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SUMMARY

In this report the linearized stability equations for the flow of granular materials down
an inclined plane are derived for a continuum model [cf. Goodman and Cowin (1971),
Rajagopal and Massoudi (1990)]. The basic flow exhibits multiplicity of solutions, one
in which the volume fraction decreases monotonically from the inclined plane to the free
surface, and the other in which the volume fraction increases monotonically. The
solutions to the basic equations were presented in the previous report. Next, we have to
solve the stability equations, numerically.

INTRODUCTION

Granular materials are unlike solids in that they conform to the shape of the vessel
containing them, thereby exhibiting fluid like characteristics. On the other hand, they
cannot be considered a fluid, as it can be heaped. The characteristics of the particles that
constitute the bulk solids are probably of major importance in influencing the
characteristics of that bulk solids both at rest and during flow. Also it is very difficult to
characterize bulk solids, which are composed of a variety of materials, i.e. mainly due to
the fact that small variations in some of the properties of the particles such as the size,
shape, hardness, density and surface roughness can result in very different behavior of the
bulk. Furthermore, secondary factors such as the presence of moisture, the extent of prior
compaction, the atmospheric temperature, etc., which are not directly properties of the
particles but of the ambient, can have signiﬁcant e ffect on the behavior of the bulk.

One approach used in the modeling of granular material is as a continuum, which
assumes that the material properties of the ensemble may be represented by continuous
functions so that the medium may be divided indefinitely without losing any of its
defining properties. A continuum model for granular materials was proposed by
Goodman & Cowin (1971, 1972) this theory was later refined by other investigators such
as Cowin (1974a, b), Savage (1979), Ahmadi (1982a, 1982b), Mctigue (1982), Nunziato,
et al. (1980), and Passman, et al. (1980). The other method used in the modeling of
granular materials is the kinetic theory approach, which is generally used in the
modeling of rapidily flowing granular materials {cf. Ackerman and Shen (1981), Ahmadi
and Shahinpoor (1984), Hutter (1986a, b), Boyle and Massoudi (1989, 1990)].




GOVERNING EQUATIONS

The granular material is treated as a continuum and its stress tensor is modeled as
proposed by Goodman and Cowin (1971) and Rajagopal and Massoudi (1990). The stress
is given by

T = { By(v) + B,(v) gradv . gradv + B, D } 1
+B, V) Vv ® Vv + B, (v)D. 1)

In the above equation T denotes the Cauchy Stress, v the volume fraction of the solid,
D denotes the stretching tensor associated with the solid motion, ﬁo(v) is similar to
pressure in a compressible fluid and is given by the equation of state, B,(v) is akin to the
second coefficient of viscosity in a compressible fluid, B;(v) and B,(v) are material
parameters that reflect the distribution of the granular material and B,(v) is the viscosity
of the granular material. The above model allows for normal-stress differences, a feature
observed in granular materials. In general, the material properties B, through B, are
functions of the density (or volume fraction v), temperature, and the principal invariants
of the stretching tensor D, given by

D= % [ (gradu) + (gradu)’ 1, 2

u being the velocity of the particles. In equation (1), 1 is the identity tensor, grad the
gradient operator, V denotes the Laplacian operator, ® indicates the outer (dyadic)
product of two vectors, and # designates the trace of a tensor. Furthermore, Vv is related to
the bulk density of the material p, through

p=yv, _ 3)
where 7 is the actual density of the grains at the place x and time t and the field v is called
the volume fraction (or the volume distribution) and is related to the porosity »n or the
void ratio e by

v=l—-n= with<v<l 4)

1+¢’

Consider the flow of granular material modeled by the above continuum model down



an inclined plane (cf. Figure 1) due to the action of gravity [Savage (1979), Johnson and
Jackson (1987), Johnson, Nott and Jackson (1990) and Richman and Marciniec (1991)].
In this problem we consider steady one dimensional flow of incompressible granular
materials (i.e. ¥ = constant) down an inclined plane, where the angle of inclination is ct.
Also we assume that B,, B,, and B, are constants.

