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VOLUME TRACKING OF INTERFACES HAVING SURFACE TENSION IN
TWO AND THREE DIMENSIONS*

D.B. Kothe, W.J. Rider, S.J. Mosso, and J.S. Brock
Los Alamos National Laboratory
Los Alamos, NM

J.I. Hochstein
The University of Memphis
Memphis, TN

Abstract. Solution algorithms are presented for tracking interfaces with piecewise linear (PLIC) volume-of-fluid (VOF) methods
on fixed (Eulerian) two-dimensional (2-D) structured and three-dimensional (3-D) structured and unstructured grids. We review
the theory of volume tracking methods, derive appropriate volume evolution equations, identify and present solutions to the basic
geometric functions needed for interface reconstruction and volume fluxing, and provide detailed algorithm templates for modem
2-D and 3-D PLIC VOF interface tracking methods. We discuss some key outstanding issues for PLIC VOF methods, namely the
method used for time integration of fluid volumes (operator splitting, unsplit, Runge-Kutta, etc.) and the estimation of interface
normals, We also present our latest developments in the continuum surface force (CSF) model for surface tension, namely exten-
sion to 3-D and variable surface tension effects. We identify and focus on key outstanding CSF model issues that become espe-
cially critical on fine meshes with high density ratio interfacial flows, namely the surface delta function approximation, the
estimation of interfacial curvature, and the continuum surface force scaling and/or smoothing model. Numerical results in two and

three dimensions are used to illustrate the properties of these methods.

1. Introduction

The accurate modeling of interfacial flows requires
high fidelity algorithms for the kinematics and dynamics
of interfaces. Algorithms for interface kinematics must
address the discrete representation of the interface and
its advection through the computational domain, Algo-
rithms for interface dynamics must model physics spe-
cific to and localized at the interface (e.g., phase change
and surface tension). The numerical techniques chosen
to model interface kinematics and dynamics are espe-
cially important in finite-difference Eulerian methods
designed to simulate flows with interfaces of arbitrarily
complex topology. In these schemes the computational
grid remains stationary, so an interface algorithm must
minimize diffusion by maintaining a compact interface
thickness without sacrificing the robustness necessary to
meet the topology demands. The algorithm must be
amenable to three dimensions, and incorporation of
additional interface physics should be straightforward.

We are interested in modeling a general class of

*Send correspondence to Doug Kothe (dbk@lanl.gov),
MS-B216, Fluid Dynamics Group T-3, Los Alamos
National Laboratory (LANL), Los Alamos, NM,
87545. This work performed under the auspices of the
U.S. DOE by LANL under Contract W-7405-ENG-36.
This paper is declared work of the U.S. Government
gnd is not subject to copyright protection in the United

tates.

interfacial flows, which are defined to be any flow, rang-
ing from incompressible to high-speed, that involves
multiple fluids with differing properties. Interfaces
delineating these fluids are characterized by abrupt
changes in fluid properties, and might also be the site of
localized phenomena such as surface tension or phase
change. We are interested in modeling fluids that are not
in general intimately mixed, i.e., there remains a dis-
cemnible (but in general topologically complex) interface
between the fluids that resolvable in the computational
model. By resolvable we mean that fluid parcels
bounded by an interface must be larger than the mesh
spacing. Examples of the interfacial flows we wish to
model are free surface flows, where a water/air interface
is characterized by surface tension and sharp changes in
viscosity and density; and impact dynamics, such as rod
a penetrating a plate, where metal/metal and metal/air
interfaces are characterized by abrupt changes in mate-
rial strength properties. In such cases, the ability to rep-
resent interface dynamics accurately dictates whether or
not the overall flow is modeled reliably.

Our goal is to model interfacial flows, whether it be
free surface flows [4,5] or impact dynamics [40], with
the same underlying interface (kinematic and dynamic)
algorithm. Our interface algorithms fall under the gen-
eral class of immersed interface methods [20], based on
the pioneering work of Peskin [22]. In these methods, a
fixed (Eulerian) grid is not in general aligned with inter-
faces. Interfaces are instead allowed to have arbitrarily
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complex topology, which is a design feature necessary
to model important topological features such as coales-
cence and breakup. Special methods must therefore be
devised to model the representation of the interface on
the grid as well as its movement across the grid. Inter-
face dynamics, or those physics specific to the interface,
are modeled as a localized volumetric force (“source
term”), which typically takes the form of the product of
an approximate delta function and the appropriate inter-
face physics per unit interfacial area. The magnitude of
the interface volumetric force typically falls to zero at
some prescribed distance away from the interface. The
interface is not a perfect discontinuity, instead being a
transition region having a width of at least one mesh
spacing.

This paper is another in a recent series of studies
focused on the design and implementation of robust and
accurate methods for modeling interfacial flows
[2,24,33,34,38,39]. While our attention in the past has
been primarily on modeling a general class of free sur-
face flows [3,4,5], our current efforts are targeted
toward the reliable simulation of casting processes cur-
rently in use at the Los Alamos National Laboratory
[37]. These casting processes encompass a wide breadth
of complex physical phenomena, ranging from the (pos-
sibly turbulent) fluid flow and free surface dynamics,
which govern the mold filling process, to the heat trans-
fer and phase change process, which are important as
the part cools and solidifies. Grain growth and material
response (e.g., residual stress buildup) commence as the
part cools yet further.

Our current focus is on the development of numerical
methods needed to model the free surface flow during
the mold filling stage of a casting process. Mold filling
involves the insertion of approximately incompressible
liquid metal alloys into complex 3-D molds that are be
constructed from sand, wax, stainless steel, graphite,
etc, The insertion usually takes place via gravity-pour or
pressure-injection into a pre-designed system of run-
ners, sprues, and gates. The mold-filling process is char-
acterized by topologically-complex metal/air interfaces
having high density rati%s (> 5000) and high surface
tension values (10° -10” dynes/cm).

