tavrss 9 3-0098 CONF-9 5 10 1 38—

TiTLE: | BEAM DYNAMICS CALCULATIONS AND PARTICLE TRACKING
USING MASSIVELY PARALLEL PROCESSORS

AUTHOR(S): | Robert D. Ryne AOT-1 RECEIVED
Salman Habib Theoretical Div.
MAR 13 Y5

OSTiI

SUBMITTED TO: | Proceedings of LHC '95
October 16-21
Montreux, Switzerland

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of Califomia for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-freelicense to
publish or reproduce the published form of this contribution, or to atiow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No, 836 RS

$T2629 10/91
ASTER . o=
DISTP&!B " i }' i) Ou fip=d f lS UNL&%ITED

BEAM DYNAMICS CALCULATIONS AND
PARTICLE TRACKING USING MASSIVELY
PARALLEL PROCESSORS

ROBERT D. RYNE

Mail Stop H817, Accelerator Operations and Technology Division,
Los Alamos National Laboratory, Los Alamos NM 87545

SALMAN HABIB

Mail Stop B288, Theoretical Division,
Los Alamos National Laboratory, Los Alamos NM 87545

During the past decade massively parallel processors (MPPs) have slowly gained acceptance within
the scientific community. At present these machines typically contain a few hundred to one
thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential
performance of these machines is illustrated by the fact that a month long job on a high end
workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow
for & variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the
past these machines were difficult to program. But in recent years the development of Fortran-like
languages such as CM Fortran and High Performance Fortran have made MPPs much easier to
use. In the following we will describe how MPPs can be used for beam dynamics calculations and
long term particle tracking.

KEY WORDS: beam dynamics, tracking, parallel computing

1 INTRODUCTION

During the 1980s vector supercomputers established themselves as the machines of
choice for physicists performing the most numerically intensive calculations; but by
the end of the decade many were turning away from the timeshared vector machines
of centralized supercomputer centers and obtaining their own dedicated high end
workstations. Today such workstations offer users performance approaching a few
hundred MFLOPS with memories up to 1 GByte. Since high end workstations are
becoming a commodity item, one can rightly question the usefulness of central-
ized supercomputer centers offering vector performance of at best 2 GFLOPS per
processor. In fact, many supercomputer centers have turned to massively parallel
processors (MPPs) to provide their users with the highest performance and largest
memories available today. For example, since the next generation of MPPs will

1

2 R. RYNE AND S. HABIB

have up to a few thousand processors like those found in high end workstations,
they have a potential performance of a few hundred to one thousand GFLOPS.
Also, with of order 100 MByte of RAM on each processor, users will be able to run
jobs requiring up to several hundred GBytes of memory.

Though MPPs have potentially very high performance it is often not easily achiev-
able in practice. For example, some algorithms are not easily parallelizable. In these
cases significant effort might be required to implement an algorithm on a parallel
machine, or one might need to find a new way of thinking about the problem that
is amenable to parallel solution. Also, in the past these machines were difficult to
program and they required one to learn a new programming language. However, in
recent years the development of parallel scientific software libraries and Fortran-like
languages have made MPPs much easier to use.

There are two main paradigms for programming MPPs. The most flexible, and
the most difficult from a programming standpoint, is the Multiple Instruction Mul-
tiple Data (MIMD) paradigm. In this approach, the programmer essentially tells
every processor what to do, including when to send data to other processors, when
to wait for data from other processors, etc. This is accomplished using message
passing libraries such as PVM (Parallel Virtual Machine) and MPI (Message Pass-
ing Interface). This style of programming has been called the “assembly language of
MPPs.” The other main paradigm is the Single Instruction Multiple Data (SIMD)
approach, in which every processor executes the same instructions but on different
data. A similar paradigm is the Single Program Multiple Data (SPMD) approach,
where every processor executes the same program, asynchronously, on different
data. For those problems that are trivially parallel the SIMD approach is suffi-
cient. This includes the integration of trajectories of particles in specified fields.
For problems that are not easily parallelizable MIMD programming provides the
best means to achieve good performance, though it could involve the effort of a
small or large research project. An example of this is the process of depositing
charge on a grid, which has received much attention in the plasma particle simula-
tion community2,

