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SUMMARY

The Feed Test Algorithm (FTA) will test the acceptability (conformance with
requirements) of process batches in the Hanford Waste Vitrification Plant (HWVP). Although
requirements and constraints will be imposed on properties of the material in the melter and
the resulting ,;;lass, the FTA must test acceptability while the batch is still in the Slurry Mix
Evaporator (SME), i.e., before material is transferred to the Melter Feed Tank. Hence, some
properties upon which requirements will be imposed must be estimated from data available on
the feed slurry. The major type of data to be used in this estimation is feed composition,

-~

usually expressed in terms of nine oxide mass fractions and a catchall tenth category, Others.

Uncertainties are inherent in the HWVP process. The two major types of uncertainty
are composition uncertainty (that related to measurement and estimation of feed composition
and other quantities) and model uncertainty (uncertainty inherent in the models developed to
relate melt/glass properties to feed composition). Types of uncertainties, representation of

uncertainty, and a method for combining uncertainties are discussed.

The FTA must account for these uncertainties in testing acceptability; hence it must be
statistical in nature. Three types of statistical intervals (confidence, prediction, and tolerance)

are defined, and their roles in acceptance testing are discussed.

A reference constraint set containing the currently recognized requirements to be
imposed on HWVP is identified. Aspects of requirements that affect the form of statistical
acceptance tests are discussed. Three distinctions are used to identify the appropriate

statistical method for each requirement in the reference constraint set:

. Direct constraints vs. constraints on modelled properties -- This distinction determines

whether or not model uncertainty must be taken into account in statistical tests. Direct
constraints are those that apply directly to measured quantities or to known functions

thereof. For testing of direct constraints, only composition uncertainty is required.
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For testing of constraints on modelled properties, an estimate of model uncertainty is
also required.

. Sinele-batch constraints vs. multiple-batch constraints --This distinction determines the

type of composition uncertainty required by the statistical test. Single-batch
co.nstraints are those that apply to single process batches; multiple-batch constraints
apply over several batches (e.g., all batches within a single waste type). Testing of
single-batch constraints requires the use of an estimate of within-batch variability,
while testing of multiple-batch constraints also requires the use of an estimate of
batch-to-batch variability. _

. Target of inference -- This affects the type of statistical interval to be used in the

acceptance test. If the target of inference is a single fixed true value (e.g., oxide mass
fraction or true property value in a single batch), a confidence interval is appropriate.
If the target of inference is the proportion of values conforming to the requirement, a
tolerance interval is appropriate. '

Several technical issues and possible modifications to the FTA are discussed:

«  considerations in choosing multipliers used in construction of statistical intervals,
. the role of the normal (Gaussian) distribution in staitistical inference,
e separate and simultaneous control of confidence (error rates) in statistical testing,
. an alternate method for treating model uncertainty and the relationship of this method
to the Qualified Composition Region, and
. the possible applicability of Bayesian methods to the FTA.

Testing of the FTA via its implementation in the Plant Simulation Code should assist in

resolving some of these issues and in suggesting worthwhile modifications of the algorithm.

Finally, lists of inputs, outputs, and supporting algorithms for the FTA are presented.
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GLOSSARY

Acceptable--A batch or composition for which all applicable requirements will be met (with
some degree of statistical confidence, as discussed in the body of the document).

Analytical uncertainty--Uncertainty among analytical results from the same sample. This is a
composite form of uncertainty, made up of variability induced during sample preparation and
the inherent error of the measurement process itself.

Batch--A discrete quantity of material (waste, frit, recycle, or a combination of the three) to
be processed by the Hanford Waste Vitrification Plant (HWVP).

Batch-to-batch variability--Heterogeneity between batches made from the same waste type.

Bias--Consistent departures of measured or estimated quantities from the true value; compare
error.

Components of covariance--Covariance matrices representing hierarchical levels of
uncertainty for multivariate data.

Components of variance--Variances representing hierarchical levels of uncertainty in
univariate data.