Perhaps the most challenging aspect of developing
simulation tools for modern casting processes is the
faithful representation of the complex 3-D mold/part
geometries. We have therefore chosen to partition these
geometries with fully unstructured meshes, which has
necessitated the generalization and extension of our cur-
rent structured, orthogonal mesh algorithms. Efforts are
therefore currently underway to extend the 2-D incom-
pressible flow algorithm documented in [2] to 3-D
unstructured meshes, and will be the subject of a future

paper. The purpose of this paper is to detail our recent
efforts in developing algorithms for volume tracking of
interfaces having surface tension, which are needed in
modeling the mold filling stage of a casting process.

This paper is outlined as follows. In section (2) we
review the theory of volume tracking methods and
derive appropriate volume evolution equations. In sec-
tion (3) we identify and present solutions to the basic
geometric functions needed for interface reconstruction
and volume fluxing, and provide detailed algorithm tem-
plates for modern 2-D and 3-D PLIC (piecewise linear
interface calculation) VOF tracking methods. We dis-
cuss some key outstanding issues for PLIC VOF meth-
ods, such as the method used for time integration of
fluid volumes (operator splitting, unsplit, Runge-Kutta,
etc.). In section (4) we discuss our recent efforts in the
estimation of interface normals, which is of crucial
importance for volume tracking methods and surface
tension models. In section (5) we present our latest
developments in the continuum surface force (CSF)
model for surface tension. In particular, we identify key
outstanding CSF model issues that become especially
critical on fine meshes with high density ratio interfacial
flows, namely the surface delta function approximation,
the estimation of interfacial curvature, and the contin-
wum surface force scaling and/or smoothing model.
Finally, in section (6), 2-D and 3-D numerical results are
presented to illustrate the properties of our methods.

2. Volume-Based Methods for Tracking
Fluid Interfaces

As afirst step in our discussion of volume tracking
methods we will derive an equation for the evolution of
volumes and volume fractions. It is our intention that
this will motivate further development of the numerical
method and place it on firm footing technically. This
counters the popular view that volume tracking is purely
heuristic and lacks rigor.

Our derivation will start from a basic princple and the
Reynolds transport theorem. Let V be the total fluid

volume and £* be the fractional volume of the k th fluid,
defined as

Ve = J'fde; M" = J'fkpde )

where . For an Eulerian grid the volume of computa-
tional cells is invariant

\% =};V“; ;ik= 1. )

k
o _ _gv-uNy = g5 (V-u) €)

dt
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since we assume that w“=u . Since p*=MYV* and
dM7dt=0, then

k
= Vv, @
t
Substituting VX = £V into (4), we obtain
dF% ok
a-':——-2¥+ll Vi< = 0. (5)
which can be written as
k
g—f-+ V-@fy = £5v-u). ©)

From (6), we see that the volume fraction fisa
Lagrangian invariant. Integrating (6) over volume:

)
Z_‘,v» (VY = ;Vk(V'll) , ®)

and, after rearrangment,
(V-u)V =);v- (uVvy ©

since the velocity field is not a function of the kth fluid.
This gives us an expression for the divergence of veloc-
ity that may not be the same as the naive result. Further-
more, we can use this expression with (2.5) to assure
that the discretization is volume filling, A similar
approach can be used on the evolution equation for £~.

It should be noted that this development is quite sim-
ilar to that found in [1] where a similar result is found
for the computation of the divergence of velocity.
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Figure 1: Reconstruction of a circular arc based upon
the SLIC VOF approximation of piecewise
constant interfaces in each cell, Numbers
shown are cell volume fractions.
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Figure 2: Reconstruction of a circular arc based upon
the PLIC VOF approximation of piecewise
linear interfaces in each cell. Numbers shown
are cell volume fractions.

3. Implementation of Multi-Dimensional
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PLIC VOF Interface Tracking Methods

In this paper we will describe the implementation of
PLIC methods for incompressible flows. This setting
provides a strong competing constraint on the design of
the PLIC method. In addition to the volume filling rule,
the total volume of a material is conserved over the
entire mesh. In using the volume filling rule, discrete
error can be absorbed by the compressibility of the fluid.
In the setting of incompressible flow, this is an often
unacceptable error.

The key point of this development is that the discrete
equation (2.8) will not be zero. Another point of distinc-
tion is between operator split methods and those that are
not. For operator split methods on incompressible flows,

one can utilize that fact that
o
i 3 10)

For non-operator split or unsplit methods we will use
V:u = ( and aredistribution algorithm to assure that the
volume of a material is conserved on the mesh. In prac-
tice either this approach or the volume-filling derivation
leads to pleasing and convergent numerical results.

x-i-p=0 (11
—0<p <00
<0, if x, behind plane
X, 0i-py = 0,if x, on plane (12)
<0, if x, in front of plane
3.1 2-D Structured Meshes

Our approach to constructing VOF methods in two
dimensions differs greatly from the standard here. In
almost every description (and implementation) the
reconstruction of the volume in a cell and the construc-
tion of the numerical flux of a volume has been done in
a “case-by-case” manner. By “case-by-case” we mean
that the geometric reconstruction is strictly analyzed for
specific cell-interface topologies and results are used
with a case-by-case classification to define the method.
We will break with this tradition for several reasons: the
numbser of cases proliferates in 3-D or for unsplit inte-
gration methods, it is complex and pedagogically diffi-
cult and it lends itself to defining a method that is
heuristic rather than rigorous.

By contrast the approach we outline below is
straightforward and provides a algorithmic framework
that is simple and extensible. Furthermore, it allows us
to tap into a significant amount of work done in the area
of computational geometry. The VOF method and its
PLIC variant in particular can be broken up into a set of

geometric primitives that lead to a concise statement of
the method.

