U o SANOIE-2729 T

Parallel Strategies for Crash and Impact Simulations

K. Brown, S. Attaway
Engineering Manufacturing and Mechanics Department
S. Plimpton
Parallel Computational Sciences Department
B. Hendrickson
Parallel Computing Sciences Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0443

Abstract

We describe a general strategy we have found effective for parallelizing solid mechanics simula-
tions. Such simulations often have several computationally intensive parts, including finite element
integration, detection of material contacts, and particle interaction if smoothed particle hydrody-
namics is used to model highly deforming materials. The need to balance all of these computations
simultaneously is a difficult challenge that has kept many commercial and government codes from
being used effectively on parallel supercomputers with hundreds or thousands of processors. Our
strategy is to load-balance each of the significant computations independently with whatever bal-
ancing technique is most appropriate. The chief benefit is that each computation can be scalably
parallelized. The drawback is the data exchange between processors and extra coding that must be
written to maintain multiple decompositions in a single code. We discuss these trade-offs and give
performance results showing this strategy has led to a parallel implementation of a widely-used solid
mechanics code that can now be run efficiently on thousands of processors of the Pentium-based
Sandia/Intel TFLOPS machine. We illustrate with several examples the kinds of high-resolution,
million-element models that can now be simulated routinely. We also look to the future and dis-
cuss what possibilities this new capability promises, as well as the new set of challenges it poses in
material models, computational techniques, and computing infrastructure.
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1 Introduction

Solid dynamics simulations are among the most widely used engineering tools. Crash simulations,
a prototypical example, consume more time on Cray vector supercomputers than any other in-
dustrial application [11]. Commercial and government-sponsored codes such as DYNA [24, 12],
PamCrash [14, 15], and ABAQUS [1] can be used to answer safety and reliability questions in a
variety of crash and impact scenarios of interest to industry and government. For example, will
an automobile frame protect its occupants in a side-impact collision? Will a shipping container
containing hazardous materials burst open during an accident? At what point will a bridge joint
fail due to increased loading? If smoothed particle hydrodynamics are included in the finite element
models, then problems with fluids or highly-deforming solids or fluid /structure interactions can also
be studied.

In all of these cases, running models with sufficient resolution, long-enough timescales, and
high-fidelity material models can be extremely computationally intensive. This makes the codes
natural candidates for parallel implementation. Besides enabling current simulations to be run
faster, an efficient parallel implementation would allow new and significantly larger problems to
be addressed. More detailed geometries could be modeled, along with more complex constitutive
models.

Despite these attractions, large-scale parallelization of solid mechanics calculations has proven
to be quite difficult. A number of previous implementations have failed to scale beyond a few dozen
processors. Reasons for this will be discussed in Section 2. A parallel crash code running efficiently
on 16 or 32 processors is clearly valuable, but the increasing availability of larger parallel machines
is motivation to develop more scalable techniques.

In this paper we describe our general strategy for parallelizing solid mechanics calculations.
By using separate assignments of computational work to processors for different stages of the
calculation, we have developed what we believe is the first truly scalable approach for running
these codes effectively on massively parallel supercomputers. Over the past few years we have used
the PRONTO-3D transient dynamics code as a test-bed for our strategy. It is similar in scope to
the codes listed above and also includes an SPH modeling capability.

We sketch our parallelization strategy in Section 3. At the end of that section we provide
performance results for PRONTO-3D running on the Sandia/Intel TFLOPS machine. In Section
4 we illustrate the kinds of analyses being performed with parallel PRONTO-3D. The ability to
run at this scale has made a qualitative difference in the kinds of modeling questions that can be
analyzed and answered. Finally, in Section 5 we discuss some of the lessons learned from our effort.
In particular, we highlight some additional challenges and opportunities for both the computational
mechanics and parallel computing communities in the arena of solid mechanics simulation.

2 Background

A finite-element (FE) solid mechanics simulation performs at least two significant computations
each timestep. The first of these is the computation of stresses and strains within the FE mesh.
The second is the detection of “contacts” between pairs of interpenetrating surface elements. These
interactions are illustrated in Fig. 1. The basic idea is that no two bodies can occupy the same space
at the same time. When contact pairs are detected, “push-back” forces are computed to correct
the positions of the elements at the end of the timestep to prevent unphysical interpenetration of




two solid objects.

If the simulation includes a gridless Lagrangian formulation, like smoothed particle hydrody-
namics (SPH), then a third computational step is required. This is the calculation of the interactions
of each SPH particle with its neighboring particles. Unlike, finite elements which have static con-
nectivities (to nodes) to compute gradients, SPH particles must search for their nearest neighbors
to compute the necessary gradients. This requires a global search for geometric neighbors inside
a sphere of influence around each particle. SPH particles also need to be included in the contact
detection and push-back computations.

