ACTIVE 1
TIE_RESRC_FLAGS_REQ_DEL 2
TIE_RESRC_FLAGS_KEY_-
EXPIRED 4

User name of application
administrator

TIE-In System Description

def_account_info

count U32NBOINT Number of records to follow

type 8INT Accounting record type.

unit_descr NBODATA Description of type.

charge NBODATA Advertised charge per unit.
resource_addresses Lists the addresses of systems

supporting this application. This
records is only examined for Add
requests with a name_type of
RESOURCE.

count SINT The number of address records to
follow. The records type, contents,
and auth_type are repeated “count”
times.

type SINT Type of address contained in
resource_addresses[n].address.data.
Acceptable values:
TIE_ADDR_TYPE_IP 1

address NBODATA The address in ascii representation.
Example: the IP address
132.175.133.1 will have a length of
14, followed by the above null
terminated string.

auth_levels 8INT Type of authentication, this entity
supports. See above for possible
values.

consultants CONSULTANTS The list of users who are consultants

for this application.

The following information is returned on information requests when the
name_type is TIE_AUTH_NAMETYPE_MF_USER or
TIE_AUTH_NAMETYPE__NMF_USER

users List of users matching or not
matching the flags.
count S8INT The number of user name records to
follow.
name NBODATA The name of the vser.
flags U32NBOINT The flags defining the user.

The following information is returned on information requests and when the
name_type is TIE_AUTH_NAMETYPE_MF_RESRC or

112

Appendix A: Message Formats

TIE_AUTH_NAMETYPE_ADM_RESRC

resources List of applications that match the

flags (in the MF_RESRC case) or the
list of applications for which a

. specified user is the administrator (in
the ADM_RESRC case).

S count SINT The number of resource.name
records to follow. The record name is
repeated “count” times.

name NBODATA The name of the application.

description = NBODATA Description of the application.

flags U32NBOINT Flags defining the state of this
application

TIE_RESRC_FLAGS_ACTIVE 1
TIE_RESRC_FLAGS_REQ_DEL 2
TIE_RESRC_FLAGS_KEY_-

EXPIRED 4
administrator NBODATA User name of application
administrator
def_account_info
count U32NBOINT Number of records to follow
type SINT Accounting record type
unit_descr NBODATA Description of type
charge NBODATA Advertised charge per unit

The following information is returned on information requests when the
name_type is TIE_AUTH_NAMETYPE_REG_USER

count U32INT The number of registrations to
follow.
contents There will be “count” of the
following records returned.
flags U32NBOINT A combination of the following flags
that define the user. All flags are
prefixed with
¥ TIE_AUTH_USER_FLAG:
SANDIA_EMP, US_CITIZEN,
SID_REQUESTED, BY_FAX,
BY_MAIL, ARCHIVED
usernames NBODATA A listing of up to three of the user’s
preferred login names.
passwd NBODATA The user’s initial password.

TIE-In System Description

charge_accts CHARGE_ACCTS The user’s charge accounts.
user_profile USER_PROFILE The user’s profile information.

The following information is returned on information requests when the
name_type is TIE_AUTH_NAMETYPE_PROJECT

project_id NBODATA The identification string of the
project whose information is being
returned.
description NBODATA The description of the project.
manager NBODATA The username of the project manager.
status U32NBOINT The status of the project: used to
indicate whether or not the project is
active.
charge_acct CHARGE_ACCT The charge account to which charges
incurred by the project will be
charged.
access_list List of the usernames of the project
members.
count SINT The number of user name records to
follow.
name NBODATA The username of the user.

The following information is returned on information requests when the
name_type is TIE_AUTH_NAMETYPE_PROJECTS

count U32INT The number of projects to follow.

contents There will be “count” of the project
records shown above returned.

The following information is returned on information requests when the
name_type is TIE_ AUTH_NAMETYPE_SESSION

count U32INT The number of sessions to follow.
contents There will be “count” of the
following session records returned.
session_id NBODATA The identification string of the
session to be added.
display NBODATA The display of the user who initiated
the session.
start_time NBODATA The time the session was initiated.

114

Appendix A: Message Formats

fes NBODATA The Front End System that the user
logged into to initiate the session.
user_name NBODATA The username of the user that
initiated the session.
extensions NBODATA For future extensions to the protocol.

cksum

CKSUM

The checksum for this reply, which
will always be encrypted.

TIE-In System Description

Label
length
version

type

username

resourcename

req_id

credentials

TIE_ACCT_REQ

Network IP/TCP send to port 1957

Type
U32NBOINT
SINT
SINT

NBODATA

NBODATA

U32NBOINT

ENC_CREDS

Description

Length of information to follow.
Version of TIE_ACCT_REQ.

Type of request. Acceptable values;
ACCT_ADD_REQ: 1
ACCT_UPDATE_REQ: 2
ACCT_INFO_REQ: 3
Usermame of the user for INFO type
requests. For ADD and UPDATE
requests, this is the username of the
user who owns the task.

For ADD and UPDATE requests, this
is the name of the application on
which the task is running.

For ADD and UPDATE requests, this
is the task id assigned by the RRM.
Credentials presented for
authentication.