Let us examine on of these geometric primitives:
how a line truncates a volume. Given a cell (or a flux
volume) defined by a set of vertices x,,, and a line
defined by (12), we are to determine which portion of
polygon (cell) lies inside the line. Clearly, the line
divides 2-space into two portions depending on our defi-
nition the normal i to the line.

Algorithm 1 [Polygon Truncated by a Line]

1. Determine which of the vertices, x,, lie inside the
fluid. Here we use the direction formed by a point
on the line and a vertex to determine its identity
vis-a-vis the line.

2. Traverse the polygon and collect the vertices that
are inside the fluid and the intersection of the line
with segments that connect vertices that are and
are not inside the fluid.

Another key part of the algorithm is the computation
of areas bounded by a polygon. Axisymmetric calcula-
tions also fall easily into this framework.

We compute the lines location in a polygon via
Brent’s method as it is a robust method to do this.

Other essential portions of the algorithm deal with
visualization of the reconstruction and solution. Useful
utility routines such as the length of an interface in a cell
(another good visualization technique!).

Algorithm 2 [PLIC Reconstruction]
1. Compute the normals to the line in the mixed cell
2. Make an initial guess of the constant for the line
3. Find the constant that gives the correct volume in
a cell (Brent's method).

Algorithm 3 [Mixed Cell Detection]

1. Flag cells as mixed if e<f<1-¢
2. Flag cells as mixed ifa cell is full (f> 1 - € ) and
one of its face neighbors is empty.
Algorithm 4 [Active Cell Detection]
1. Flag a cell as being active if one of the cells in its
domain of dependence is mixed.
Algorithm 5 [Isolated Cell Detection]
1. Flag acell as being isolated if it is mixed and none
of its neighbors is mixed.
Algorithm 6 [Operator-Split 2-D PLIC Method]

1. Flag all mixed, active and isolated cells.

2. Compute the discrete divergence of velocity in the
mixed, active and isolated cells.

3. Reconstruct the interface in all mixed cells.

4. Compute the volume fluxes 5V, in the mixed,

active and isolated cells.
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5. Advance the volumes in time

fi o o SVany ~OVlrs gy ug£5° (13)
ij ij \{J
:t;}c,n-fl =% 5Vkﬂ: /2~ 6\5;‘- + S5tV- uij%k,ml (14)
Y
ey, = f"'“VL—(f)V o\ ) (15)
i T ij ij /25 i-1/2j
5y = B (6% s% ) a9
= V;(1+5tV: u;) an
o= vi-vastd = v, (1 +5ta—") 18)
4 j oo Wox W oy.
G _pion
u—"-'*'-(;—(fk’“u) + (fi}cv) =V'uij3§jk'n (19)
fk ¢l fk,n 3 3
ij kn kng) =v. kn
T Tx(f;j u)'lb—y-(f;j V)=V u; £ 20)

€

a l: uqvq af:] (2 1)

i = X5y Trotavy/ay 9% ]

Algorithm 7 [Non-Operator-Split 2-D PLIC method]

1. Flag all mixed, active and isolated cells.

2. Compute the discrete divergence of velocity in the
mixed, active and isolated cells.

3. Reconstruct the interface in all mixed cells.

4. Compute the volume fluxes in the mixed, active and
isolated cells, 5V*.

5. Advance the volumes in time using

gl _ fk n 5\f+1/2J 5Vilf'f/25
ij V-
6V""‘ iy
4172~ OV%_1/2
Y;

+ g(ﬁ}‘% £V -y

6. Apply a bounds check or redistribute any fk’“*]> 0
or £5™< 1.
A]gonthm 8 [Volume Redistribution]
1. Look within the domain of dependence for a cell,
if there is an over or undershoot, distribute the

nonphysical quantity to mixed cells in the domain
of dependence.

We should take a few moments to acknowledge some
of the characteristics of the method from the standpoint

22

of numerical analysis, its stability, consistency and
accuracy. As constructed each of our integration tech-
niques is a consistent discretization of the volume evo-
lution equation. Because the methods have been derived
to be positive schemes, they are stable under the follow-
ing Courant condition:

Ox SyJ
Bt = MAX, | =
”[I“ijl [Vl

From the Lax Equivalence theorem, the method is there-
fore convergent (although second-order is elusive).

VOF methods are often thought to not have dissipa-
tion, and in the direction normal to flow this is the case,
however for flow tangential to the interface the method
is diffusive in a manner similar to upwind methods.
Similarly, the dispersion is present tangentially, and in
the normal direction as well. In the normal direction
analysis is difficult, and the results depend strongly on
the local topology of a cell and the interface that is being
tracked.

Other important properties of a good algorithm
include the symmetry of the solution, dealing with more
than two fluids and compressible flow. Also, of interest
are its properties when the solution is underresolved and
grossly underresolved (i.e. how does the method fail?
does it degrade gracefully?).

@3)
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3.2 3-D Structured Meshes

3.3 3-D Unstructured Meshes

Figure 3:
4. Estimation of Interface Normals From
Fluid Volume Data
f
Vi = fy 24
fZ
A-Vi® =p (25)

oxid;'  SxBy,d; ox,bzd;
A = 5x.dyd] oyid] ©ydzd; (26)
ox;5zd;" dydzd] &2d

ox,5f,d;"
Sz,5f,d;"
Ox; = X~ X3 OY; =¥~ Vo» 02;=2— 7 Of;=f-f, (28)

d, = J6x% + 557 +07 (29)