Parallelization of finite element techniques and particle methods have been well studied in
isolation. We will briefly highlight the approaches used in the next section. However, the contact
detection task is unique to solid mechanics simulations and has proven to be a stumbling block to
efficient parallelization of such codes on large numbers of processors. The reason for this is that
the contact detection problem has three characteristics which make it difficult to load-balance: it
is global, irregular, and dynamic.

In the parallel sense, contact detection requires global communication because any two proces-
sors can potentially own a pair of contacting surfaces. This is in contrast to the FE computation
which only requires an exchange of information between elements connected by the topology of the
FE mesh. Thus a processor need only communicate locally with a few neighboring processors to
perform the FE computation. In contact detection, a surface element on one processor can impinge
upon an element that earlier was far away and owned by any other processor.

For similar reasons, the communication required to detect contacts is irregularly structured.
Processors need to exchange information if the mesh or particles they own are in close proximity
to each other. Instead of simple, regular patterns like those supported in standard message passing
libraries, this requires complex interactions between processors.

Contact detection is dynamic because which pairs of surfaces are close enough to each other to
potentially interpenetrate changes dramatically over the course of a simulation. Again, this is in
contrast to the FE computation which can take advantage of the mesh connectivity and resulting
interprocessor communication pattern being static. In contact detection, some kind of dynamic
communication pattern is necessary to continually acquire current information about which other
surfaces are near a processor’s contact surfaces.

Given these difficulties, how can we efficiently parallelize the task of contact detection? Several
authors have reported on their efforts to parallelize contact detection on SIMD or data-parallel
computers [18, 20, 25]. None of these efforts exhibited scalability on large numbers of processors.
These results are consistent with the general observation that unstructured problems are difficult to
parallelize effectively on SIMD machines. In part for this reason, SIMD architectures have largely
been displaced in the high-performance computing world by message-passing and shared-memory
parallel computers.

On message-passing and shared-memory machines the most common approach in transient
dynamics simulations has been to use a single, static decomposition of the mesh to perform both
FE computation and contact detection [14, 15, 16, 17, 19, 22]. At each timestep, the FE region
owned by a processor is bounded with a box. Global communication is performed to exchange
the bounding box’s extent with all processors. Then each processor sends contact surface and
node information to all processors with overlapping bounding boxes so that contact detection can
be performed locally on each processor. Though simple in concept, this approach is problematic
for three reasons. First, contact detection only involves the surface of the mesh, while the FE




analysis also includes interior elements. Thus, a good decomposition of the FE problem may do
a poor job of balancing contact detection. This is not as severe an issue for problems dominated
by shell elements (e.g. [17]). Since every shell element is on a surface, a single decomposition can
balance both parts of the computation. Second, the geometric extent of a processor’s sub-domain
may become large, so the bounding box surrounding that processor’s elements will overlap with
many other processor’s boxes. Even if the initial overlap is small, as objects move and deform
during the calculation large overlaps can ensue. Communicating potential contact information will
then require large amounts of communication and force the processor to search a large fraction of
the global domain for its contacts. Third, the bounding box enclosing a processor’s elements will
generally contain a significant amount of volume outside those elements. Consequently, much of
the data communicated to a processor is unnecessary. This causes extra time to be spent in the
communication and also when searching for contacts.

A different approach to parallelizing contact detection was developed by Har [8]. In this work,
the 3-D geometry is divided into bins, and processors are dynamically assigned bins in which to
search for contacts. The dynamic assignment is handled with a master/slave technique. All the
information is sent to processor 0, who parcels it out to the other processors. This approach suffers
from two significant scalability limitations. First, processor 0 must have enough memory to hold
the entire contact problem. And second, communication costs are quite high to send all the data
to processor 0 and then have processor 0 send it out again.

An alternative approach, more similar in spirit to our work and which was developed concur-
rently, is described by Hoover, et al. [12]. This approach uses a different decomposition for contact
detection than for the FE analysis. In their method, they decompose the contact surfaces and
nodes by overlaying a fine 1-D grid on the entire simulation domain and mapping the contact sur-
faces and nodes into the 1-D “slices”. A variable number of slices are assigned to each processor
so as to load-balance the number of contact elements per processor. Each processor is responsible
for finding contacts within its collection of slices which it can accomplish by communicating with
processors owning adjacent slices. While this approach is likely to perform better than a static
decompoasition, its 1-D nature limits its utility on large numbers of processors. The implementation
described in [12] suffered from some load imbalance on as few as 32 processors of a Cray T3D.

In summary, to our knowledge no previous attempts at parallelizing contact detection have
scaled to more than a few dozen processors.