The following information is applicable only to ADD and UPDATE type requests.

userid
tirrs_req_id
state

info
charge_acct

account_info
count

entryl

entryn

U32NBOINT
U32NBOINT
SINT

NBODATA
CHARGE_ACCT

U32NBOINT
NBOACCTDATA

NBOACCTDATA

116

User Id of user.

Task identifier assigned by the TAS.
State of the task:
ACCT_STATE_ACTIVE
ACCT_STATE_COMPLETE
ACCT_STATE_ARCHIVED
ACCT_STATE_BILLED
ACCT_STATE_PAID

Information regarding the task.

Account to which charges for this
task will be billed.

Number of entries to follow. .
1st accounting information.

Nth accounting record, where n =
count.

Appendix A: Message Formats

The following information is applicable only to ADD and UPDATE type requests.

request_type

count

fields

field_name
low_value

value
high_value

op_type

table_mask

U32INT

U32INT

NBODATA
NBODATA

NBODATA

NBODATA

U32INT

U32INT

Indicates which table(s) is to be
searched. Values are

ACCT_ACTIVE_INFO
ACCT_COMPLETED_INFO
ACCT_ARCHIVED_INFO
ACCT_ALL_INFO

The number of field descriptions to
follow.

There will be “count” fields. The
fields are used to perform a search to
find the desired tasks.

The database name of the field.

The low value of the field, used only
for a range.

The value of the field in all cases
except for a range.

The high value of the field, used only
for a range.

The type of operation to for this field
in the search:

TIE_DB_EQUAL
TIE_DB_GT,
TIE_DB_LT,
TIE_DB_RANGE

Indicates which tables contain the
field:

TIE_DB_ACTIVE_TABLE 1
TIE_DB_COMPLETED_TABLE 2
TIE_DB_ARCHIVED_TABLE 4
TIE_DB_ALL_TABLES 7

extensions
cksum

NBODATA
CKSUM

For future extensions to the protocol.

The checksum for this request, which
will always be encrypted.

Network

TIE-In System Description

IP/TCP
Label

length

version

type

status

info

credentials

TIE_ACCT_REPLY

Type
U32NBOINT
SINT
8INT

SINT

NBODATA

CREDENTIALS

Description

Length of information to follow.
Version of TIE_ACCT_REPLY.
Type of request which this is a reply
to. Acceptable values;

ACCT_ADD_REQ 1
ACCT_UPDATE_REQ: 2
ACCT_INFO_REQ: 3

Return status of request. Acceptable
values are:
ACCT_REPLY_SUCCESS: 1
ACCT_REPLY_NOENTITY:2
ACCT_REPLY_FAILED: 3
Informational message returned by
Account Manager, giving more
details when status is not
ACCT_REPLY_SUCCESS

Credentials presented for
authentication.

The following information is only returned for INFO type of requests

count
username
userid
resourcename
req_id
tirrs_req_id
date

state

session_id

start_time
stop_time
cost

info
comp_id_num

U32NBOINT
NBODATA
U32NBOINT
NBODATA
U32NBOINT
U32NBOINT
U32NBOINT
S8INT

NBODATA

U32INT
U32INT
NBODATA
NBODATA
NBODATA

118

The number of records to follow.
Name of task owner.

User Id of user.

Application used for this task.
Value assigned by the RRM.
Value assigned by the TAS.

Date of last update (GMT).

If bit O is set to 1 then task is still
active.

Unique string that identified the
session from which the user
submitted the task.

The start time of the task.

The stop time of the task.

The accrued cost of the task.
Message about the task.

The id number of the company for
which. the user works. This is used to

Appendix A: Message Formats

charge_acct

account_info
count

entryl

entryn
extensions
cksum

CHARGE_ACCT

U32NBOINT
NBOACCTDATA

NBOACCTDATA

NBODATA
CKSUM

send out bills.

The account to which the charges for
this task will be billed.

Number of entries to follow.
1st accounting information.

Nth accounting record, where n =
count.

For future extensions to the protocol.
The cksum for this reply, which will
always be encrypted.

TIE-In System Description

Network IP/TCP
Label

type

proxy_dir
from_username
to_username
from_uid

to_uid

credentials

TIE_MNT_REQUEST

Type
U32INT

NBODATA

NBODATA

NBODATA

U32INT

U32INT

CREDENTIALS

120

Description

Either TIE_FS_TYPE_MNT or
TIE_FS_TYPE_UMNT.

The proxy directory.

The username of the owner of the
application process on the
application server:

The user’s TIE-In username, which
must also be the username of the user
on the file server.

The user id of the owner of the
application process on the
application server.

The user’s TIE-In user id, which
must also be the user id of the user on
the file server.

Credentials presented for
authentication.

Appendix A: Message Formats

Network
Label

type
status

info

IP/TCP

TIE_MNT_REPLY

Type Description

U32INT Either TIE_FS_TYPE_MNT or
TIE_FS_TYPE_UMNT.

U32INT Indicates the success or failure of the
request.

NBODATA Contains information about the status

of the request.