Composition--The proportions of each chemical species in a batch of material to be processed
by the HWVP; usually expressed as mass fractions of nine major oxides (SiO,, B,0;, Na,O,
Li,0, CaO, MgO, Fe,0,, ALO,, ZrO,) and a catchall tenth category, Others. In some cases,
individual species normally included in Others may be segregated.

Composition uncertainty--Uncertainty in measured or estimated quantities stemming from
variability in material and/or sampling and analytical error.

Compositional data--A type of multivariate data in which the numerical values in each datum
are the proportions (or percentages) of the individual components of the material or
characteristic being represented by the datum. From their nature as proportions (percentages),
these numerical values must lie between 0 and 1 (0 and 100%), inclusive, and they must sum
to 1 (100%).

Confidence--A measure of the long-run performance of a statistical procedure, expressed as
‘the probability that the procedure produces the advertised result. For example, the procedure
for producing 2 95% confidence interval for the mean of a population has a 95% chance of
producing an interval that traps the mean. Note that confidence pertams to the procedure and
not to any partlcular result.

Confidence interval--A type of statistical interval designed to trap, with specified confidence,
a single fixed true value, such as the mean of a random variable.
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Correiation—-A standardized covarianceé which must lie between -1 and 1, correlation is

/ .

computed by dividing the covariance petween WO random yariables by the product of the

standard deviations of the twoO yariables.

Correlation matrix—-A standardized representation of the interrelationships between individw
quantities that make up 2 multivariate datum, the correlation matrix is @ symmetric matrix

with 1’s on the diagonal and the pairwise correlations in the off—diagonai positions.

Covariance-‘A measure of the tendency of two random quantities to vary together, covarit
s defined 2S the expected value of the product of the devial ;ons of the tWO random quant:
from their respective means, 1.6+ Covatiance(X,Y} =EX - po(Y - Hy)- Positive covariar
;ndicates that: the two quantities tend to increas® or decrease together. Negative covariant

indicates that one quantity tends tO increase while the other decreases (or vice yersa)-

Covariance cant be estimated from 2 sample of 1 pairs (X Y0 i=1, 0 with the form

covi{X, Y)

- i (Xi—m(Yi—Y) .

= n-1

Covariance cornp_onents—-See components of covariance.

Covariance matrix-—A representation of the uncertainties and interreiationships betwe:
individual.quantities that make up 2 multivariate datum, the covariance matrix 18 8 3%
matrix with the variances of the individual quantities on the diagonal and the pairwi
covariances in the off-diagonal positions.

Critical component constraints-Constraints jmposed bY HWVP on the mass fraction

- ‘several minot chemical species that may (-8 for reasons of solubility) impalr melt

function Of product acceptability-

CVS region constraints«Constraints jmposed by HWVP on mass fractions of the n.
oxides and Others in the feed material. These constraints are related t0 the extent
Composition Variability Study (CVS) database and are intended 10 discourage extt

cVS property models 0 compositions outside the €

Direct constraints-—Requirements and constraints on HWVP material (feed comp® '
and glass) that pertain directly 0 measured quantities (e.8 oxide mass fractions)
functions of these measured quantities- :

Error--The random deviation ofa measured OF estimated quantity from the true *
to the imperfection of the sampling Of analytical procedure-

Feed-—Though technically referring t0 material after processing in the Sturry Mi

feed ot feed material will here be used as 2 generiC term to refer to any materit
ptocessed by HWVP upstream of the melter jtself; compare melt.
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Long-term variability-—Heterogeneity in material over waste types.

Melt--Material being processed by HWVP in the melter or before it has cooled and solidified
into glass. Before reaching the melter, this material will be referred to as feed.

Model uncertainty--Uncertainty in an estimated property value stemming from imperfection of
the model used to relate feed composition to the property.

Modelled properties--Properties of HWVP feed, melt, or glass for which statistical models are
being' developed to relate feed composition to the property values.

Multiple-batch requirement or constraint--A requirement or constraint imposed over a set of
batches to be processed by the HWVP; e.g., a property for which the requirement is imposed
on an entire waste type, rather than on the individual batches constituting the waste type.
Compare single-batch requirement or constraint.