3 Algorithmic Details

In this section we outline the algorithms and load-balancing techniques that can be used to par-
allelize a solid mechanics code. Full details of our work with PRONTO-3D can be found in some
of the references (2, 3, 21]; here we simply highlight the general strategy. We believe these ideas
are generally applicable to any solid mechanics code, as well as other multi-physics finite element
codes, an issue we return to in Section 5.

As discussed in the previous section, a mechanics timestep consists of several stages. A typical
sequence is listed in Fig. 2 for a dynamics code using an explicit integrator. A slightly adapted
sequence of steps would be valid for a quasi-statics code using an implicit solve to compute, for
example, the relaxed position of a gridded object subject to a load. These details would not change
the basic concepts outlined in the discussion to follow.

The FE computation in step (1) of Fig. 2 uses the material properties of the physical elements
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to compute a local stress or force acting on each element due to its surrounding connected elements.
In general, this applied force will deform the element and thus the physical object described by
the Lagrangian mesh as the simulation proceeds. This FE computation will be load-balanced if
each processor owns an equal number of mesh elements that require the same amount of time to
process. For cases where different elements require different compute times due to material model
differences, each element can be weighted proportional to its CPU cost, and elements assigned to
processors so as to balance the total weight across processors. The communication cost within
the FE step will be low if the elements owned by any one processor have minimal connection to
elements owned by other processors. Because the mesh connectivity is essentially fixed for the
duration of a simulation, static load-balancing techniques can be used to achieve these goals. We
use the software package Chaco [10] as a pre-processor to perform the partitioning; it has several
graph-based algorithmic options suitable for the task. Similar FE parallelization strategies have
been used in other transient dynamics codes [8, 12, 14, 15, 17, 19]. In practice, parallel efficiencies
of over 90% can be achieved with these methods when large meshes are mapped to thousands of
Processors.

In step (2), SPH computations are performed. The interested reader is referred to [4] for details
of how SPH is formulated within a solid mechanics code. The key point is that two particles
interact if their spheres of influence intersect. To implement this efficiently in parallel there are
two requirements: that each processor own an equal number of particles, and that the region
owned by a processor be geometrically compact so that neighbors can be found quickly and with a
minimum of communication. An added difficulty is that during the course of a simulation, particle
density can undergo large fluctuations - in a simulation of an explosion, for example. Thus no
static spatial decomposition of particles to processors will satisfy these two requirements over time.
Instead we use a dynamic load-balancing technique known as recursive coordinate bisectioning
(RCB) [6, 13] for the SPH particles and re-balance them each timestep (or every few timesteps).
RCB assigns a rectangular sub-domain containing equal numbers of particles to each processor. The
simple rectangular shape of the sub-domain makes it easy to find neighboring particles in other
processor’s sub-domains. RCB has the additional advantage that small movements of the particles
do not cause large perturbations in the decomposition, which means data movement is minimized
when re-balancing occurs. The only additional communication cost in the SPH computation is the
exchange of particle information (positions, forces, etc) across the surface of each processor’s RCB
sub-domain. Since the SPH computation itself scales as the volume of the sub-domain, the step (2)
portion of the timestep scales well in parallel.

Step (3) of Fig. 2 is the time integration; forces previously computed on mesh elements and
SPH particles are used to advance their positions and velocities. This step is perfectly parallel since
each processor owns equal numbers of elements and particles and no interprocessor communication
is required.

Step (4) is the contact detection task. The movement of mesh elements and particles in step (3)
will cause unphysical interpenetrations like those depicted in Fig. 1. An efficient parallelization of
this task is critical, since in a serial simulation it can require over 50% of the run time. For reasons
outlined in the previous section, a static decomposition, such as the one used for assigning FE mesh
cells to processors, will not balance the contact search. Rather, we need a dynamic decomposition
of all objects that will potentially come in contact (surface elements and SPH particles). If each
processor ends up with equal numbers of objects, then the search for contacts will be load-balanced.
Additionally, since contact surfaces have a finite extent or bounding box that encompasses their




volume of influence as they move during the timestep, we will need to acquire contact surfaces
from neighboring processor’s domains. Similar to the SPH discussion, this will have minimal cost
if each processor’s sub-domain is geometrically compact and shaped to make this acquisition fast.
In fact, the RCB method used for SPH particles again satisfies all these requirements. Thus at
the beginning of step (4) all the contact surfaces (faces of elements on the surface of objects) and
SPH particles are balanced across processors via RCB, using an earlier decomposition as a starting
point. Note that although we use the same routine, this is a different decomposition on a different
set of data than the SPH RCB decomposition.