Following, Rajagopal and Massoudi (1990) we shall assume that §, has the structure

Bo(V) = kv (5)
Bs(v) = B3g(v +Vv3), where, B, is a constant

The govemning equations of motion are the conservation of mass, momentum, and
energy. The conservation of mass is

op . . _ |
3 +divipu) =0, | (6)

where g; is the partial derivative with respect to time. The balance of linear momentum is

. av
dsz+pb-p2;, | )
where :‘;. is the material time derivative and b is the body force. Here, we shall consider

the purely mechanical problem and shall hence not document the energy equation.

STABILITY ANALYSIS:

If the solution to the governing equations of motion is disturbed, then the solution is
asymptotically stable if that disturbance eventually decays to zero and unstable if the
disturbance grows in amplitude in such a way that the solution departs from initial state
or reaches some constant value, yeilding a new solution. Once the stable or unstable sates
are classified for the goveming equations, then the locus which seperates the two classes
of states is defined as marginal stablity or neutral stablity curve. Here, in the present
analysis we determine the marginal stablity curves for the flow down an inclined plane.
Linearized stablity doea not yeild sufficient conditions for stability. So if the solution is
unstable to small disturbances then it will be unstable to finite disturbances, while on the
otherhand, if the solution is stable to small disturbances it is not necessarily stable to
finite disturbances.



Consider solutions which consist of the basic flow plus an infinitesimal disturbance

V=V, +EV, 8
U=uy+ €U, ®
v=£u2

where v, and i, correspond to the basic solution of the governing equations and v,, u,, ¥,
represent the disturbance. It is assumed that for infinitesimal disturbances, the equations
may be linearized i.e. the terms of order €2 and higher order can be neglected. The basic
flow is assumed to have the form

Vo = Vo)
Uy = ug(y)i (10)

Now substituting equations (8) and (9) into conservation of mass and balance of
linear momentum, the equations corresponding to the basic flow i.e. of order one are

given by:
dv,
k-‘-i-y-+2([.’>1 [34) & F—ygvocosa an
d*u, dv, du, ‘ ’
Bio (Vo + vo) e 04 By +2vy) ‘Zi—y— ?57- =-2YgV, sina, (12)

where g denotes the acceleration due to gravity and « is the angle of inclination of the
plane.

We need to solve the basic solution equations (11) and (12) subject to the appropriate
boundary conditions.

dv

u, =f{ kvg sina + B, sina { dyo 5
Bso 2 diy .
+ - (Vo + Vp) cosa —Ey— , aty=0(on inclined plane) (13)
h
N= J- Vo dy . (14)
0



and, ‘
du0
dy
& ‘
kv + B, + By {7;0 p=0 aty = h (at the free surface) 15)

Notice that equations (15), - are the stress free conditions and equation (13) indicates the
slip condition on the inclined plane in which f is the slip coefficient. Rajagopal and
Massoudi (1990) and Rajagopal, Troy and Massoudi (1992) have showed that

k<0. (16)

The equations corresponding to order of € are:

ov, du, du2 v, dvq
—5—+ O{ Bx }+uo{ Bx} u,=0 17)

PP L T vy BV, v, v,
AL~ Bzax{ax By} {d}’axa)’+ @ Bx}

av, (Ou;, d
B3°(1+20) {—ﬂ+ﬁ}+%§9(vo+v§)

o%u,
+ Bap (Vo + vo) 5 &

ox?