Programming MPPs is becoming easier due to the availability of languages like
Connection Machine Fortran (CMF) and High Performance Fortran (HPF) that
allow one to do.SIMD and SPMD programming in a Fortran-like environment.
Though it is the authors’ view that CMF, a product of Thinking. Machines Cor-
poration, is the most mature language of this type, HPF is an emerging standard
and it is expected that CMF will be HPF compliant sometime in 1996. HPF is a
language that includes Fortran 90 as a subset, but it also contains some additional
commands (such as the FORALL which is a parallel DO) as well as compiler direc-
tives to specify how data is to be distributed across processors. In fact, intelligently
laying out the data turns out to be a key consideration in this approach. Compared
with a Fortran 77 program, an HPF program uses array syntax whenever possible
(which is available in Fortran 90); it uses FORALL statements instead of DO loops
whenever possible; and it has compiler directives interspersed among array decla-
rations. Also, these programs often contain calls to mathematical libraries, such as
the CM Scientific Software Library on the CM-5.

PARTICLE TRACKING USING PARALLEL PROCESSORS 3

As an example of array layout, consider a program that integrates the trajectories
of 4096 particles having coordinates (z, pz, ¥, py, 2, pz). Suppose the data is stored
in an array dimensioned a(6,4096). The compiler directive “distribute a(*,block)”
would cause quantities specified by the first dimension to reside on the same pro-
cessor, while the quantities specified by the second dimension would be stored in
“blocks” across processors. For example, if 4 processors were in use, then the six
coordinates of particles 1-1024 would reside on processor 1; particles 1025-2048
would reside on processor 2; particles 2049-3072 would reside on processor 3; and
particles 3073-4096 would reside on processor 4. This is shown in Tab. 1.

TABLE 1: Layout of a two dimensional array distributed (*,block)

Processor 1

Processor 2

Processor 3

Processor 4

a(1-6,1)
a(1-6,2)
a(1-6,3)

.

a(1-6,1023)
a(1-6,1024)

a(1-6,1025)
a(1-6,1026)
a(1-6,1027)

a(1-6,2047)
a(1-6,2048)

a(1-6,2049)
a(1-6,2050)
a(1-6,2051)

a(1-6,3071)
a(1-6,3072)

a(1-6,3073)
a(1-6,3074)
a(1-6,3075)

a(1-6,4095)
a(1-6,4096)

As a concrete example, consider the propagation of particles in a drift space and
the following subroutine:

gfin

!
Q8
+
)
3
(5

gfin = (1)
subroutine drift(a,b,t)
¢ a(i-6,n) = initial (x,vx,y,vy,z,vz) of nth particle
¢ b(1-6,n) = final (x,vx,y,vy,z,vz) of nth particle
real a,b,t
dimension a(6,10000000),b(6,10000000)
cmf$ layout a(:serial, :news)
cmf$ layout b(:serial, :news)
lhpf$ distribute a(*,block)
'hpf$ distribute b(*,block)
b(1,:)=a(1,:)+a(2,:)*t
b(2,:)=a(2,:)
b(3,:)=a(3,:)+a(4, :)*t
b(4,:)=a(4,:)
b(5,:)=a(5,:)+a(6, :)*t
b(6,:)=a(s,:)
return
end

4 R. RYNE AND S. HABIB

In the above subroutine, the directives beginning with 'hpf are HPF compiler
directives; those beginning with cmf are the equivalent directives in CMF. Note
the portability of this routine: It should compile without changes on a workstation
with Fortran 90 (since the compiler directives would be interpreted as comments),
on a multiprocessor workstation with HPF, and on an MPP with CMF or HPF.

2 MODELING BEAM HALO IN ULTRA-LOW LOSS ACCELERATORS

An area where MPPs have already had a significant impact is in modeling beam halo
in next-generation, moderate-to-high average power accelerators that must operate
with very low beam loss. This effort is motivated by recent activity aimed at utiliz-
ing accelerator driven technologies for waste transmutation, plutonium conversion,
tritium production, fission energy production, and the production of spallation neu-
trons for materials science and biological science research. At the high energy end
of a 1 GeV linac the allowed beam loss is less than one nanoampere per meter. It is
now known that a major source of beam loss is the formation of a very low density
halo far from the beam core. Understanding and predicting beam halo and finding
ways to minimize it will have a major impact on the above-mentioned technologies.