111f YeZg

A Lol 5 8 rdnd 30
x = VM;[ £, ¥y 2y |d6dndL (30)
feyrzg
viC= LY 1A, G
f

-

Figure 4: PLIC VOF reconstruction of a line on a
Cartesian tensor-product mesh using Youngs’
expression for the interface normal [45].
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Figure 5: PLIC VOF reconstruction of a line on a
Cartesian tensor-product mesh using the fast
least squares method for the interface normal
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Figure 6: PLIC VOF reconstruction of a circle on a
Cartesian tensor-product mesh using Youngs’
method for the interface normal [45].
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Figure 7: PLIC VOF reconstruction of a line on a
Cartesian tensor-product mesh using the fast
least squares method for the interface normal

4.1 PLIC VOF Methods: Outstanding Issues

5. Recent Developments in the CSF Model
for Surface Tension

5.1 Background

The basic premise of the CSF methodology is to
model physical processes specific to and localized at
fluid interfaces (e.g, surface tension, phase change) by
applying the process to fluid elements everywhere
within the interface transition regions. Surface processes
are thereby replaced with volume processes whose inte-
gral effect properly reproduces the desired interface
physics. The CSF method has proven successful in a
variety of studies [2-18]. The CSF method lifts all topo-
logical restrictions (typically inherent in models for sur-
face tension) without sacrificing accuracy, robustness,
or reliability. It has been extensively verified and tested
in two-dimensional flows through its implementation in
aclassical algorithm for free surface flows, where com-
plex interface phenomena such as breakup and coales-
cence have been predicted.

Algorithms for interface dynamics must model phys-
ics specific to and localized at interfaces, such as phase
change and surface tension. In this section we describe

- ——— e
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our method for modeling interfacial surface tension,
which is formulated with a localized volume force as
prescribed by the recent CSF model [3]. Although origi-
nally developed for surface tension, the basic approach
of the CSF model lends itself quite well to interfacial
physics in general, i.e., surface phenomena other than
surface tension can be encapsulated easily within the
CSF model. Typical examples are phase change and
momentum exchange [10], where the surface physics
are mass and momentum flux, respectively, transferred
across the interface.

The central theme of the CSF model is formulation
of interface dynamics into a localized volumetric force,
which is quite different from earlier numerical models
of interfacial phenomena. The basic premise of the CSF
model is to replace interfacial surface phenomena (nor-
mally applied via a discrete boundary condition) as
smoothly varying volumetric forces derived from a
product of the appropriate interfacial physics per unit
area and an approximation to the surface (interface)
delta function. The CSF formulation makes use of the
fact that numerical models of discontinuities in finite
volume and finite difference schemes are really continu-
ous transitions within which the fluid properties vary
smoothly from one fluid to another (over a distance of
¥(h) where h is a length comparable to the resolution
afforded by the computational mesh). It is not appropri-
ate, therefore, to apply in these schemes a boundary
condition at an interface “discontinuity”, which in the
case of surface tension is a pressure jump across the
interface. Surface tension should instead act on fluid ele-
ments everywhere within the transition region.

In the case of surface tension, the relevant surface
physics is a force per unit area arising from local inter-
face curvature and local (tangential) variations in the
surface tension coefficient. Application of interfacial
physics using the CSF model then reduces to application
of a localized force in the momentum equation, regard-
less of interface topology. The CSF model is therefore
ideally suited for dynamical interfaces of arbitrary
topology. Its simplicity, accuracy, and robustness has led
to its widespread and popular use [2-18] in modeling
complex interfacial flows that were in many cases previ-
ously intractable.

Surface tension modeled with the CSF method
places no restrictions on the number, complexity, or
dynamic evolution of interfaces having surface tension.
Direct comparisons made in modeling surface tension
with the CSF model and a popular interface reconstruc-
tion model [36] show that the CSF model makes more
accurate use of volume fraction data [3]. The normal
surface tension force tends to drive interface topologies
toward a minimum surface energy configuration.

Reconstruction models for surface tension, on the other
hand, can sometimes induce numerical noise from com-
puted graininess in the surface pressures, often leading
to unphysical disruptions at the interface. The CSF
model is also easy to implement, as surface tension is
modeled simply by calculating and applying an addi-
tional volumetric force in the momentum equation. A
small fraction of the total CPU time is expended in mod-
eling surface tension effects.

5.2 Overview of the CSF Model

In the CSF model, surface tension is reformulated as
a volumetric force F; given by

F, = £,5,, 32)

where 3 is the surface delta function and f, is the sur-
face tension force per unit interfacial area [3]:

f, = oxi+Vo. (33)

In equation (25) above, o is the surface tension coeffi-
cient, V is the surface gradient [3], fi is the interface
unit normal, and x is the mean interfacial curvature,
given by [30]

k=-V-i. €0

The first term in (25) is a force acting normal to the
interface, proportional to the curvature x. The second
term is a force acting tangential to the interface toward
regions of higher surface tension coefficient (o). The
normal force tends to smooth and propagate regions of
high curvature, whereas the tangential force tends to
force fluid along the interface toward regions of higher
c.

Since interfaces having surface tension are tracked
with the volume- and particle-based methods mentioned
in the previous sections, their topology will not in gen-
eral align with logical mesh coordinates. Discontinuous
interfaces are therefore represented in the computational
domain as finite thickness transition regions within
which fluid volume fractions vary smoothly from zero
to one over a distance of 9(h) . The surface delta func-
tion, nonzero only within these transition regions, was
proposed in the original CSF model to be [3]

Vel
I AL G 35
,= 5= (Ve = 65)
where ¢ is the characteristic (color) function uniquely
identifying each fluid in the problem and [c] is the
Jjump in the color function across the interface in ques-
tion. The fluid volume fractions f serve as the color
function in this work, so [c]=1 .