TIE-In System Description

Gateway Service Request

Network IP/TCP

Label Tvpe Description

auth_type USINT Either AUTH_KRBS,
AUTH_KRB4, or AUTH_NONE.

credentials CREDENTIALS Credentials used to authenticate the
user making the request.

server STRING Contains the server to allow access !
to.

operation USINT One of the following:

XFORWARD_ADD,
XFORWARD_ADD_SECURE,
XFORWARD_ADD_UDP,
XFORWARD_ADD_TCP,
XFORWARD_ADD_NFS_PROXY,
XFORWARD_ADD_NO_NOTIFY,
XFORWARD_ADD_SECURE_NO_NOTIFY,
XFORWARD_CLOSE,
XFORWARD_DELETE,
XFORWARD_ADD_ICE

num_clients USINT The number of clients.
client_names STRING_ARRAY Names of the clients. There will be
num_client client names.

122

Appendix A: Message Formats

Gateway Service Reply

Network IP/TCP

Label Tvpe Description
status USINT Status of the request, either

XFORWARD_SUCCESS or
XFORWARD_FAILED.
result STRING The result depends upon the
) operation type. It will either be a
proxy display, proxy port, or NFS
initialization string.

TIE-In System Description

Intentionally Left Blank

124

Appendix B: TIE-In User and System Requirements

Appendix B: TIE-In User and System
Requirements

This Appendix outlines some basic requirements for the configuration and use of TIE-In.

Router Subsystem

The router subsystem in general must allow the following interconnections between
systems within the internal subnetwork and all Front End Systems:

* Tcp ports (at least one of 23, 513, 512), and ports > 1023 from systems within
the internal subnetwork to all Front End Systems.

* Tep port 751 from all TIE-In Application Servers within the internal
subnetwork to the Kerberos Authentication Service (currently being handled
from the Master Front End System).

* Tep ports > 1023 from the Kerberos Authentication Service (currently being
handled from the Master Front End System) to all TIE-In Application Servers
within the internal subnetwork.

* Udp port 1957 from all TIE-In Application Servers within the internal
subnetwork to the Master Front End System.

* _ Udp port 1956 from the Master Front End System to all TIE-In Application
Servers within the internal subnetwork.

* Udp port 88 from all TIE-In Application Servers within the internal
subnetwork to the Kerberos Authentication Service (currently being handled
from the Master Front End System).

* Udp ports >1023 from the Kerberos Authentication Service (currently being
handled from the Master Front End System), to systems within the internal
subnetwork.

Users
Users of TIE-In must have access to workstations or PCs which have:

* TCP/IP
. * X Windows Server software

* Internet Access, or have a Modem and SLIP capabilities.

Users should connect to Front End Systems from host systems which provide:

125

TIE-In System Description

*

*

Telnet or some means of connecting to tcp ports 513 or 512.
Ftp server.

User Names and Userld

*

TIE-In assigns usernames and userids to registered users to insure that they are
unique. Systems participating as application hosts must adhere to those
assignments.

System Names

*

For all Front End Systems tiein.auth, tiein.acct, tiein.rrm must be referenced to
tiein.sandia.gov in the local domain service or the /etc/hosts file.

The IP address associated with any TIE-In Application Server must resolve to
the full domain name of the system hosting the TIE-In Application Server. For
example, if the system call gethostname() returns tiein.sandia.gov, and the
TIE-In Application Server, running on tiein.sandia.gov is registered with the IP
address 132.175.133.1, then the command “nslookup 132.175.133.1” should
return the name “tiein.sandia.gov”.

Time Synchronization

*

Kerberos requires loosely synchronized clocks (within 5 minutes) between all
Front End Systems and TIE-In Application Server host systems. The
application program fdset will be provided which allows a system to
synchronize its system clock to any host providing the “time” service through
inetd (tcp port 37). Front End Systems and TIE-In Application Server hosts
may also use the network time protocol (ntp) to synchronize their system
clocks. Ntp servers which tiein.sandia.gov uses to synchronize its system clock
to are:

esavax.esa.lanl.gov
heechee.esa.lanl.gov
eagle.tamu.edu
tick.cs.unlv.edu

126

Appendix C: Utility Programs and Scripts

Appendix C: Utility Programs and Scripts

TIE-In has a group of utility programs and scripts that are used to help maintain the system.
Some of these are set up as cron jobs, while others are manually executed as needed. This
appendix describes these utility programs and scripts.

The following programs and scripts are located in the /tiein/bin directory:

auto_register - determines if any users have submitted a request for an account via the form
on the TIE-In homepage on the World Wide Web. If there are any account requests, this

program generates a registration form on behalf of the user.

check_regs - determines if there are any user registrations that need to be processed,; it is
called by the notify.administrator script.

count_users - simply counts the number of registered TIE-In users.

create_scis_recs - creates SCIS records so that customers are billed for running
applications that are set up to charge customers on a per-use basis.

email_addrs - generates a file containing the e-mail addresses of all registered TIE-In
users.

Joreigns - outputs a list of non-Sandia systems that connected to the TIE-In Front End
System.

Js_controller - starts the mnt_server, nfs_server, and mnt_auth processes.

Js_kill - shuts down the mnt_server, nfs_server, and mnt_auth processes.

get_Xfails - outputs a list of display names that had some sort of X-related failure.
get_case_numbers.sh - this script retrieves that latest version of the valid_cases.dat file,

which is used to validate all CASE numbers provided by TIE-In users. It is run as a cron
job every weeknight.

notify_administrator - this script calls the check_regs program. If there are any
registrations to be processed, it displays the names of the people who have submitted
registrations in an X notification window and displays it on the administrators X-server.
The file /tiein/config/tiein_administrator.dat contains the display information for the TIE-
In administrator.