Nuisance uncertainty--Uncertainties that may be quantified and removed from a statistical
procedure in order to increase the efficiency of the procedure.

Prediction interval--A type. of statistical interval designed to trap, with specified confidence, a.
single random true value, such as a new observation-of a random variable.

Processability properties and requirements--Properties of and requirements on HWVP feed
material that are related to the ability to process the material effectively, efficiently, and
without damage to equipment.

Reference constraint set--The current set of requirements and constraints to be imposed on
HWYVP feed, melt, and glass. This set will be used to target and identify acceptable batches
and to identify remediation strategies for unacceptable batches.

Sampling uncertainty--Uncertainty among samples from the same parent material; this is a
composite form of uncertainty, made up of variability (heterogeneity) in the parent material
and the inherent error of the sampling process itself.

Single-batch requirement or constraint--A requirement or constraint imposed on each
individual batch to be processed by the HWVP, with no reference to the characteristics of
preceding or succeeding batches. Compare multiple-batch requirement or constraint.

Standard deviation--Defined as the square root of the variance, the standard deviation is a
measure of uncertainty on the same scale as the original quantity. Roughly, the standard
deviation is the average distance of an observed value from the mean.

Stand-in constraints--Constraints imposed on mass fractions (and functions thereof) of the ten
major glass components (nine oxides and Other) that are intended to control crystallinity of
the glass.
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Tolerance interval--A statistical procedure designed to trap, with specified confidence, a
specified proportion of the distribution of a random variable. The proportion of the
distribution to be trapped is termed the content of the tolerance interval. For example, a
95%/99% tolerance interval traps 99% of the distribution with 95% confidence.

Uncertainty--A general term used to refer to any of several measures of the random behavior
of some quantity; for example, see composition uncertainty, model uncertainty, variability,
and error.

Variability--Uncertainty related to heterogeneity in materigl under examination; for example,
see batch-to-batch variability and within-batch variability.

Variance-—-A statistical measure of the random behavior of some quantity, variance is defined
as the expected value of the squared deviation of a random variable, X, from its mean, y, i.e.,
Variance(X) = E(X - p)>. Variance can be estimated from a sample, X, i = 1, ..., n, with the
formula : '

n-1

52 = Zn: (Xi-X)z

i=1

Variance components--See components of variance.

Variance-covariance matrix—-See covariance matrix.

WAPS properties and requirements--Properties of and requirements on glass produced by -
HWVP, as detailed in the Waste Acceptance Product Specifications (WAPS; DOE, 1993).
These properties and requirements are related to the performance of the glass in the
repository. '

Waste loading--The mass fraction of waste in a batch of feed or in the resulting glass.

Waste type--A relatively homogeneous stream of waste to be processed by the HWVP.
Several to many batches will be made from a single waste stream.

Within-batch variability—-Heterogeneity in a single batch of material.
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A(gRONYMS
CVS--Composition Variability Study
DWPF--Defense Waste Processing Facility
EA--Environmental Assessment
FTA--Feed Test Algorithm
HWVP--Hanford Waste Vitrification Plant
LCB--Lower confidence bound
LTB--Lower tolerance bound
MEM--Measurement Error Model
PCC--the system to be used by HWVP for product composition control .
PCT--Product Consistency Test
PHTD--Pacific Northwest Laboratory (PNL) HWVP Technology Development
PPMD--Process/Product Model Devel.opment
QCR--Qualified Composition Region
SME--Slurry Mix Evaporator °
QCLB_—-Uppexj confidence bound
UTB--Upper tolerance bound

WAPS--Waste Acceptance Product Specifications
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1.0 INTRODUCTION

The Hanford Waste Vitrification Plant (HWVP) will immobilize transuranic and high-
level radioactive waste in borosilicate glass. Similar operations will be performed in the
Defense Waste Processing Facility (DWPF) at the Savannah River Site. DWPF has
developed a Product Composition Control System for controlling feed slurry composition
(which affects glass properties) and for checking and documenting product quality (Po'stles
and Brown, 1991). The HWVP Project Waste Form Qualification Program Plan (Randklev,
1993) calls for the development of a product composition control-type system to perform
these functions for the HWVP. No name for the HWVP product composition control system
has yet been generally agreed upon. PCC (from product composition control) will be used

-here to refer to the system under development for HWVP.