We have found, as have others [19], that an optimal
form for 3 is one of the key outstanding issues for the
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CSF model. An optimal form for &, is loosely defined
to be one that displays desired convergence and smooth-
ness properties. Our current numerical results, for exam-
ple, display an undesirable sensitivity to the form used
for B, . It is therefore crucial that the form of d, remain
arbitrary, which is not apparent in recent published mod-
ifications of the CSF model in which the volume force
in equation (25) is approximated as the divergence of a
surface stress tensor [13] unnecessarily constrains the
CSF model by restricting the form of 3, to equation
(27). This restriction could ultimately limit the useful-
ness of these continuum stress models unless they
accept arbitrary forms for ;. The ability of the CSF
model to accurately model surface tension effects relies
upon the accuracy and smoothness of ,, and this issue
is discussed in more detail in the following section.

Although the original formulation of the CSF model
was motivated primarily by the need to model the nor-
mal force in equation (25), there are no restrictions in
the underlying theory from including the tangential
force as well. This enables the model to properly take
into account local spatial variations in o, which typi-
cally arise because of temperature variations and/or the
presence of surfactants. We are currently modeling both
the normal and tangential forces in equation (25). An
example of using the CSF method to model tempera-
ture-induced variable surface tension effects can be
found in [12],

% =(i-nm) 3 +(i-nm), +(k-n,0)d, (36)

Given equations (32)-(36), the continuum surface
force is easily estimated from first and second order spa-
tial derivatives of the fluid volume fractions. The inter-
face normal vector n is first computed at cell faces, fi
follows from normalization, and « follows from equa-
tion (34). The force, which resides at cell centers in our
scheme, will be nonzero only within the interface transi-
tion region. It is normalized to recover the conventional
description of surface tension as the local product
xh — 0. Its line integral directed normally through the
interface transition region is approximately equal to the
pressure jump ox.

As stated in reference [3], a wide stencil in general
leads to a better estimate of curvature. However, in con-
trast to the discretizations presented in [3], we have cho-
sen a conservative discretization for the curvature x and
the force F, . This is motivated by the need to preserve
an important physical property of surface tension,
namely that the net surface tension force (and also «)
should vanish over any closed surface. A conservative
discretization of « is therefore used, given by:

K = _‘_ll,ZﬁfAf 37
f

where V is the control (cell) volume, A, the area of
face f (pointing ontward) on V, and 1i, the unit interface
normal on face f of V. For the unit interface normal, a
six-cell stencil (in 2-D) is used to compute both compo-
nents of A, at each face. The cell-centered curvature x
then results by summing over cell faces, bringing the
effective stencil to nine cells. A nonconservative dis-
cretization might possibly induce artificial horizontal
motion of bubbles that should otherwise rise vertically
under the action of buoyancy forces.

5.3 CSF Model: Outstanding Issues

1. Optimal model for the surface delta function.

2. Optimal discretization method for the interface
unit normal and curvature.

3. Optimal method (if any) used to smooth and/or
weight the continuum surface force.

4. Optimal method (if any) used to smooth the color
function.

3. Efficient model for an advanced-time (implicit)
curvature.

6. Triple points

As suggested in [3], smoother variations in x gener-
ally result if a mollified volume fraction f is used to
compute the face normals in equation (37). A variety of
smoothing algorithms (e.g., B-spline or point-Jacobi)
have been found to give the desired results, which is the
mitigation of high wavenumber contributions to «
(resulting possibly from discretization errors). This
should, however, be used with caution because the
actual interface geometry could be mollified unphysi-
cally. Nevertheless, use of a mollified f in estimating «
was the preferred choice in recent numerical studies
detailed in [6,7,18]. Although some examples of the
effects of smoothing can be found in [3], it still warrants
further investigation, especially as it relates to conver-
gence and consistency. The representation of surface
tension in the CSF model as an explicit force is linearly
stable only for time steps smaller than a maximum
allowable value time step 5t, necessary to resolve the
propagation of capillary waves [3]. This constraint is
often restrictive, especially when fluid interfaces are
undergoing topology changes (e.g., pinch-off) since dt,
is roughly proportional to a higher power ( ~3/2 of the
mesh spacing. This restriction can be alleviated with an
implicit treatment of «.

6. Numerical Examples

We now present numerical examples to illustrate the
properties of the PLIC VOF interface tracking method
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and the CSF model for surface tension. For the PLIC
VOF method, we choose simple advection tests: 3-D
translation of a cube and sphere and 3-D rotation of a
notched brick. The tests are simple in that the flow field
moving the bodies does not have vorticity or shear,
which induce topological changes in the body (stretch-
ing, tearing) that truly challenge interface tracking
methods. Such tests have been devised in 2-D where
they were used to scrutinize various tracking methods
[33]. Similar 3-D tests are currently being devised, and
will be used to test the PLIC VOF method more com-
pletely in the near future. For the CSF surface tension
model, we again choose a seemingly simple test, namely
a static drop test in which the surface tension-induced
pressure rise inside a 2-D cylindrical or 3-D spherical
drop is computed and compared with the known ana-
Iytic solution. The static drop test, presented in [3] as a
validation test of the original CSF model, has since
become recognized as one of the most difficult tests for
surface tension models based upon the immersed inter-
face methodology. This is because of the difficulty in
maintaining an equilibrium position for the drop over
many computational cycles. The computed pressure
field inside the drop tends to have small numerical vari-
ations that induce artificial flow that were recently
dubbed “parasitic currents” [13]. The magnitude of
these parasitic currents tends to grow with each time
step.

6.1 Interface Tracking Tests

Multi-dimensional test problems devised specifically
to scrutinize algorithms designed to track discontinuities
have not yet become a standard part of the literature.
Interface tracking test problems are for the most part
lacking, as opposed to those used to test high order con-
tinuum advection schemes, where a consistent set of
challenging two-dimensional problems are commonly
used to judge the relative worth of the methods. The
absence of interface tracking test problems has led to
our recent study in which we devised a new set of very
tough test problems useful for scrutinizing two-dimen-
sional tracking capabilities [33]. We plan to devise
equally difficult three-dimensional test problems in
future work. Although we are not necessarily advocat-
ing these test problems to be the standard barometer by
which all tracking methods must be judged, others have
begun to use them to test the relative merit of their
methods [35]. The intent, however, is to devise tests that
thoroughly interrogate an interface tracking method by
exposing algorithm weaknesses and well as strengths.