When the RCB contact decomposition has been created, each processor owns a rectangular box
containing equal numbers of contact objects. Contact surfaces with bounding boxes that extend
beyond a processor’s sub-domain are cloned and sent to neighboring processors. Each processor
is now ready to search for contacts within its box. A key point is that this search is conceptually
identical to the global detection problem we originally formulated, namely to find all the contacts
between a collection of surfaces and nodes bounded by the entire simulation domain. In fact, at
this point in step (4), each processor simply calls the original unmodified serial contact detection
routine. This is important for computational speed and also for maintainability since the serial
contact-detection algorithm may have various optimizations to efficiently find contact pairs. In
PRONTO-3D, for example, the serial detection routine spatially sorts the contact nodes in multiple
dimensions, then searches the sorted lists for each surface’s bounding box to find possible contacting
nodes [9]. This list of possible contacting nodes is then processed to determine those actually in
contact and to calculate push back directions and magnitudes. All of this computation can now
take place on-processor without communication. The resulting information about contact pairs is
communicated back to the FE and SPH decompositions to prepare for the next step.

In step (5) of Fig. 2, each processor computes push-back forces on the small number of its
particles or mesh elements that came into contact on the current timestep. These new forces are
used in step (6) to adjust the positions of the interpenetrating elements and particles.

In summary, we have outlined a parallelization strategy for a prototypical solid mechanics sim-
ulation that uses 3 different decompositions within a single timestep: a static FE-decomposition of
mesh elements, a dynamic SPH-decomposition of SPH particles, and a dynamic contact-decomposition
of contact surfaces and SPH particles. We use a graph-based decomposition for the mesh elements;
the other two decompositions are updated by RCB. The key advantage of this approach is that
each of the 3 critical time-consuming stages of the timestep is load-balanced independently. The
disadvantage is that extra communication must be performed to move mesh and particle informa-
tion between the decompositions and to update the dynamic decompositions. However, if this cost
is not too high, we expect the strategy to scale to large numbers of processors.

As evidence of the scalability of this approach, we present two sets of timing data for paral-
lel PRONTO-3D running on the Sandia/Intel TFLOPS machine at Sandia National Labs. This
machine has 4500 computational nodes, each of which has two commodity 200 Mhz Pentium-Pro
processors and 128 Mbytes of memory [23]. The nodes are configured in a 2-D mesh with a pro-
prietary communication network that supports a 350 Mbyte message-passing bandwidth between
nodes (in the limit of long messages) with 20-30 microsecond latencies. The implementation of the
parallel algorithms described above and of PRONTO-3D itself is all within a distributed-memory
message-passing paradigm using standard F77 and C code with MPI library calls for interprocessor
communication.

Our first test problem is the crushing of an idealized shipping container by an inclined wall.




Both the wall and the cylinder are modeled as perfectly plastic materials with properties of steel.
This is a pure FE problem; no SPH particles are included. It is a stringent test of the contact
detection algorithm’s robustness, since the container crumples on itself as it is crushed nearly flat,
similar to a soda can being stepped on. Fig. 3 shows CPU timings for a series of scaled-size crush
simulations where the container and wall are meshed more finely as more processors are used. On
one processor a 1875-element model was run. Each time the processor count was doubled, the
number of finite elements was also doubled by refining the mesh in a given dimension. Thus the
leftmost data points are for a 3750 element simulation running on 2 processors; the rightmost points
are for a 6.57 million element simulation on 3504 nodes of the TFLOPS machine. The topmost
curve in Fig. 3 is the total CPU time per timestep averaged over a 100 microsecond (physical time)
run. On the small problems this is a few hundred timesteps; on the large problems it is several
thousand, since the timestep size must shrink as the mesh is refined. The lower curve is the portion
of time spent in the FE computation. Contact detection is the time between the lower and middle
curves, about one-half of the total CPU time for this simulation. Additional overhead, including
the contact push-back, is the time between the top two curves.

The timing data shows excellent scalability of the parallel algorithms on thousands of processors.
Linear speed-up would be horizontal lines on this plot; the FE computation scales nearly perfectly.
Contact detection consumes a roughly constant fraction of the time for all runs. The variations
in these timings are primarily due to the changing surface-to-volume ratios of mesh elements as
refinement is done in different dimensions. The total CPU time begins to rise in a non-scalable way
on the largest P = 2048 and P = 3504 runs because the normally small push-back computation
becomes somewhat unbalanced on very large numbers of processors.

A second set of timing results are for a parallel PRONTO-3D simulation of a metal penetra-
tor impacting a target at approximately 700 ft/sec. These were simulations performed by Kurt
Metzinger at Sandia. Pictures of similar simulations are shown in the next section. The complex
geometry of the penetrator was modeled with 155,000 finite elements; the target was modeled with
415,000 SPH particles since it undergoes large deformations during the impact. Timing data for
this fixed-size problem running on the TFLOPS machine is shown in Table 1 on varying numbers
of processors. Average per-timestep timings are shown for the FE computation, the SPH compu-
tation, and the contact detection which in this case includes both mesh-mesh and mesh-particle
contacts.