TIE-In System Description

print_stats - generates detailed statistics about how many users have accessed which
applications, and when they accessed them.

shm_dump - displays the contents of the shared memory segments used by the mnz_server,
nfs_server, and mnt_auth processes.

show_slip_users - outputs the list of users who have logged into the TIE-In terminal server
during the current week, along with the number of times they have logged in.

show_tie_logins - outputs the list of users who have logged into the TIE-In Front End
System during the current week.

taccess - displays all of the telnet connections made to the TIE-In Front End System for the
current day.

tlogins - displays the list of users who are currently logged into the TIE-In Front End
System.

The following scripts are located in the /usr/local/bin directory:

tiein_back.sh - performs backups of the tiein machine. This script is run as a cron job once
a week.

tiein_back_logs.sh - performs backups of tiein log files. It copies the current version of the
many log files to the /tiein/archive directory, then removes all the information from the log
files. This script is run as a cron job once a week.

The following scripts are executed as cron jobs by the ingres user:

ing_archive - moves all tasks that are older than the specified number of days from the
completed_tasks and completed_units tables to the archived_tasks and archived_units
tables. This script is executed every night.

ing_backup - performs a backup of the database tables. This script runs three times a week.
ing_err_monitor - monitors the log file /usr/adm/tiein.log for any messages containing

TIE_DB_ERROR. It then writes these messages to the log file /usr/adm/db_error.log and
sends an email message to the TIE-In administrators to let them know that a database error n

has occurred. This script runs every 30 minutes.

ing_modify - modifies the database tables so that the unused space in the tables is freed.
This script runs once a week.

128

Appendix C: Utility Programs and Scripts

ing_table_defs - generates table definitions for all of the database tables. These definitions
can be used to regenerate the tables in case they are lost. This script is only run twice a
month. :

ing_verify - runs the verify_cases and verify_employees scripts. It is run nightly.
verify_cases - checks each CASE number provided by TIE-In users against the

valid_cases.dat file. If a CASE number does not appear in the file, the CASE number is
marked as invalid and can no longer be used. This script is called by ing_verify.

verify_employees - checks all TIE-In users that are Sandia employees or contractors against
the employees.dat file. If an employee or contractor is not in the file, his account is disabled
and a message is sent to the TIE-In administrators to let them know that the user’s account
can be deleted.

TIE-In System Description

Intentionally Left Blank

130

Appendix D: The TIE-In Database Tables

Appendix D: The TIE-In Database Tables

This Appendix discusses the Ingres database used by TIE-In to maintain user, application,
and accounting information. The database resides on the TIE-In Front End System. All
access to the database is made via calls to the Database Library, which contains functions
written in C utilizing Embedded SQL. The functions are discussed in Appendix B.

User Information Tables

Information about TIE-In users is stored in four tables:
(1) user_info - the main table, containing the user’s full name, address, phone, etc.
(2) user_group_ids - contains the list of the user’s group ids
(3) user_applications - contains the user’s application list
(4) user_charge_accounts - contains the user’s charge account list

Tables 24-27 show the information contained in each of the above database tables. Note
that the user_group_ids, user_applications, and user_charge_accounts tables may contain
more than one entry for each user. For example, if the user has four applications on her
application list, the user_applications table will contain four entries for the user, each one
identifying one of her applications.

The database tables are accessed via the Database Library functions tie_db_del_user,
tie_db_get_user, tie_db_mod_user, and tie_db_put_user, all of which are discussed in
Appendix B.

Table 24. Description of the Database Table user_info

. Ingres e
Field Name Datatype Description
user_name varchar(15) | the user’s assigned user name, consistent with the
Network Database
user_id integer the user’s assigned user id, consistent with the
Network Database
user_full_name varchar(31) | the full name of the user

131

TIE-In System Description

Table 24. Description of the Database Table user_info (Continued)

. Ingres oy
Field Name Datatype Description

company_id_num | varchar(31) | aunique identifier associated with the user’s com-
pany

org_pum varchar(15) | the user’s organization number if he is a Sandia
employee

org_name varchar(63) | the user’s organization name if he is a Sandia
employee

mail_stop varchar(15) | the user’s mail stop if he is a Sandia employee

emp_number varchar(15) | the user’s employee number if he is a Sandia
employee

department varchar(63) | the user’s department if he is not a Sandia
employee

street_address varchar(63) | the user’s company address if he is not a Sandia
employee

po_box varchar(31) | the user’s PO Box if he is not a Sandia employee

city varchar(31) | the user’s city if he is not a Sandia employee

state varchar(23) | the user’s state if he is not a Sandia employee

zip_code varchar(15) | the user’s zip-code if he is not a Sandia employee

country varchar(31) | the user’s country if he is not a Sandia employee

email_address varchar(63) | the user’s e-mail address

phone varchar(15) | the user’s phone number

fax varchar(15) | the user’s fax number

citizenship varchar(31) | the user’s country of citizenship

visa_pass_num varchar(63) | the user’s visa/passport number for non-US citi-
zens

ssn varchar(15) | the user’s Social Security Number for US citizens

home_dir varchar(63) | the user’s home directory that can be mounted by
applications

df_type integer the user’s distributed file system type, such as
NFS or NFS_PROXY