This numerical surface tension, or smoothing of high
curvature regions, is a characteristic feature of the PLIC
VOF method as a consequence of the piecewise linear

interface geometry approximation coupled with volume
conservation. Smoothing will result if the piecewise lin-
ear approximation is not adequate, i.e., when the inter-
face has large sub-cell curvature. Once smoothed, this
high curvature information is not recoverable. The
degree of smoothing is dictated by the dimensionless
product xh, where « is the local interface curvature
and h is the mesh spacing. When «h is of order one (or
greater), only one cell (or less) per radius of curvature
resolves the interface. Numerical experiments indicate
that at least 3-5 cells per radius of curvature, or

xh < 1/3 , are needed for faithful representation (mini-
mal smoothing) of the interface geometry. This same
constraint applies for the reliable modeling of surface
tension [3]. Two possible approaches for overcoming
this smoothing problem are (1) a higher-order approxi-
mation to the interface geometry (allowing sub-cell cur-
vature), and (2) adaptive mesh refinement (AMR) [42]
of high curvature regions. The use of AMR for
improved resolution of interface geometries has in fact
already been demonstrated in [31] and looks promising,
An AMR scheme coupled with the PLIC method might
be a more efficient alternative to high resolution inter-
face tracking rather than a higher-order reconstruction.

One final comment before presenting our results. It is
extremely important to keep in mind that the actual
piecewise planar interfaces are displayed in the figures
that follow, not the one-half volume fraction isosurface,
as is often shown in other works using VOF interface
tracking methods. This practice can be very misleading
for several reasons. First, none of the published VOF
methods (to the knowledge of the authors) actually use a
volume fraction isosurface value for the reconstruction
and movement of an interface, instead using a piecewise
constant (stairstepped or not) or piecewise linear recon-
struction, so associating a volume fraction isosurface
with the interface is incorrect. Second, volume fraction
isosurface plots often give the appearance of mass cre-
ation or destruction, as bits of fluid fall above and/or
below the specified contour level, Third, volume frac-
tion isosurface plots often infer a much smoother inter-
face than the actual interface reconstructed and nsed by
the interfacial flow algorithms. For these reasons, we
will always show actual interfaces (lines in 2-D and
planes in 3-D) rather than volume fraction isosurfaces.

6.1.1 3-D Translation (Structured Mesh).

A cube (unit length) or sphere (unit diameter) is
placed in the lower corner of either a 16° or 32° mesh,
translated diagonally to the upper corner, and returned
to its original position. The total translation distance is
two (sphere or cube) diameters (D), one diameter trans-
lation to the opposite corner and one diameter transla-
tion back. The computational domain is a box spanning
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0.0< (x,y,z) <4.0, with the cube and sphere being
initially centered at (X, y, z) =0.875 . Resolution of the
cube and sphere is fairly coarse, with only four or eight
cells spanning the cube length (L) and sphere diameter.
Volume fractions are initialized to unity and zero inside
and outside the bodies, respectively. Those cells initially
containing an interface have volume fractions initialized
according to the portion of the cell truncated by the
interface. Error measurements are performed on the dif-
ferences in volume fraction data observed between the
initial and final times. We use an 1, norm:

L = Y-/ Y, 39

and an L, norm:

. 12
L, =y L -9/ Y (39)
where f' and £ are the initial and final volume frac-
tions, respectively.

It is evident by the initial cube interfaces with L/h
equal to 4, shown in Figure (8), that the cube is underre-

Figure 8: Initial cube interfaces (L/h = 4).

solved with only four cells spanning its width. The
piecewise planar approximation of the cube edges is
inadequate at this resolution, as seen by the interface
planes “chopping off” the cube corners and edges at a
45 degree angle in Figure (8). It is not surprising, there-
fore, that the cube on this mesh will actually tend toward

11

a sphere after translation, as shown in Figure (9). When

Figure 9: Cube interfaces after being translated
diagonally (and returned) a distance of one
cube diagonal (L/h = 4).

L/h is equal to 8, however, the cube is adequately
resolved, as shown in Figure (10). Its appearance after

Figure 10: Initial cube interfaces (L/h = 8).

translation at this resolution in Figure (11) is qualita-
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tively the same as its initial shape. The sphere (not

Figure 11: Cube interfaces after being translated
diagonally (and returned) a distance of one
cube diagonal (L/h = 8).

shown) is translated more accurately than the cube
because its curvature, even with D/h of 4, is adequately
resolved by the PLIC VOF method, and it does not have
any singular edges or corners.

Table (1) shows the computed error norms for the
translated cube and sphere at two different CFL num-

Table 1: Volume fraction error norms for a cube and
sphere translated diagonally through the mesh and
returned. The translation distance is one sphere
diameter ( D=1) or one cube diagonal ( D=3 ).
Results are shown for two different mesh sizes (h)
and CFL numbers,

lation. Although more simulations would be required to
infer a convergence rate, the error norms in Table ((1))
indicate a convergence rate of (slightly less than) first
order. This is again consistent with the results in our 2-D
study [33]. An improved interface normal, such as the
least squares method of Puckett and coworkers [23],
should improve the results to second order. Neverthe-
less, we have found the convergence rate to be problem-
dependent, depending upon the CFL number and the
body geometry.

6.1.2 3-D Rotation (Structured Mesh)*.