Using the resources of the Advanced Computing Laboratory (ACL) at Los Alamos
National Laboratory (LANL), we have developed tools that enable one to model
the dynamics of intense charged particle beams with very high speed and accuracy.
Previously, most linacs were designed using particle simulation codes run with 10000
particles. Though this was adequate in the past, in the new ultra-low loss regime
it will be necessary to use at least 10 million particles to predict the beam halo
with confidence. Using the CM-5 at the ACL, we have developed 1D, 2D, and 3D
particle-in-cell beam dynamics codes. These codes use symplectic, split-operator
integration algorithms to advance the particles3. This process is trivially parallel
except for the space charge calculation that is required. Though it is possible to
implement charge deposition and field interpolation in Fortran 90 (in the form of
statements involving indirect addressing of arrays), this is not very efficient. In-
stead, we have implemented a procedure as described by Ferrell and Bertschinger
in the context of cosmology simulations® Besides using particle simulation codes,
it is also possible to use direct Vlasov/Poisson solvers to determine the evolution
of an intense charged particle beam. This was difficult in the past due to the large
memory requirement of such programs. Since the distribution function is repre-
sented by a grid on phase space, not real space, the grid is 2N-dimensional for
an N-dimensional problem. For example, a 2D problem with a grid length of 256
requires 268 million grid points. This is not unreasonable for an MPP having a few
GBytes of memory. A direct Vlasov/Poisson code looks very similar in structure to
a particle simulation code except that instead of using split-operator techniques to
advance particles they are used to advance the distribution function. For example,
a Vlasov/Poisson code solves the equation

of

5+ (7 8:)f — (V- 8;)f =0, (2)

PARTICLE TRACKING USING PARALLEL PROCESSORS 5

where f((,1) is a distribution function on phase space ({ = (Z,5)). The potential V'
is a sum of an externally applied potential and a space charge potential which is ob-
tained self-consistently from Poisson’s equation. A second-order accurate stepping
algorithm for the Vlasov/Poisson equation is given by

F(¢:t) = M(B)f(¢,t = 0). (3)
where the mapping M is given by

M(t) =e %(i'ai)et(vv'ai)e—5"(1"65)_ (4))

It is important to note that, given an algorithm of order 2n, it is possible to con-
struct an algorithm of order 2n + 2 using a technique originally due to Yoshida®®.
Thus it is a simple matter to construct high order particle simulation programs and
Vlasov/Poisson codes. Using these particle simulation techniques and direct meth-
ods we have also developed codes to model large scale structure formation in the
early universe, as well as direct solvers to model quantum systems represented by
a Schrédinger wave function, a density matrix and a Wigner distribution function.

3 LONG TERM TRACKING

Compared with the multi-million particle simulations of intense beams described
in the previous section, there are significant differences in using MPPs to perform
long term tracking in circular machines. First, codes written in CMF or HPF usu-
ally perform well only when they use large amounts of memory, but tracking codes
usually utilize only a few to a few hundred particles and hence use little memory.
Second, matrix codes and Lie algebraic beam transport codes usually involve ir-
regular data movement, and this can cause excessive interprocessor communication
and poor performance. On the other hand high order codes would alleviate the
memory issue since they utilize somewhat long arrays. In a Lie algebraic code the
length of arrays as a function of order is shown in Tab. 2.

TABLE 2: Array length as a function of order in a Lie algebraic code

Order 3 4 5 6 7 8 9 10 11 12

Monomials | 83 | 209 | 461 | 923 | 1715 | 3002 | 5004 | 8007 | 12375 | 18563

We thus come to the following conclusions: If one wants to perform long term
tracking with many (i.e. greater than 10000) particles, then one can achieve good
performance by parallelizing over particles. If one is using only a few particles, then
one can still achieve good performance by parallelizing over the Lie polynomials.
But if one is interested in tracking a small number of particles to low order, than one
is not likely achieve good performance on an MPP using data parallel methods in

6 R. RYNE AND S. HABIB

CMF or HPF. It might be possible to parallelize over particles using other methods
as is described later.