132

Appendix D: The TIE-In Database Tables

" Table 24. Description of the Database Table user_info (Continued)

Ingres

Field Name Datatype Description
df_service_class | integer the class of service offered by the user’s file sys-
! tem, for future use
. realm varchar(63) | the user’s realm, for future use

def _charge_type | varchar(15) | the user’s default charge type

def_charge_num varchar(31) | the user’s default charge number

acct_limit varchar(31) | maximum amount of charges the user is allowed
to accrue

flags varchar(15) | various flags describing the user

auth_level varchar(15) | the user’s authorization level: Kerberos 5 and/or
SecurelD (actual values of 2, 4, or 6)

service_class varchar(15) | the user’s class of service - currently unused

acct_expr_date varchar(31) | the expiration date of the user’s account

Table 25. Description of the Database Table user_group_ids

. Ingres .
Field Name Datatype Description
user_id integer the user’s assigned user id, consistent with the
Network Database
group_id integer one of the user’s group ids

Table 26. Description of the Database Table user_charge_accounts

. Ingres .
\ Field Name Datatype Description
user_id integer the user’s assigned user id, consistent with the
* Network Database
charge_type integer the charge type for the corresponding charge
number: CASE, PO, Visa, etc.

TIE-In System Description

Table 26. Description of the Database Table user_charge_accounts

Ingres

Field Name Datatype

Description

charge_number varchar(31) | the charge number: CASE number, PO number,
Visa number, etc.

Table 27. Description of the Database Table user_applications

. Ingres .
Field Name Datatype Description
user_id integer the user’s assigned user id, consistent with the
Network Database

application_name | varchar(31) | the name of the application

charge_type integer the charge type for the corresponding charge
number: CASE, PO, Visa, etc.

charge_number varchar(31) | the charge number: CASE number, PO number,
Visa number, etc. - if specified, this is the charge
number that will be charged when the user runs
the corresponding application

Application Information Tables

Information about the TIE-In applications is stored in four tables:
(1) application_info - general information about the application
(2) application_groups - the groups to which the application belongs
(3) application_addresses - the addresses of the application
(4) application_costs - the cost information for the application
(5) application_consultants - the consultants for the application
(6) application_access - the list of users allowed to access the application

Tables 28-32 show the information contained in each of the above database tables. Note
that the application_groups, application_addresses, application_costs and
application_consultants tables may contain more than one entry for each application. For
example, if the application can be reached at three addresses, the application_addresses
table will contain three entries for the application, each one identifying one of the
addresses.

134

Appendix D: The TIE-In Database Tables

The database tables are accessed via the Database Library functions tie_db_del_rsrc,
tie_db_get_rsrc, tie_db_get_rsrc_list, tie_db_get_rsrc_match, tie_db_get_rsrc_desc,
tie_db_mod_rsrc,tie_db_put_rsrc, and tie_db_put_app_cons, all of which are discussed in
Appendix B.

Table 28. Description of the Database Table application_info

. Ingres .
Field Name Datatype Description

name varchar(31) | the name of the application

description varchar(95) | a description of the application

administrator varchar(15) | user_name of the application administrator

number_of_servers integer the number of servers on which the applica-
tion is running

flags integer flags describing the application

credit_number varchar(31) | a charge number to be credited upon receipt
of payment from users

credit_type integer the type of the charge number, typically
CABSE, but could also be PO, etc.

line_number varchar(15) | used to generate SCIS records for billing
purposes; corresponds to the Service Center
Activity

Table 29. Déscription of the Database Table application_groups

. Ingres .
Field Name Datatype Description
name varchar(31) | the name of the application
application_group varchar(31) | the name of a group to which the application
belongs

TIE-In System Description

Table 30. Description of the Database Table application_addresses

. Ingres .
Field Name Datatype Description

name varchar(31) | the name of the application

server_number integer number indicating the order in which the var-
ious servers are contacted

server_address varchar(31) | the address of the server running the applica-
tion

realm varchar(63) | the authentication realm of the server

address_type integer a flag indicating the type of address, such as
IP or DECNET. The server can also be dis-
abled using this flag.

authorization_level integer the level at which users must be authenti-
cated in order to use the application, typically
Kerberos 5 or Securld

service_class integer the class of service provided by this address

Table 31. Description of the Database Table application_costs

Ingres

Field Name Datatype Description

name varchar(31) | the name of the application

unit_type integer an integer value, 1- 7, that defines what the
units represent: storage, CPU usage, connect
time, etc. See the description of the TAS Sta-
tus file for the list of unit types

unit_description varchar(63) | description of what the units represent

unit_cost float cost per unit, where a unit is a second

136

Appendix D: The TIE-In Database Tables

—

Table 32. Description of the Database Table application_consultants

Field Name Dl:éi;e Description
‘ application_name varchar(31) | the name of the application
) consultant varchar(15) | the user name of a consultant
priority integer the order in which the consultant should

appear on the consultant list

Table 33. Description of the Database Table application_access

Field Name DI:ti;; . Description
application_name varchar(31) | the name of the application
server_address varchar(31) | the address of a server for the application
user_name varchar(15) | the user name of a user allowed to access the

application running on the specified server

Accounting Information Tables

The TIE-In accounting information is stored in six tables:
(1) active_tasks - general information about active tasks
(2) active_units - the accounting information for active tasks
(3) completed_tasks - general information about completed tasks
(4) completed_units - the accounting information for completed tasks
(5) archived_tasks - general information about archived tasks
(6) archived_units - the accounting information for archived tasks

Active tasks are those that are currently running on a TIE-In Application Server. The

accounting information about these tasks is periodically updated in the database.