Pu, u,\ By d’u, Bso ) duy ov,
{3}7+§;5§}+— —V +7(1+ VO)?I—)Tg

d
ou, ou, du, " } as)

+ By 5 3 Vit resinov,= YV°{§+u°'§;+d_y

v, dvy v, d>vgy v, dvy v, dv(,azvl d*v, v,
et tth et {’&?axz &t dyzay}

+B28xay+B2 8y2

av, ou, 5 Fuy
& 3 +2(vo+v0) —é;z-—}-'ygcosav]

) ou
=‘Y"o{jut2'+“o‘3;2} 19

subjected to the boundary conditions

ox? axay dy ox

o%u 2 32u azu dug ov,
1 uz ﬁso {(Vo vﬁ)( 1)+(1 F2vy R dity IV,

+2(1+2vy)—




’ dv, oV, ou; odu, du, _
ul=f{ kv, +28, — & 3y +B, {Bx P }+f330(\’o+vo) ol L
vy v, é
(54 ) BSO(VO"‘VZ){ auz} p730(1+2v0)cosa_ﬁvl )cosa}

dy ox dy
u,=0 (20)
h
fo v, dy=0 Q1)
dvyav, B du; du,} By du,
By o (v0+v§){ay . }+7(1+2v0)av1=0 22)
dvg ov, aul du, 5 Oy
kv, +2 (B, +B4) ay Bz{ % }+ﬁ30 ("0""'0)3;‘0 23)

Equations (20), , are the boundary conditions at y = 0 on the inclined plane and equations
(22) and (23) are the boundary conditions at y = h at the free surface. The system of
equations (11), (12), (17) (18) and (19) subject to the boundary conditions (13), (14),
(15), (20) (21) (22) and (23) are non-dimensionalized by
-y = x — W — U — W - U
Y=g X=45 U= ul:ﬁ; W=g I=T,
where 7 is a characteristic length and U is a reference velocity. Now, the above system of

(24)

equations for the basic flow reduces to

dv, av, dv,
R ——-+R2"—'—:_—-VOCOS(X (25)
dy dy dy*
du, dv, du,,
R (v0+v0)———+R3 (1 +2vy) —— =~V sina (26)
dy* dy dy

and the boundary conditions become
u,=f4 R, Vv, sinct+R sinoz.{d&}2
0 1Yo 5 dy

du - ;
+R; (vo+ v(z,) cosoL. -21-370 }, at y =0 (on inclined plane) Q7N




1
o= v @8)
and,
du,
dy
R, av -
R, vo+ ..23 {_;_2 =0 aty =1 (at the free surface) (29)
Y

Then the non-dimensional equations for the order of € are given by

ov, ou, du,} - (9v,) dv,-
-—+v0{—_+—7}+u0{—-:}+-——_—u2=0 (30)
ot ox dy ox dy

Ry—+2Rg————+R,—

o & axdy o

—_——

v, Moy o [ o) [PV dvod
+
{55} |

*u, dvg [ Ouy du, )
+2R3(V0+V(2’)-5?—+R3(1+2V0)——: —_—t— +R3(V0+Vo)_

dy | o
u, Fu d*u duy v duy dv
{Tl-+---_—i}+R3(l+2v(,)—:-9vl-l»R3(l+2v)—-—_3—_1-(-21?3—__9—70\11
9y’  xdy dy 3y dy dy
ou;, _ 3;] dug _
+s5inav =Frvgd —+ug——+——iu, 31)
ot ox ay

v, dvy O, dy v, vy v, Pu,
Rl—-—+R,,—-——+ ———+R6——+R4-——+R4—_—:

» ‘HH & e a2 & e

u, ou ov ov. on o
+R3{("0“’(2))(‘_%'*"-_11)'*(1"“2"0)1?—.1'*2(1+2Vo)°:o-—.2+2(vo+v§)—_;}
: a’ oxdy dy ox dy dy 3y
duy _ 3;4'2
-—cosav1=Frv0-—_—+uovo-—: (32)
ot ox

and the boundary conditions become

dvy v, du, u, 3u,
u1=f{ Rlvl+2R5—_—___+R4{—_-+—_}+2R3(vo+v§)—-: Sinc
dy ox oy ox

vy ov, , Ou; Ou, du,
+ Rﬁ——-__-—_+R3(vo+v0){--7+---_—}+R3(1+2v(,)cosot—_—vl cosa}
dy ox dy ox dy




u,=0 (33)
.
J; v,dy=0 (34)
dvyov, 5 ou, 8u2 duy
Rﬁ'd'; = —<+R (v0+vo){ P }+R3(1+2v0)7y—vl =0
avy ov, ou, 3u2 du,
RV +Ry— 5% +R4{ =5 }+2R3(v0+v )-37—0 335