Here we reproduce the rotating notched brick prob-
lem presented recently by Puckett and Saltzman in [31].
In this problem, a notched brick is rotated with a rota-
tion vector « directed diagonally through the brick
(from corner to corner): ®=(i, j, k)ay , where @, is a
constant. One face of the block is notched by the extrac-
tion of four smaller cubes from each corner. This prob-
lem is challenging for tracking methods because the
flow field represents solid body rotation instead of mere
translation, the rotation is oriented diagonally to the
mesh instead of being mesh-aligned where discretiza-
tion errors are minimized, and the body undergoing
rotation has high curvature regions (the block edges)
that are difficult to resolve.

Figure (12) shows the initial notched brick for a

bers. As is expected, a CFL number of one yields essen-
tially zero error because the PLIC VOF method is based
upon characteristic upwinding. This has been confirmed
in our recent 2-D study as well [33]. We have included a
smaller CFL number of 0.375 because this is more typi-
cal of a conservative value used in an application simu-

12

025 {0375 | 0267 | 0099 | 0041 | 0.006 Figure 12: Initial notched brick interfaces (40° mesh).
025 | 1.0 | 00001 | 00 | 000001 | 00
0125 | 0375 | 0174 | 0070 | 0023 | 0.002 40x40x40 mesh and Figure (13) shows the brick

(from a different view) on a mesh that is double the res-

*Animations of the simulations presented in this sec-
tions can be found at http://gnarly.lanl.gov/Telluride/
Text/movies.html,
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olution in every direction (80 x 80 x 80), which was the

Figure 13: Initial notched brick interfaces (80° mesh).

mesh used in the results of [31]. The brick is partitioned
with a 25 x20x 15 and 50 x 40 x 30 volume of cells,
on the coarse and fine mesh, respectively. Two different
mesh resolutions are presented to show the conse-
quences of having very high subcell curvature regions
(the brick edges) embedded within meshes of various
sizes. The brick is rotated one period every 400 time
steps, using a CFL number of approximately 0.55 based
on velocities at the extreme brick corners [41].

Figure 14: Notched brick interfaces after one revolution
(40° mesh).

The notched brick on the coarse mesh is shown in
Figure (14) after being rotated one revolution. With only
a few cells resolving the notches at this resolution, it is
obvious that the piecewise planar approximation charac-
teristic of the PLIC VOF method rounds off the high
curvature edges until the interface reaches a lower cur-

vature that is resolvable. Because of strict adherence to
volume conservation constraints, edge material that is
rounded is redistributed locally, leading to the slight
bulges along the faces near each edge (the same effect
can be seen in the translation problems presented previ-
ously). Subsequent revolutions of the notched brick at
this resolution cause essentially no additional change in
its topology. All of the numerical surface tension effects
(rounding of high curvature edges) take place during the
first revolution, after which the curvature is resolvable.
By resolvable, we mean that the piecewise planar
approximation is a reasonably accurate approximation
of the interface topology.

Figure (15) shows the finer mesh results of the

Figure 15: Notched brick interfaces after one revolution
(80° mesh).

notched brick after one revolution. Here it is evident that
edge rounding has been greatly reduced, and the overall
notched brick topology is preserved very well. The qual-
itative difference in results on this finer mesh raises
many interesting issues, such as whether or not the
amount of numerical surface tension can be quantified
and predicted for a given mesh size. It would also be
desirable to understand the extent to which these effects
will be felt in the proximity of high curvature regions.

The SLIC VOF method generates unacceptable
results for this problem, yielding a notched brick that is
not even recognizable after only one revolution (see
Figure 3d of reference [31]). This is not surprising, as a
piecewise constant interface approximation will incur
large errors for interfaces oriented arbitrarily to the
mesh (as in this rotation problem).
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6.1.3 3-D Translation (Unstructured Mesh).

6.2 Static Drop

We now consider a static inviscid spherical drop with
surface tension acting along its interface. Gravity is
absent, so the only forces acting on the drop are surface
tension, which will induce a pressure jump Ap across
the drop given by

Ap = ok, 40

where x is the drop curvature, equal to 1/R in2-D and
2/R in3-D, and o is the surface tension coefficient.
Assuming the background pressure is zero, the theoreti-
cal surface tension-induced drop pressure is

o/R in2-D
Bueory = |20/R in3-D

where R is the drop radius. As in [3], we can define an
average computed drop pressure'

41)

Divop = Nan : (42)
n=l
where N is the number of cells inside the drop (those
having density greater than 99% of the drop density)
and p, is the pressure in cell n. We can also measure the
error in the computation with an L, norm given by [3]:

L2 =J Z(Rl_ Rheory)2 / Np%heory . 43)

For the 2-D drop, the flow field is integrated forward
in time many computational cycles, after which the
pressure field is examined and compared with its initial
value. Ideally the pressure field should exactly cancel
the surface tension forces, resulting in a vanishingly
small velocity field. At the very least, the pressure and
velocity fields should reach steady state, i.e., any com-
puted dynamics are unphysical numerical artifacts.

6.2.1 2-D Drop.

Consider a unit square computational domain parti-
tioned with 6464 uniform orthogonal cells. A circular
(cylindrical) drop of radius R=0.25 is centered at

(x,y)=0.5 . Surface tension forces are computed with
the CSF model via equations (24) and (25), except that a
surface delta function in cell n is given by

8,,=L,/A, , (44)

where L is the length of the PLIC VOF reconstructed
interface in cell n, and A | is the area in cell n. We have
found the surface delta function given by equation (35)
to gives better results for the static drop than equation
(27). The magnitude of the artificial dynamics is greater
when the form for 5, is given by (27) rather than (35)

above. The volume fraction field was smoothed prior to
the calculation of curvature using one pass of a 9-point

Laplacian with a one-half weighting. The resultant con-
tinuum surface force was smoothed in the same way.