. Completed tasks are those that have completed within the past 14 days. In order to prevent
the completed_tasks and completed_units tables from becoming too large, tasks that have
been completed for more than 14 days are archived. When a task is archived, the
information about the task is moved from the completed_tasks and completed_units tables
to the archived_tasks and archived_units tables. When the TIE-In billing procedure is set

137

TIE-In System Description

up, the tasks will be left on the completed list until they have been billed and payment has
been received.

Tables 34-39 show the information contained in each of the above database tables. Note
that the active_units, completed_units, and archived_units tables may contain more than
one entry for each application. For example, if an application charges for three unit types,
the active_units table will contain three entries for the task, each one identifying one of the
unit charges.

The database tables are accessed via the Database Library functions tie_db_put_req,
tie_db_get req, tie_db_del_req, tie_db_mod_req, tie_db_move_req, tie_db_archive, and
tie_db_archive_req, all of which are discussed in Appendix B.

Table 34. Description of the Database Table active_tasks

. Ingres ..
Field Name Datatype Description

task_id integer numeric id assigned by the RRM to identify a
task

tas_task_id integer numeric id assigned by the TAS to identify a
task - typically the process id of the task

user_name varchar(15) | user name of the user to whom the task
belongs

user_id integer user id of the user to whom the task belongs

app_hame varchar(31) | the name of the application running the task

session_id ‘ varchar(127) | a character string that identifies the user’s
session from which the task was submitted

company_id_num varchar(31) | a string identifying the user’s company

start_time integer the time the task was submitted to the TAS,
in seconds since January 1, 1970

last_update integer the time the accounting information for the
task was last updated, in seconds since Janu-
ary 1, 1970

charge_type integer the type of the charge_number, such as
CASE, PO, Visa, etc

charge_number varchar(31) | the user’s charge number

138

Appendix D: The TIE-In Database Tables

Table 34. Description of the Database Table active_tasks (Continued)

Ingres

Field Name Datatype Description

scis_case_num varchar(15) | the charge number to which the cost will be
transferred; this is the CASE number that
appears in the SCIS record

server_addr varchar(79) | the address of the server that is rumiing the
task

cost_accrued float the cost accrued for the task as of the last
update

info varchar(95) | acharacter string message about the state of

the task

Table 35. Description of the Database Table active_units

. Ingres .
Field Name Datatype Description

task_id integer numeric id assigned by the RRM to identify

the task
 unit_type integer an integer value, 1- 7, that defines what the

units represent: storage, CPU usage, connect
time, etc. See the description of the TAS Sta-
tus file for the list of unit types

units integer the number of units accrued by the task

unit_description varchar(63) | description of what the units represent

unit_cost float cost per unit, where a unit is a second

total_cost float the total cost accrued so far for this unit type

TIE-In System Description

Table 36. Description of the Détabase Table completed_tasks

. Ingres .
Field Name Datatype Description

task_id integer numeric id assigned by the RRM to identify a
task

tas_task_id integer numeric id assigned by the TAS to identify a
task - typically the process id of the task

user_name varchar(15) | user name of the user to whom the task
belongs

user_id integer user id of the user to whom the task belongs

app_name varchar(31) | the name of the application running the task

session_id varchar(127) | a character string that identifies the user’s
session from which the task was submitted

start_time integer the time the task was submitted to the TAS,
in seconds since January 1, 1970

stop_time integer the time the task completed, in seconds since
January 1, 1970

duration integer the number of seconds the task was running

charge_type integer the type of the charge_number, such as
CASE, PO, Visa, etc.

charge_num varchar(31) | the charge number to which the cost of the

4 task will be billed

company_id_num varchar(31) | a string identifying the user’s company

scis_case_num varchar(15) | the charge number to which the cost will be
transferred; this is the CASE number that
appears in the SCIS record

server_addr varchar(79) | the address of the server that is running the
task

total_cost float the total cost of the task

info varchar(95) | a character string message about the state of
the task

140

Appendix D: The TIE-In Database Tables

Table 36. Description of the Database Table completed_tasks (Continued)

. Ingres ..
Field Name Datatype Description
billed_flag varchar(7) indicates whether or not an SCIS record has
) been generated for this task
. paid_flag varchar(7) indicates whether of not the user has paid for
the task; currently unused
billed_date varchar(31) | the date the SCIS record was generated for
the task
paid_date varchar(31) | the date payment was received for the task;
currently unused

Table 37. Description of the Database Table completed_units

. Ingres .
Field Name Datatype Description
task_id integer numeric id assigned by the RRM to identify
' the task

tas_task_id integer numeric id assigned by the TAS to identify
the task

start_time integer the start time of the task

unit_type integer an integer value, 1- 7, that defines what the
units represent: storage, CPU usage, connect
time, etc. See the description of the TAS Sta-
tus file for the list of unit types.