Due to memory limitations the smallest number of nodes this problem could be run on was 64.
The last column in the table indicates the speed-up relative to the 64-processor run as a baseline.
The timing data shows that PRONTO-3D achieves good parallel performance even for fixed-size
hybrid FE/SPH problems where all 3 decompositions are active every timestep.

4 Applications

In this section we highlight several computational studies currently being performed with the par-
allel PRONTO-3D code by colleagues at Sandia.

4.1 Airplane Crash

Crash simulations are the most common kind of simulation performed using nonlinear transient
dynamics codes. The level of detail that can be modeled is limited primarily by the size of the




mode]. Sandia has been asked to study the safety of igloo structures at a facility used to store
nuclear weapon components.

Determining whether a storage structure can withstand the impact of an incoming airplane is
difficult. As the aircraft impacts the igloo, fracturing of the fuselage and wings occur. The analysis
is further complicated by the need to model the fuel leaking from the wing tanks and potentially
causing a fire or explosion. The goal in this project was an order-of-magnitude prediction of the
impact loads on the structure and of the fuel dispersion as opposed to a detailed analysis of the
aircraft break up. We modeled the KC-135R, aircraft with traditional finite elements and its fuel
with SPH particles. While there are many different approaches (element free galerkin, j integral,
crack tip opening angle, node release, etc.) one could use to handle the tearing and breakup of
a thin skinned structure, the approach we have considered is element deletion. In this approach,
an element is deleted when a parameter such as damage exceeds a critical value. Newly exposed
surfaces are then added to the list of potential contact surfaces.

Initial simulations of this scenario concerned the fuel dispersal pattern from a wing impacting
a vertical pole. Fig. 4 shows the fuel cloud and damage to the wing. In the image on the right the
fuel particles are deleted to show the tearing of the wing more clearly. This calculation was run
on 128 nodes of the TFLOPS computer using 110,000 hexahedral and shell elements and 130,000
SPH particles.

Current efforts are concentrated on modeling the entire aircraft. The full model is shown in
Fig. 5 which uses 516,000 shell elements to model the airplane and 540,000 SPH particles to model
the fuel. In the lower portion of the figure, the fuselage and fuel are removed to show interior detail.
Fig. 6 is a simulation of the fuselage impacting an idealized rigid target. The fracturing in the nose
tip is clearly visible. The next stage of the project is to model the ground with SPH particles using
a volumetrically yielding soil model. This will bring the total model size to over 2 million elements.
In the final analysis, the fuel, soil, airplane and igloo will all interact.

4.2 Foam Crush

A second application is the response of foams of various types. Foams are often used to distribute
impact forces or to absorb energy in collisions. The macroscopic properties of foams depend upon
their fine-scale structure in a complex way that is not well understood. Better constitutive models
of foam properties can be obtained through simulation of small-scale behavior. Unfortunately, very
large simulations are necessary to be able to compare computations to experiments.

The top portion of Fig. 7 depicts the initial state of a simulation of an open-cell foam, with
cells about one mm in diameter. A linear elastic material model was used for the strut material,
but the complex buckling and folding generates complex nonlinear behavior. The foam is crushed
from above by a fast moving plate while resting on a rigid surface. The lower portion of the figure
reveals there is some crush near the impacting plate, but the majority of the compaction occurs
on the opposing boundary. This is due to the reflection of stress waves off the bottom plate and is
consistent with experimental observations.

Each of the foam struts was modeled with multiple hexahedral elements, for a total of about
900,000 elements. Previously, beam finite elements were used, but the complex deformation patterns
associated with large crush were difficult to capture with beam elements. By contrast, hexahedral
elements are able to model very complex contact conditions. The drawback to using hexahedrals,
aside from the number of elements needed, is that a very small timestep is required to properly




integrate the motion. This problem was run on 512 nodes of the TFLOPS machine and required
8.8 hours of CPU time to run 650,000 timesteps. The complexity of the model and the contact
interactions between struts can be appreciated in the close-up view shown in Fig. 8. Red regions
in this figure are those sustaining highest stress.