Figure 16: Surface plot of the initial pressure field in a
2-D drop. The drop/background density ratio
is1l,

0.401

0200

Figure 17: Surface plot of the pressure field in the 2-D
drop of Figure (16) after 97 time steps. The
CFL number is 0.5.




AIAA 96-0859

l 'i;f ‘! h‘\ig;'i 1k

Figure 18: Surface plot of the initial pressure field in a
2-D drop. The drop/background density ratio
is 1000.

Figure 19: Surface plot of the pressure field in the 2-D
drop of Figure (18) after 383 time steps. The
CFL number is 0.5.

622 3-D.

Table 2: Computed average drop pressures for
different mesh spacing and drop/background
density ratios. The continuum surface force is not
density scaled.

4 2 0.309
8 2 0.71 0.305
4 10 0.84 0.178
8 10 0.82 0.196
4 1000 132 0.326
8 1000 1.88 0.913

Table 3: Computed average drop pressures for
different mesh spacing and drop/background
density ratios. The continuum surface force is
density scaled according to equation ().

4 2 0.75 0.274
8 2 0.75 0.264
4 10 0.82 0.223
8 10 0.83 0.204
4 1000 0.85 0.212
8 1000 0.86 0.187

7. Summary and Conclusions

Accurate modeling of interfacial flows, such as the
liquid metal filling of molds in casting processes, must
have high-fidelity, robust algorithms for interface kine-
matics (tracking) and dynamics (e.g., surface tension).
Our latest algorithmic developments for interfacial
flows have been described, in particular volume-based
methods for interface tracking and the CSF model for
interfacial surface tension. An overall interfacial flow
model based on the PLIC VOF interface tracking
method and the CSF model for surface tension will be
topologically robust, comparatively accurate, and rea-
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sonably efficient. This combination of interface algo-
rithms will continue to be a highly competitive and
viable approach for the foreseeable future, It is impor-
tant, however, that PLIC VOF and CSF algorithmic
improvements and enhancements targeting the outstand-
ing issues addressed in this paper (and summarized
below) continue to evolve in a way that allows these
methods to be applied more readily to 3-D interfacial
flows having high density ratios, surface tension domi-
nated driving forces, and subcell interface curvature.

We have reviewed VOF interface tracking methods
and derived appropriate evolution equations. We have
focused on the PLIC VOF method, currently the most
modern and accurate member of the VOF family of
methods. A detailed 2-D and 3-D PLIC VOF algorithm
template has been provided. The entire algorithm can be
constructed from a well-defined set of geometric primi-
tives such as line/plane location, line/plane truncation,
etc. From the template it is evident that this algorithm is
a true interface tracking algorithm, with fluxes derived
geometrically rather than algebraically. An implementa-
tion based on the templates provided will be robust, effi-
cient, modular, and logically simple. Implementations
based on subjective logic (e.g., “look left”, “look right’)
will be less efficient, less general, and more complex.

We have extended the PLIC VOF method to arbitrary
3-D hexahedral (hexes), and have defined the principal
geometric task to be the calculation of truncation vol-
umes bounded by doubly-ruled surfaces and an interface
plane. Exact analytic solutions have been found for
these truncation volumes [], resulting in an efficient
implementation. Our solutions should also be valid on
non-hex meshes, such as those made up of tetrahedra,
pyramids, or prisms, providing these types of cells are
viewed as logically degenerate hexes. This will be the
subject of future work.

We have identified and begun to address key out-
standing issues for PLIC VOF methods. These include
an improved estimation of the interface normal (mini-
mizing some norm), accurate (second-order) time inte-
gration of the volume fluxes, improved implementation
efficiency, better multiple fluid interface ( > 3 ) models,
and minimization of numerical surface tension. We have
found, as has Puckett and coworkers [19,23,32], that an
optimal interface normal appears to result from minimi-
zation of some norm, which may not be L, , but some
other norm (e.g., L,, ) that weights the data in a different
manner. A fully unsplit time integration scheme gives
the most accurate and symmetric results in 2-D, but a
carefully devised split scheme remains competitive. A
split scheme, however, will break symmetry in certain
situations and does not generalize to 3-D unstructured
meshes. A 3-D unsplit scheme is therefore highly desir-

able, but remains a formidable task on unstructured
meshes. We have currently pursued simpler approaches,
such as generalized splitting and Runge Kutta schemes,
but fully unsplit 3-D schemes will be the subject of
future work. Finally the numerical surface tension
exhibited by PLIC VOF methods has been demonstrated
in 3-D, and our standard metric still applies: the product
of curvature and mesh spacing must be less than approx-
imately 0.5 for numerical surface tension effects to be
minimal. An optimal interface normal calculation will
alleviate the effects somewhat, but the solution to
resolving any subcell curvature continues to be a higher
order VOF method and/or finer mesh resolution.

We have reviewed the CSF model for surface ten-
sion, presented a 3-D implementation, and identified
outstanding issues. Consistent with Puckett and cowork-
ers [19], we have found that a crucial issue is the surface
delta function approximation. Our original choice, the
magnitude of the interface normal, may not exhibit the
desired convergence and behavior on finer meshes. The
manner and amount to which the color function is
smoothed prior to computing curvature is also an impor-
tant issue. Too little smoothing allows noise in the cur-
vature field, while too much allows high frequency
capillary waves to persist unphysically. Smoothing also
appears to be problem dependent. The continuum sur-
face force itself might also be smoothed and/or scaled,
as presented in the original CSF formulation. The pres-
sure field dependence on scaling of the continuum sur-
face force is more sensitive for higher density ratio
flows. The extent to which these issues are important in
the accurate modeling of the interfacial flows encoun-
tered in casting processes will be studied further. Algo-
rithmic improvements resulting from these studies will
enhance, improve, and extend the popular CSF model
for surface tension.
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