unit_description varchar(63) | description of what the units represent

unit_cost float cost per unit, where a unit is a second

units integer the number of units accrued by the task

total_cost float the total cost for this unit type

TIE-In System Description

s e o or— e ——
—— ———— ——— — — ——

Table 38. Description of the Database Table archived_tasks

. Ingres .
Field Name Datatype Description

task_id integer numeric id assigned by the RRM to identify a
task

tas_task_id integer numeric id assigned by the TAS to identify a
task - typically the process id of the task

user_name varchar(15) | user name of the user to whom the task
belongs

user_id integer user id of the user to whom the task belongs

app_name varchar(31) | the name of the application running the task

session_id varchar(127) | a character string that identifies the user’s
session from which the task was submitted

start_time integer the time the task was submitted to the TAS,
in seconds since January 1, 1970

stop_time integer the time the task completed, in seconds since
January 1, 1970

duration integer the number of seconds the task was running

charge_type integer the type of the charge_number, such as
CASE, PO, Visa, etc.

charge_number varchar(31) | the charge number to which the cost of the
task will be billed

SCis_case_num varchar(15) | the charge number to which the cost will be
transferred; this is the CASE number that
appears in the SCIS record

server_addr varchar(79) | the address of the server that is running the
task

company_id_num varchar(31) | a string identifying the user’s company

total_cost float the total cost of the task

info varchar(95) | a character string message about the state of
the task

142

Appendix D: The TIE-In Database Tables

Table 38. Description of the Database Table archived_tasks (Continued)

Ingres

Field Name Datatype Description

billed_flag varchar(7) indicates whether or not an SCIS record has
been generated for the task

paid_flag varchar(7) indicates whether of not the user has paid for
the task; currently unused

billed_date varchar(31) | the date the SCIS record was generated for
the task

paid_date varchar(31) | the date payment was received for the task;
currently unused

archived_date integer the date the task was archived, in seconds

since January 1, 1970

Table 39. Description of the Database Table archived_units

. Ingres .
Field Name Datatype Description

task_id integer numeric id assigned by the RRM to identify
the task

tas_task_id integer numeric id assigned by the TAS to identify
the task

start_time integer the start time of the task

unit_type integer an integer value, 1- 7, that defines what the
units represent: storage, CPU usage, connect
time, etc. See the description of the TAS Sta-
tus file for the list of unit types

unit_description varchar(63) | description of what the units represent

unit_cost float cost per unit, where a unit is a second

units integer the number of units accrued by the task

total_cost float the total cost for this unit type

TIE-In System Description

User Registration Tables

When a user submits a registration for a TIE-In account, the registration information is
stored in three tables:

(1) registration_info - general information about the user

(2) registration_charge_info - the charge accounts the user submitted

(3) registration_logins - the list of the user’s desired user names

After a TIE-In administrator has registered the user, the user’s entries in the above tables
are deleted. Tables 40-42 describe the TIE-In user registration tables. Note that the
registration_charge_info table and the registration_logins table can have more than one
entry for each user. For example, the TIE-In registration form allows user’s to input up to
three choices for user names. If a user inputs three user names, the registration_logins table
will have three entries for the user.

Table 40. Description of the Database Table registration_info

. Ingres .
Field Name Datatype Description

name varchar(31) | the full name of the user

company_id_num | varchar(31) | a unique identifier associated with the user’s com-
pany

org_num varchar(15) | the user’s organization number if he is a Sandia
employee

org_name varchar(63) | the user’s organization name if he is a Sandia

_ employee

mail_stop varchar(15) | the user’s mail stop if he is a Sandia employee

emp_number varchar(15) | the user’s employee number if he is a Sandia
employee

department varchar(63) | the user’s department if he is not a Sandia
employee

street_address varchar(63) | the user’s company address if he is not a Sandia
employee

po_box varchar(31) | the user’s PO Box if he is not a Sandia employee

city varchar(31) | the user’s city if he is not a Sandia employee

state varchar(23) | the user’s state if he is not a Sandia employee

144

Appendix D: The TIE-In Database Tables

| Table 40. Description of the Database Table registration_info (Continued)

Field Name DI:tiggc Description

‘ zip_code varchar(15) | the user’s zip-code if he is not a Sandia employee
) country varchar(31) | the user’s country if he is not a Sandia employee
= email_address varchar(63) | the user’s email address

phone varchar(15) | the user’s phone number

fax varchar(15) | the user’s fax number

citizenship varchar(31) | the user’s country of citizenship

visa_pass_num varchar(63) | the user’s visa/passport number for non-US citi-

zens

ssn varchar(15) | the user’s Social Security Number for US citizens

flags varchar(15) | various flags describing the user

password varchar(15) | the user’s initial password

Table 41. Description of the Database Table registration_charge_info

. Ingres .
Field Name Datatype Description

ssn varchar(15) | the social security number of the user for US cit-
izens, the visa/passport number for non-US citi-
zens

charge_type integer the charge type for the corresponding charge
number: CASE, PO, Visa, etc.

charge_number varchar(31) | the charge number: CASE number, PO number,

Visa number, etc.

TIE-In System Description

Table 42. Description of the batabase Table registration_logins

. Ingres .
Field Name Datatype Description
ssn varchar(15) | the social security number of the user for US cit-
izens, the visa/passport number for non-US citi-
zens
username varchar(15) | the user’s desired username

Application Group Table

An application can belong to one or more groups. The application_group_list table keeps
track of the existing groups, storing the group name and a brief description as shown in
Table 43.