Equations (33),, are the boundary conditions at ; = ( on the inclined plane and
equations (35),, are the boundary conditions at § =1 at the free surface. We shall
assume the disturbances to be spatially periodic. That is the perturbed quantities have the
form

v, = vPG) e giox (36)
—U,0) e e 37)
- Upy@—) e:.l eio; (38)

Where v, is the amplitude of the volume distribution function,
U, and U, are the amplitudes of the perturbed velocity,
i is the imaginary number such that 2 = -1,
G is the wave number (real) and
s={+im

Then substituting (36), (37), and (38) into the equations (30), (31) and (32), and the
corresponding bondary conditions (33), (34) and (35) we end up with

dU av, -
vo———+—-—U +ioV, Px+(icu0+s)v[,=0 (39)
dy dy

Py




2U, dvo dU dU,
R3(v0+v§) Px+R3(1+2v0)—0i+:c{k4+k3(vo+v2)}-ﬂ
&? dy dy dy
av av, gy . v
0 (1 dug
{2:0R5—+ch6—+R3(l+2vo)-—}—f
dy dy dy * dy
dv,
2. Fr . - . ©
+u{-0R4—20R3(v0+v0)--&—v0:-uFrvouo}UPx+{acR3(1+2v0)-;y__—-Frvo-;§—}Upy
{ FaA 4%, v du }
+{iOR, +iR  Gom—ms+ R (1+2v0)—-+2k e s & STROL YV =0
1 6 3 = 3 - "=
& & d
dvg &, { dzvo}dv N }dzUpy dvodU,,
Ry————+{R, +R, — Ry, + 2R, (v, +v) +2R. (142, )——
27~ 1 2 — 4 3% 0 3 4]
dy? ’ dy 32 & dy

dU

+z‘c{R4+R3(v0+v(2’)} dy vy

av
{ 0‘2R6—2+10R3(1+2v0)ﬁ-co:a}
dy dy
+{—02R3 (v0+v§—Frvos-icvozo}Upy=O

subjected to the boﬁndary conditions

a, — du, v,
U,=f Al-jiy:--&-A2 Ay = +iA U, +iA; U, +(Ag+iA)Y,

dy dy
U,=0
1 -
fo v,dy=0
2 (AU, Cdv, du,
R3(v0+vo){ — Py}+{zoR6—_—+R3(1+2vo)-—_}vp=0
d dy dy
. au,, avyav,
{Rlvp+2R3(vo+vo)+R4}————+R ——_——+16R4UPX 0
' dy dy dy

(40)

“4n

42)

(43)

(44)

Equations (42), , are the boundary conditions at y = 0 on the inclined plane and
equations (44), , are the boundary conditions at y =1 at the free surface. Here equation
(39) is used in equations (40) and (41) so that the v, is eliminated from the two equations.
In the above equations we set s = 0 as we are interested in the marginal stability curve.
Then we have to solve two eqautions in which the order of one of the equations is

increased by one. Also, in the present problem the free surface is fixed, i.e. same as the
basic solution domain (; = 1). But, in the real problem the perturbed domain will not be
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the same as the basic solution domain. if the perturbed domain is not fixed, there is a

difficulty associated with that as we do not have the base solution (numerical) in the
perturbed domain. The final equations are

U U du du
S B S +iS) —E+(S,+iS)—E+(Ss+iS,) —=

Uy dy? dy dy
+ Sy +iS) U+ (Syo+i8,) U, =0 45)
BU a2U au >U
18,4 (S;;+18,) —B+ (S5 +i8,) —=+8,,—=
dy? dy? S dy dy?
. dpr . . ‘
+ (S +iS,y —;1:— + Sy +i8) Uy + Sy +i5,) U, =0 46)
y

subjected to the boundary conditions

4, v, dU,
U,.=f| iC H(Cp+iC)——+Cy——+(Cs+iCU_ +(C7+iC) U )
i a5 & b il g

U,=0 | 7)
divo U ) -

j _i{—o_” +iov0UPx}dy=0 (48)