4.3 Metal Forming

A third application is the simulation of metal forming, a widely used manufacturing process for
thin metal sheets. In this process, a metal plate is squeezed between two dies to produce the
desired shape, such as an automobile body panel. In many cases the final shape of the formed
piece is dependent not only on the shape of the dies but also on the friction between the dies and
the workpiece. The most accurate way to model metal forming is to use hexahedral elements that
can capture the local thinning or thickening of the plate and the associated normal forces that
determine the friction response. The simulations are often performed using quasi-statics codes to
ensure convergence at every increment as the metal is molded to the die. Although the details
of contact enforcement are different in a quasi-statics code, the contact detection operation is
essentially identical to that performed in a transient dynamic code such as PRONTO-3D. In fact
we have ported our parallel contact detection modules into JAS3D, a quasi-statics code derived
from PRONTO-3D. This has allowed us to simulate this class of problems on massively parallel
machines.

Fig. 9 shows a calculation run by Gerry Wellman. A screen is pressed between two dies with
the screen held in place by blank holders. One of the questions that can be studied by simulation
is the effect of die orientations to see how precisely they must be manufactured. If a moderate
amount of imperfection in the dies does not dramatically reduce the quality of the final screen, the
savings could be significant. The initial analysis shown in the figure modeled only a 10 degree arc
of the screen. A side view including the blank holders with both dies is shown at the top of the
figure. The 10 degree wedge contains about 45,000 hexahedral elements and its forming can be
simulated quickly on 32 processors. The bottom portion of the figure shows the final formed screen
pressed against the die. The full model will include at least a 180 degree section and possibly a
full 360-degree circular screen depending on the orientation of the dies. This will require about

1.6 million elements to model accurately, with contact detection and push-back consuming a large
portion of the computation time.

4.4 Projectile Impact

A final application is that of penetration problems where a projectile traveling at high velocity
impacts and pierces a target. This class of problem is very challenging to model for several reasons.
First, due to the large deformations that occur in the target, traditional Lagrangian meshes often
suffer from element inversion. One approach that avoids this problem is to model the target with
SPH techniques. Second, the penetrator structure can be quite complicated and we are often
interested in the response of its interior to the collision. This requires a large number of elements
to attain sufficient resolution.

An example calculation due to Kurt Metzinger compared a coupled FE-SPH simulation to
experiments for the oblique penetration of a steel rod through an aluminum plate at a velocity
of 400 m/sec. Fig. 10 shows excellent agreement between x-ray photographs of the experiment
and the simulation results. Initially, both sets of data show the penetrator bending upwards. As it




perforates the plate, it turns over and bends downward. As the resolution of the meshed penetrator
is increased, the degree of bending in the final shape approaches that of the experiment.

A more sophisticated computation is shown in Fig. 11 for an impact at 200 m/sec. The internal
geometry of the penetrator is modeled with 155,000 hexahedral elements with full contacts. The
target is modeled with 415,000 SPH particles. An outer ring consisting of 6,500 4-node shell
elements is used to constrain the target material from free radial expansion. A full 3-D model is
necessary for this simulation because the penetrator has a 3-D geometry and oblique impacts are
important. This calculation was run for 161,000 timesteps on 1024 nodes of the TFLOPS machine
and required about 36 hours to complete. The ejecta of material at both the entrance and exit of
the target is consistent with experiments for this type of event. The lower portion of the figure
shows a cut-away view with the hole that has been cut through the target.

5 Vistas

As shown in the previous sections, adapting state-of-the-art solid mechanics codes and algorithms so
they execute efficiently on massively parallel supercomputers is a challenge requiring the combined
skills of engineers, finite element analysts, and computational and computer scientists. This effort
has resulted in a solid mechanics code which can run scalably on thousands of processors. In this
section we discuss what the payoffs are for this effort as well as what other issues are blocking
further progress.

One obvious benefit of a code being able to run on thousands of processors is that a new class
of simulations can be attempted for the first time. Questions can be asked and addressed at length
and time scales that could not be contemplated before. However, even running PRONTO-3D on
hundreds of processors has meant a enormous leap in the kinds of problems that are accessible to
the analyst on an every-day basis with reasonable turn-around time. Consider that a node on the
TFLOPS machine consisting of two commodity Pentium CPUs is now nearly as fast as a single
processor of a Cray Jedi. machine running a version of PRONTO-3D optimized for that platform.
Thus even a few hundred processors can perform simulations many times faster than they could
have been performed previously on traditional vector processors. This power can be used to increase
the spatial or temporal resolution of a simulation grid, to run a more accurate material model, to
do parametric studies of a system’s response under varying conditions, or to embed the dynamics
simulation inside an optimization loop where parameters are varied to optimize the design of a
critical component. Alternatively, stochastic sampling can be used to gain a clearer understanding
of the range of possible responses, instead of performing a single, deterministic calculation.