Table 43. Description of the Database Table application_group_list

. Ingres .
Field Name Datatype Description
group_name | varchar(31) | the name of the group
description varchar(63) | a description of the group

Charge Account Info Table

The information about valid charge accounts is stored in the charge_account_info table,
which is shown in Table 44.

Table 44. Description of the Database Table charge_account_info

. Ingres .
Field Name Datatype Description
charge num varchar(31) | the actual charge number
charge_type integer the type of charge number, typically either a |
CASE number, Service Order, or Project ID.

146

Appendix D: The TIE-In Database Tables

Table 44. Description of the Database Table charge_account_info

Ingres

Field Name Datatype Description

project_id varchar(31) | the project id with which this charge number is
associated

status integer the status of the charge number - valid or invalid,
etc.

load_factor float the load that is to be applied to this charge num-
ber when the user is billed; this field is not cur-
rently used

balance money the balance amount for this charge number

The Project Tables

The information about projects is stored in two tables:

(1) project_info - contains general information about the projects
(2) project_access - contains an access list for a project

“Table 45. Description of the Database Table project_info

These tables are described in Tables 45 and 46, respectively.

Ingres

Field Name Datatype Description

project_id varchar(31) | the name or id of the project

description varchar(95) | a description of the project

charge_num varchar(31) | the charge number to which costs accrued by
users in this project will be charged

charge_type integer the charge type of the charge number

manager float the username of the user who is the manager of
the project

status money the status of the project

TIE-In System Description

e —

— e ——

e

Table 46. Description of the Database Table project_access

. Ingres o
Field Name Datatype Description
project_id varchar(31) | the name or id of the project
user_name varchar(15) | the username of a user who is part of the project

The Current Sessions Table

Information about which users have a current TIE-In session is stored in the
current_sessions table, which is described in Table 47.

Table 47. Description of the Database Table current_sessions |

Field Name DI:tii;;e Description
sessiop_id varchar(95) | the session id of this session
user_name varchar(15) | the username of the user who owns this session
user_display varchar(31) | the user’s display
fes varchar(63) | the TIE-In Front End System through which the
user initiated the session
start_time date the time at which the session was initiated

148

DISTRIBUTION

20 MS 1110 Jim Ang, 9204

5 0807 Glenn Machin, 4918
0807 Rich Detry, 4918
0809 Paul Brooks, 4421
0439 Ed Marek, 9234

0807 Mike Cahoon, 4918
1109 Rich Pryor, 9202
0321 Bill Camp, 9200
0318 Milt Clauser, 9201
1111 Sudip Dosanjh, 9221
1109 Art Hale, 9224

1110 Dick Allen, 9222
1110 David Greenberg, 9223
1111 Grant Heffelfinger, 9226
0819 Mike McGlaun, 9231
0820 Paul Yarrington, 9232
0841 Paul Hommert, 9100
0833 Johnny Biffle, 9103
0443 Hal Morgan, 9117
0836 Carl Peterson, 9116
0458 Bob Thomas, 5100
0322 Pat Eicker, 9600
0949 Ray Harrigan, 9602
1176 Rob Palmquiest, 9651
0951 Dave Strip, 9621
0660 Margaret Olson, 9622
0507 Kathleen McCaughey, 9700
0431 Sam Varnado, 9400
0163 Joe Polito, 9800

9003 Dona Crawford, 8900
9011 Rich Palmer, 8901
9011 Jim Costa, 8920

9011 Peter Dean, 8910
0811 Doug Brown, 4621
0458 Jim Asay, 5132

0458 Laura Gilliom, 5133
0472 A. Kay Hays, 5136
0458 . Steve Rottler, 9003
1427 Peter Mattern, 1100
0960 Jim Searcy, 1400
1070 Ray Bair, 1200

1079 Al Romig, 1300

0953 Bill Alzheimer, 1500
0739 David Williams, 6421

)
(e

ok ek pmml jmamd ek ek et pemd) ek ed ped ek e el el foemd ek el fed ek ek pd bl e feend et pmd ped pemd pead femd ed el e ek ped e el fd e

Jrmd ek ki pad et e el ek e fesed el beed el fd el heed fend ed pd el el jamad jeed el

b =i Uy

0429
0630
1380
1380
1380
1380
1380
1380
0801
0622
0803
1180
0353
0961
1434
0661
1110
0819
0437
0660
0805
1109
0836
0439
1169

9018
0899
0619
0100

Ron Andreas, 2100
Mike Eaton, 4010
Warren Siemens, 4200
Olen Thompson, 4221
Mary Monson, 4212
Vic Chavez, 4213
David Larson, 4231
Kevin Murphy, 4221
Melissa Murphy, 4900
Herb Pitts, 4400

Jack Jones, 4600

Pace Vandevender, 4700
Mike Robles, 3800
Bob Reuter, 1401
Dave McVey, 1890
Bob Parks, 4612

Ray Tuminaro, 9222
Gene Hertel, 9231
Gregory Sjaardema, 9117
Ron Sikorski, 9622
Jeff West, 4911

John Mareda, 9225
David Sundberg, 9116
Garth Reese, 9234
Mike Furnish, 9322

Central Technical Files, 8523-2
Technical Library, 4414

Print Media, 12615

Document Processing, 7613-2
For DOE/OSTI

150