0 u, dy

av, — au,
(B] +1.B2)E+B3—;y:—+(84+i85) Upy+(B6+iB7) pr=0

FU

au av,
iBy—L2 4 (By+iBy) —L 4+ B —L+iB U, +(B13+iB) U, =0 “9)
ay? dy dy

Equations (47),, are the boundary conditions at § = 0 on the inclined plane and
equations (49), , are the boundary conditions at ;-y- = 0 at the free surface.

where,

2, =
Sy =Ry (Vo + V) O 1y




11

dv, av,
S,=-2R; ——vocsuo -R csu(,—vo
d

dy y
S;=R (1+2v0) v(,uo
dy
- v, _ duo
S4=R3cuo(1+2v0){———uo—vo }
dy dy
- av,
S5=—02u0v0{2R5+R6}——
dy
_ dv, dv,, du,
S¢=—20uy(2R+ R ){— }2+c(2R +Rg) vy ———
dy dy dy
- - d*v,
-R,6u,vo—R cvouo -
d)’z
dvoduo
S, =02 uo(R +R3(v0+vo))+2R (1+3v0)u0———-——
dy dy
duy Pu, _
=Ry (1 +2Vo)vy { _}2+R (1 + 2 VoV, g —— + Uy V,, Sina.
dy?

dy
du, _ dv,  du,

Sg= =G U Ry +2 Ry (Vg + V2) )+ Ry 6 (1 +2Vg) — (= g — + Vo —
dy dy dy
Py - duav, -
-R ouovo(1+2vo)——2R cuovo—f——vocuosmoc
dy dy
av, 4o @V,
Sy=-02Frvyuy—c®u, 2R, +R){— }2+c;2v0(2R +R)——
dy dy dy
- d¥v,

2v. 2
dy?
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du dV szo
Sm=—Fr0'vouo-—:—0‘uo(2R +R6)'——:-
dy dy dy?

du, dv, av, = dvodv,

+G(2R;+R)—{—=F-R ouo—-R O Uy——

dy = dy dy dy dy

- - dvy duydv, dv,du,
S11=R3(1+2v0)u0{o' uo—-—+————-+——}
dy dy dy* dy dy’

duydvy _ dv, duy - av,

dy dy dy dy dy
av
Sip =Ry Vo' —
dy

Sl3=czg{k4+2k3(vo+v§)}

dv dv _ du, d>
s,4=R2__°{353__2_zv0u0_:°}+v0u0{1e +R _°}
dy dy dy dy?

du, _ dv
S;s=—R,4 (1+2vo)c;f,{v0——_—o—2uo—_o}
dy dy

3u0—- uo—————uovo———+2vo -2uy——

dvy [ _,dvg dvgduy, _  d%u, diug, _ dugdv,
Sie=Ry— [=F
dy? dy dy dy? dy dy dy

av

Vo) (dvy - du - v
+2{ 1+ Ry— }{ug_:o_uovo_:o} Rg uzvo—o—ugvocosa
dy? dy dy dy
0
Si==Ry 0 Vo tlg—

Y

_ dv, - dv, du,
Sls"'RzGuo"‘:{'z"o‘T*Vo_}
dy

dy d;

819 = 0% Uy (Ry+ Ry (Vg +V2))
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av,du
Szo=—R3c;z{(1+2vo)—:°-—-_2+
dy dy