As mentioned previously, Lie algebraic codes store polynomials as large arrays
where each element corresponds to a monomial. When performing a ray trace one of
the things that must be done is the numerical evaluation of the monomials. That is,
for a given (z, pz, ¥, py, %, p:) one must compute (z™*, p23, y™2, p;“,t“‘,p?“), where
the sum of the n; is less than or equal to the order of the highest order polynomial.
To see how this would be accomplished, consider the following CM Fortran code
which could appear in a beam dynamics program using 4th order polynomials:

dimension g(209),nvbl(4,209),vec(0:6)
cmf$ layout g(:news)
cmf$ layout nvbl(:serial, :news)
forall(i=1:209)
#g(i)=vec(nvbl(1,i))*vec(nvbl(2,1i))
*vec(nvbl(3,i))*vec(nvbl(4,1i))

In the above, each 4-tuple of the array nvbl denotes a monomial. For example, in
the usual indexing scheme nvbl(1-4,31) is equal to (1,1,4,0), which corresponds to
the monomial z?p,. This code would execute properly on a CM-5, but it would not
be efficient due to the communication that it generates. Namely, for a given index i
the quantities vec(nvbl(1-4,i)) would not be on the processor of the target element
g(i). (On the CM-5 scalars and small arrays are normally stored on the “front end”
and not on the processing elements.) The solution to this, on the CM-5, is to make
an array svec(0:6,209) that is 209 copies of vec by using the SPREAD command:
svec=spread(vec,ncopies=209,dim=2). Though this takes time, it is acceptable
so long as it is only done once and the routine is called many times. Thus, a more
efficient version of the code would use the following FORALL statement:

forall(i=1:209)
#g(i)=svec(nvbl(1,i),i)*svec(nvbl(2,i),i)
*svec(nvbl(3,i),i)*svec(nvbl(4,1),i)

This is an example of code that parallelizes over the order of the problem (i.e. over
the Lie polynomials), since the FORALL statement runs from one to the length of
the polynomials. Alternately, a code that tracked many particles could parallelize
over the particles. In that case no extra work (i.e. no explicit parallelization using
SPREAD commands) would be required.

Tab. 3 shows CM-5 timing results for computing the monomials of 256 particles
1000 times. The code is written to be parallel over the monomials and two cases
are shown, 6th order and 12th order, corresponding to array lengths of 923 and
18563, respectively. The program scales well (i.e. the execution time is roughly
inversely proportional to the number of processors) only for the 12th order case.
Tab. 4 shows CM-5 timing results for computing monomials up to 6th order 1000
times. The code is written to be parallel over particles, and two cases are shown,
1024 particles and 16384 particles. The program scales well only for the 16384

PARTICLE TRACKING USING PARALLEL PROCESSORS 7

particle case. Poor scaling using data parallel techniques is usually associated with
the processors not having enough work to do, and this is normally accompanied by

low memory usage.

TABLE 3: 256 particles, 6th and 12th order, parallelized over monomials

PNs 6th order 12th order
32 10 sec, 74 MB | 302 sec, 600 MB
64 | 11 sec, 147 MB | 159 sec, 691 MB
128 | 10 sec, 294 MB | 81 sec, 806 MB

TABLE 4: 6th order, 1024 and 16384 particles, parallelized over particles

PNs | 1024 particles 16384 particles
32 54 sec, 90 MB | 408 sec, 578 MB
64 | 58 sec, 180 MB | 221 sec, 628 MB
128 | 58 sec, 359 MB | 126 sec, 743 MB

Lastly we will consider the implementation of Lie algebraic ray tracing. This
discussion assumes some familiarity with Lie methods”. Consider, for example, a
4th order, nonsymplectic ray trace:

. .2

B fae)g 5)
From a symbolic viewpoint, e(:/4:) acts first on ¢;, followed by e(f3) and e(:f2}), But
from a numerical viewpoint the situation is just the opposite, i.e. the left-most Lie
transformation acts first. In the first approach, one would perform a ray trace by
doing algebraic manipulations until the final step of the calculation. First one would
apply (1+ : fs :) to one of the {; to obtain a polynomial; next one would apply
(14 : fa: +: f3 :2 /2!) to obtain a new polynomial; then one would transform the
polynomial by the matrix representation of e'/+*; and finally one would numerically
evaluate the polynomial to obtain the final value of ¢j. This could of course be
done in parallel for all six ¢; and all particles. In the second approach, one would
first multiply the six-vector C-. by the matrix representation of e'/3*; next one would
apply the operator (1+: f3 : + : f3 :2 /2!) to these six numbers to obtain six new
numbers; and finally one would apply (1+ : fs :) to obtain the final conditions of
the ray trace. This could of course be done in parallel for all particles. We are
still in the process of studying the efficiency of these two methods, but it is likely
that the first method will be best when the number of particles is large since all
the algebraic manipulations, including the time-consuming transformation of the
polynomial by the matrix, will be amortized over the particles. The second method

el el el mefa (141 fa i 4

8 R. RYNE AND S. HABIB

is likely to be best when the number of particles is small and the order is high,
since one would avoid having to transform a large polynomial by a matrix.

4 Conclusion

MPPs have the potential to outperform high end workstations by two to three orders
of magnitude, but achieving this is not always a simple matter. MPPs have been
used successfully to model beam dynamics and halo formation in intense charged
particle beams both in particle simulation codes and in direct Vlasov/Poisson
solvers. With time MPPs are becoming easier to use; HPF is becoming a widespread
standard and HPF compilers are maturing. We have found that, with regard to
long term tracking, it will be easy to achieve good performance with MPPs if the
number of particles is large or the order is high. But it is our experience that data
parallel techniques have a certain amount of overhead associated with them, and
if one were to track 128 particles on 128 nodes the relative performance would be
poor compared with tracking a single particle on a single-CPU workstation. On
the other hand, it is possible to temporarily break out of CMF or HPF in order
to execute code on the nodes. Using this SPMD approach it should be possible to
exploit the coarse-grained parallelism of the particles to achieve good performance
even when the number of particles is equal to the number of processors, if desired.

ACKNOWLEDGEMENTS

We thank Fillipo Neri for helpful conversations regarding Lie algebraic tracking.
This research was supported by the U.S. Department of Energy, Office of Energy
Research, through the Division of High Energy Physics and the Division of Math-
ematical, Information, and Computational Sciences. This research was performed
in part using the resources located at the Advanced Computing Laboratory of Los
Alamos National Laboratory, Los Alamos, NM 87545.

REFERENCES
1. J. Wang, P. Liewer, and V. Decyk, Computer Physics Communications 87 (1995), 35-53.
2. V. K. Decyk, Computer Physics Communications 87 (1995), 87-94.
3. E. Forest and R. Ruth, Physica D 43, (1990) 105.
4. R. Ferrell and E. Bertschinger, Int. J. Mod. Phys. C 5, (1994) 933-956.
5. H. Yoshida, Phys. Lett. A 150, (1990) 262.
6. E. Forest et al, Phys. Lett. A 158, (1991) 98.
7. A. Dragt, In Physics of High Energy Particle Accelerators, ATP Conf. Proc. 87, R. A.

Carrigan et al., ed. (1982).

DISCLAIMER

n account of work sponsored by a
ed States Government nor any age

impli umes any
warranty, express or implied, or ass : i
cmploy ot et Y ess, or usefulness of any information,

ili ¢ the accuracy, completen ny i x
bl]occzssny fod' closed, or r::presents that its use would not infringe anatel o)
o o , cial product, process, Or seIvice by trade name,

. : y ‘
ence herein to any specific comme t s i \
manufacturer, or otherwise does not necessarily constitute or imply

mendation, or favoring by the United States Government ;)irl argaagcn
and opinions of authors expressed herein do not necessarily

United States Government or any agency thereof.

This report was prepared as al
Government. Neither the Unit

n agency of the United State:s
ncy thereof, nor any of thcl.r
legal liability or responsi-
apparatus, product, or
y owned rights. Refer-
trademark,
ts endorsement, recom-
cy thereof. The views
te or reflect those of the