However, the increase in compute power does not always have the impact one would anticipate.
Consider that for a 3-D model, an increase in spatial resolution by a only a factor of two, along
with the requisite halving of the timestep when grid cell sizes are reduced, requires a 16-fold boost
in compute power. Also, the natural tendency to run bigger and longer calculations brings a new
set of challenges, even if the simulation itself can be run quickly. Finite element grid generation
is often extremely difficult for multi-million element models of complex geometries. The data sets
generated by the dynamics can easily consume 100s to 1000s of Mbytes. Even if the parallel machine
can dump these data sets quickly to parallel disk farms, they typically must be reassembled for
post-processing analysis or moved to another large-memory platform for visualization. And we
have found current visualization tools are generally inadequate to deal with data sets of these sizes.
All in all, the analyst often spends considerably more time on the pre- and post-processing phases
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of the problem than waiting for the simulation to run.

Given these bottlenecks it is natural to ask if there is a need for solid mechanics (or many
other) codes to scale to hundreds or thousands of processors. Since the majority of current parallel
computing platforms are more modest in size, aren’t algorithms that enable a code to run reasonably
well on 16 or 32 processors sufficient? Aside from the need to occasionally run huge problems, which
can only be done on large numbers of processors, we offer two answers to this question.

While predicting the future of computing platforms is difficult at best, and is driven by forces far
removed from scientific computing, one current trend is clear. There is a cost advantage to building
a parallel system out of commodity parts - CPUs, memory, networks, disks, etc. Distributed-shared
memory (DSM) machines such as the SGI Origin and similar offerings from other vendors who sell
high-end integrated systems are popular purchases for those who can afford them. However there
is a growing grassroots movement to build-your-own parallel computer. Beowulf-style clusters of
Pentium or DEC Alpha chips, strapped together with fast Ethernet or Myrinet networking, are
springing up in laboratories and academic departments at an astonishing rate. The communication
bandwidths and latencies on clustered systems are poor compared to DSM machines or even tradi-
tional distributed-memory machines like the Intel Paragon or TFLOPS or Cray T3E. This places
a premium on minimizing the communication cost of an algorithm if it is to run well on even a few
dozen processors. We also note that for the code developer, the ideal scenario is to write code that
will run on any platform. The message-passing programming paradigm, implemented with portable
MPI library calls, is a robust solution. All parallel machines of the foreseeable future, be they dis-
tributed or shared memory, will support MPI. Coding in this style forces the application developer
to think about how to store data locally on the processor which will perform the computation on
those data. This is generally advantageous even on shared-memory machines that support global
memory access. In short, our experience has been that implementing the most-scalable, minimum-
communication, distributed-memory algorithm, is often a win in the long term, even if it means
more effort up-front, because the code will run efficiently on any platform.

A second justification for our development effort is that we have discovered that our algorithms
and parallel strategy can be re-used in a variety of other codes and applications. For example, our
contact-detection algorithm has been ported into three other Sandia codes: JAS3D - a derivative
of PRONTOQ-3D used for quasi-statics problems like the metal forming example in the previous
section, ALEGRA - a new mixed Lagrangian/Eulerian shock physics code, and SIERRA - a new
multi-physics code being developed as a framework for runing a variety of coupled mechanics,
thermal, and fluid-flow simulations. Since some of these codes are works-in-progress, it is difficult
to predict how sensitive their parallel performance will be to load-balance issues, even on a few
dozen processors. Undoubtably, their parallel performance will be problem dependent. Thus we feel
safest having designed algorithms that should perform well in whatever application they become a
part of.

At this point, it is worth saying a few words about the low-level design of our parallel algorithms.
We have found it advantageous to write our tools with an object-oriented design in mind. This
can be done in standard C (or even F77/F90) with a bit of forethought without the performance
sacrifice that object oriented languages often impose. For us the chief benefit has been an easier
path to re-use of certain functionality in other, sometimes unforeseen, applications.

A brief example illustrates this point. The SIERRA framework mentioned above is designed
to solve problems where an object may be overlaid with multiple grids — e.g. one for mechanical
deformation, another for thermal conduction. Within a timestep there is the need to interpolate
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solutions back and forth from one grid to the other. The interpolation is complicated by the fact
that the grids may adapt or move independently during the course of a simulation. Computationally
this grid transfer task entails the following: For each nodal point of the first grid, find the element
in the second grid which contains it. Then interpolate the solution quantity (or quantities) of
interest to the nodal point using the nodal values of the containing element. In parallel, this is
more complex because there is no guarantee the two grids will be decomposed to processors in the
same way, particularly if they adapt or move over time.