The major objective of the Process/Product Model Development (PPMD) cost account
of the Pacific Northwest Laboratory HWVP Technology Development (PHTD) Project is the
development of a PCC system. Briefly, control of HWVP operations and product quality will
be achieved by a series of mathematical/statistical algorithms. Bryan and Piepel (1993)
discuss the statistical strategy for the product composition control system and the major
algorithms being develoﬁed for the HWVP. One of the algorithms to be incorporated in this
system is the Feed Test Algorithm (FTA). This document describes the FTA. The remainder
of this section defines the objective of the FTA, introduces terminology, and sketches the

issues to be addressed in subsequent sections.

As currently envisioned, the HWVP will process material in batches by combining
three input streams (waste, frit, and recycle) in a tank known as the Slurry Mix Evaporator
(SME). The SME is the last stage at which feed composition can be adjusted. From the
SME, a batch of slurry will be passed to the Melter Feed Tank, then to the melter. The
molten material (or melt) from the melter will then be poured into canisters for cooling and

eventual disposal in a geologic repository.




Some definitions and terminology are now in order. Composition will be used to refer
to the chemical species (or proportions thereof) in a given material (e.g., waste, frit, recycle,
and combinations of these). Compositions are usually expressed as mas§ fractions of nine
individual oxides (SiO,, B,0,, Na,0, Li,O, Ca0, MgO, Fe,0s, Al,O;, ZrO,) and a catchall
tenth category, Others. This convention was adopted for studies which are developing meit
and glass property models based on composition. Batch denotes a discrete quantity of
material to be processed. The main focus of the HWVP PCC will be SME batches (material
residing in the SME), since this is the last stage at'which feed composition can be modified.
Batches will fall rather naturally into groups, with the batches in each group deriving from a
relatively homogeneous waste stream. This homogeneous waste stream and the batches made

from it will be referred to as a waste type.

Various properties of the melt and the resulting glass influence effectiveness of
processing and disposal. These properties are largely determined by the composition of the
melter feed, the slurry from which the melt and glass are derived. PCC algorithms other than
the FTA will choose a target mixture (of waste, frit, and recycle) for the current SME batch
and will estimate the SME composition that results from the mixing operations. The task of
the FTA is to use the estimated. composition of the SME batch to decide whether the batch
will be acceptable, i.e., whether the batch will yield a melt and glass meeting all requirements
and constraints imposed on composition and glass/melt properties. This task would be quite
simple if each property of the melt and glass were known or could be measured without error:
we would simply compare the known property value to the requirements on that property.
Unfortunately, as the remainder of this document discusses, the situation is not this simple.

At least two complications arise in certifying acceptability.

First, since the SME is the last stage of the process at which composition can be
modified, and since several of the most important requirements are imposed on stages of the
process following the SME (melt and glass), these downstream properties must be calculated
from the estimated SME composition. Glass/melt properties, requirements, and the models

used in calculating glass/melt properties are discussed in Section 2.



The second complication in certifying acceptability arises from the existence of
uncertainty in all real-world measurement and estimation procedures and in the
mathematical/statistical modelling used to calculate downstream properties. Fortunately,
methods exist for quantifying these uncertainties. Section 3 discusses various uncertainties in
measurement; estimation, and modelling, and the methods used to estimate and to represent

these uncertainties.

A reasonable approach to certifying acceptébility must take into account the inevitable
uncertainties discussed above. Rather than asking whether the estimated value of an attribute
falls within requirements, we must ask whether it is reasonable to conclude that the tFue value
falls within requirements, given the estimated value and the magnitude of the uncertainties in
the estimate. This drives us inexorably into the realm of statistics. Section 4 discusses the
statistical methods used to draw conclusions about unknown true values given estimates of the

values and estimates of the uncertainties in these values.