-—

iy (Vo + vf,) }

av Pv v, du dvoduy  dvy dup  _ duydv,
SZI=R2__0{;gTO_-uo_Tgﬁ_;o__o_“o+2_o{d__uo}2_uo__o__o}

| & T HFH  HH H b dy &y

d dy _ dvydy, .Y - av
+{R1+R2 wo}{u(z)—-:‘—)—uo—_oﬁ}—R602u(2,{;}-)_9}2—02vo§g-u§cosa;f

dy? & &y dy
av dN, _ dvgdu, _ d% _ duyadv
322=R2“:9°{"g'——o"'"o—:.g—lio"’“o"o—:—"zvo{_‘}z* ﬁ__o}
&y T dy dy dy dy dy
> ., dv, _ du, ., dv -
—{R1+R2?°}{-ugc—;—o+uovoc@}+R6o3u§vo—_o+cvougcosa
dy? &y dy dy
dy,
Sy = =GRy Vo tia (1+2 V) — (50)
dy
A, =R, sino.

2
A, =Ry (Vo + V) cosa

d\’o
dy

A =0 sin0 R+ 2Ry (Vo + vf,)}
As=0 R, cosat (Vo + Vo)
du,

Ag=R, sino + R, (1 +2v,) cosa.—
dy

dv
A, =G R, coso,— (51)
dy
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dvo
N B1=—R6VOC—:
dy

du,
B,=R;vy(1+2vy)—
dy

B,=R, 6 uy (Vo + V)
av,

B4=—R6o{—d-_-°-}2
y

av, du, 2
B =R, (1+2v0)—-—+R3c uo(vo+v0
dy dy

du,
Bi==R;06vy(1+2vy)—

dy
dVO
dy
dy

=2 = 2
By=R 0 uy+ 2R, 6 uy (vy +Vy)

- d"o av, du —
dy dy dy
dy
dvy, dv, duo av, - av,
Bu:Rzuo———-——R2 {—=F+R, Uy—
dy dy? dy " dy dy
dv, dv, du
B, ——chuo{ }2+R oV, ——2_oR 1 Vo i
dy ~dy dy

B,=0*R,u (52)
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- dv,
Cl =2R5 U, VOSin(X—:
dy
C,= ouo{& Uy Sin0L— Ry v, cosoc—_}
dy

o - dy - - dug
C3=2R5{-;y_—}2sina{2uo——:}+Rl g Vo Sine + Ry (14 2 V) g Vg cOSO—

= - 2, _dv
C,=06 uy{ Ryuycost (Vg +Vy) =2 Ry Vg Sino. —

dy
- du,
Cs=-06Rsuycosa{—F
dy
Ce=2R n'wd_vg :ofv-?-ﬁd-;f +R Iosinaio.
R BT R

a4y AV,
+R3;ocosa v:;'z(voﬂ»g);()-w-(l+2v0):i-u.:i—__3
dy dy

_av dv, d _ du,
C7=2R5sina6u0—_o{——_o+—li2}-R1cvouosina—R3(l+2vo)cosa—):o
dy dy ady

=2 . 2 2., = Vo
Cy =0 uysina{ Ry+2 Ry (Vo + Vo) } —Rg 0% Vo g cose— (53)
dy

Now, the non-dimensional parameters R, R,, R, R, R¢, R and Fr are given by

R < ko _2(BI+B4)
“hyg 2T hyg
BuU B,U
T 2hyyg ‘T hyg
B, B, U?
5_h3yg, 6—h3'Yg’ Fr-'h"gs (54)

These dimensionless parameters do have physical interpretations. R, is the ratio of the
pressure force to the gravity force. Ry, Ry and Ry are the ratio of volume distribution
force to the gravity force. R, and R, are the ratio of the viscous force to the gravity force.
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FUTURE WORK

The system of equations (45) and (46) with the boundary conditions (27), (48), and
(49) and subject to the restriction (16) will be solved numerically using a colocation
method and IMSL routines to obtain the marginal stability curves. The equations (25)
and (26) subjected to the boundary conditions (27), (28) and (29) govern the basic flow
and solutions to the same were presented in the previous report. We shall use these
solutions to study the linearized stability problem.




Figure 1. Flow Down An Inclined Plane
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