As we developed a parallel algorithm for the grid transfer operation, we discovered we were
addressing many of the same issues that arose in parallel contact detection. How do you collect
dispersed data so that a single processor can do a local search computation? How do you find which
processors own neighboring sub-domains so that elements which extend beyond one processor’s
domain can be shared appropriately? And what is the optimal way to setup communication patterns
between irregular groupings of processors? The answers to these questions can use many of the
same load-balancing and low-level communication operations we implemented for contact detection.
Embedding these functions in a high-level grid transfer operation was made easier by defining a
clean interface to the functions and hiding many of the data structures they generate from the
calling program by storing them in the code modules themselves. These are object-oriented design
principles that have been successfully used in other scientific libraries as well [5, 7]. The result is a
toolkit of load-balancing and communication primitives that can be assembled in interesting ways
to perform grid transfer or contact detection or other parallel load-balancing and decomposition
tasks.

Finally, what are the near-term challenges for the solid mechanics research community? As
is often the case, having faster codes serves to amplify other weaknesses in one’s problem-solving
methodology. We have already indicated some bottlenecks in the pre- and post-processing phases
that need to be addressed by the computational science community. However, the “brute-force”
solution of adding millions of elements to solve a hard mechanics problem may not always ensure
accurate solutions to the physics of the problem. Two alternative approaches to increasing accuracy
are better material models and adaptive gridding technology.

The constitutive relations implemented in a material model embody the central physics underly-
ing any solid mechanics simulation. PRONTO-3D is used to simulate the response of an enormous
variety of materials — from concrete, metal and wood to ceramics, gasoline and soil. As grid sizes
shrink, there is also a growing need to model composite materials, i.e. those with heterogeneous
composition at a small length scale. With the resolution made possible by parallel mechanics codes,
the fidelity of simulations may now be limited by the material models. Conveniently, in some cases,
the ability to model multi-million element grids can help in the development of better material
models. For example, consider the foam simulations of the previous section. For materials that
have a microstructure, a detailed simulation can be performed at the micro-scale. The results can
be used to validate a continuum-level constitutive relation for the material that can be used in
other, more macro-scale simulations.

On-the-fly grid adaptation in response to stress gradients induced in a physical object offers a
potentially great savings in the number of finite elements needed to solve a problem to a desired
accuracy. More commonly used in fluids calculations, adaptive methods are an active area of
research in solid mechanics simulations. Issues of what criteria should drive the adaptivity, how to
insure the new meshes conform to the deforming objects, how to best interpolate solutions from
old to new meshes, are all open questions. On a parallel machine additional issues arise, such as
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how to generate the new mesh consistently across processor boundaries, or how to dynamically
load-balance if the new mesh is not distributed evenly among the processors. Achieving adaptivity
within a multi-physics code using multiple grids, all running efficiently on a large parallel machine,

is a grand-challenge level goal that will require continued long-range effort from the solid mechanics
community.
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Figure 1. Various types of mesh/mesh and particle/mesh contacts. (a) Self contact.
(b) Two distinct bodies penetrating one another. (c) Two interpenetrating
surfaces. Enforcement must occur at nodes B and F. (d) Particle/mesh
contact.

(1) Compute FE forces on each mesh element

(2) Compute SPH forces on each particle

(3) Move mesh elements and particles

(4) Detect mesh/mesh and particle/mesh contacts
(5) Generate push-back forces

(6) Final update of mesh and particle positions

Figure 2. One timestep of a solid mechanics calculation.

Figure 3. Average CPU time per timestep on the TFLOPS machine to crush a con-
tainer meshed at varying resolutions. The mesh size is 1875 finite elements
per processor at every data point. The lower curve is finite element compu-
tation time; the middle curve includes both FE and contact detection time;
the upper curve is total CPU time including contact push-back.

Table 1. Breakdown of CPU seconds per timestep to perform a penetrator simulation
on different numbers of processors P of the TFLOPS machine.

Figure 4. Combination finite element and smoothed particle hydrodynamics simulation
of fuel dispersal from an airplane wing.
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Figure 5. Two views of a finite element grid representation of an aircraft used for crash
scenario simulations.

Figure 6. An aircraft fuselage nose impacting a rigid target.

Figure 7. Finite element representation of a foam between two plates before and after
compression.

Figure 8. Close-up view of the foam struts after compression. The colors represent
local stress with red indicating regions of high stress.

Figure 9. Side and top views of a metal screen (pink) about to be pressed between
two dies (blue and green). After forming, the screen has molded to the die
configuration.

Figure 10. Comparison of ezperimental X-ray (left) and simulation results (right) for
penetration of a steel rod through an aluminum target. '

Figure 11. Simulation of a penetrator impacting a target. The penetrator is modeled
with finite elements; the target is modeled with SPH particles.
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SPH Contacts Total Speed-up
64 0.409 4.55 1.24 6.27 1.00
128 0.191 2.36 0.715. 3.30 1.90
256 0.102 1.30 0.533 1.97 3.19
512 0.0525 0.708 0.334 1.11 5.65
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