Section 5 draws upon the material in Sectioris 2, 3, and 4 to derive methods for testing
compliance with each of the requirements and constraints imposed on HWVP material. The
FTA described in this document is preliminary, because design of the HWVP process and
knowledge of the product are evolving. This evolution may require some modification of the
techniques described in Section 5. Section 6 discusses some possible modifications and
alternative approaches, as well as some technical issues that should be revisited as knowledge
accumulates. Section 7 lists possible inputs and outputs of ﬁe FTA, as well as supporting
algorithms.




2.0 ATTRIBUTES®. REQUIREMENTS, AND MODELS -

Requirements and constraints will be imposed on many attributes of the HWVP feed,

melt, and glass. Models are being developed to relate feed composition to properties of the

resulting melt and glass. The development of property models is one of the objectives of the

Composition Variability Study (CVS), in which glasses of known composition are fabricated,

and properties of the resulting melts and glasses are measured. The CVS is described in

detail by Hrma, Piepel, et al. (1992). Requirements and constraints that will be imposed fall

into three broad categories:

Requirements related to performance of the final glass in the repository -- These
requirements are imposed by the Waste Acceptance Product Specifications (WAPS;
DOE, 1993), so these will be referred to as WAPS requirements.

- Requirements and constraints related to the processability of the material -- These

requirements are imposed by the HWVP project; they will be referred to as
processability constraints and requirements.

The CVS composition region constraints — These constraints ar€ essentially the limits

of the composition region explored by CVS and are necessary because of the danger
inherent in extrapolating models developed from the-CVS database (i.e., applying these
models to compositions outside the range of compositions examined by CVS). CVS

region constraints apply directly to the ten major components of feed, melt, and glass.

The major WAPS requirement is imposed by WAPS 1.3 on "product consistency,” as

measured by the Product Consistency Test (PCT; Jantzen, 1992b). The PCT measures the

quantities of elements released from ground glaés in deionized water. The WAPS requires

that "the mean concentrations of lithium, sodium and boron in the leachate ... shall each be

(@)

Established usage reserves the word property for characteristics of the melt and glass
(which will usually be estimated via models based on feed composition), but i
requirements and constraints will also be imposed on feed slurry composition (oxide
mass fractions and functions thereof). To avoid confusion, the word attribute will be
used to refer to any characteristic upon which a rfequirement or constraint is imposed.
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less than those of the" Environmental Assessment (EA) benchmark glass, described in Jantzen
(1992a). The FTA will treat Li, Na, and B separately; i.e., WAPS 1.3 will be interpreted as
establishing three separate requirements on HWVP material. .

The WAPS also imposes requirements on attributes of the canistered waste form, and
it requires reporting other glass attributes (i.e., no requirements are imposed on the attributes
themselves). Attributes of the canistered waste form upon which requirements are imposed
include free liquid, gas, explosiveness, pyrophoricity, combustibility, organic materials,
chemical compatibility, heat generation, maximum dose rate, and subcriticality. These
attributes are not expected to be limiting and are not considered further here. Reporting
requirements include chemical composition, crystalline phases, radiqnuclide inventory, phase
stability information (glass transition teméerature and time-temperature-transformation
diagrams), and results of the Toxicity Characteristic Leaching Procedure. Since only
reporting these attributes is required, they play no role in identification of acceptable

compositions and are not considered further here.

Processability requirements include those on viscosity at 1150°C, electrical
conductivity at 1150°C, liquidus temperature (possibly separate requirements for different
crystalline phases), redox state (Fe*/Fe), phase separation, melt rate, and cﬁﬁcﬂ components.
CVS has constructed satisfactory models for viscosity and electrical conductivity. Preliminary
liquidus temperature models have been developed, but they are not considered satisfactory at
this time. Redox rate may be directly measured. Work is underway on phase separation and
melt rate, so these properties will not be further addressed here. Stand-in constraints on
functions of the ten major glass components (nine oxide species and Others) have been used
to address crystallinity of the glass, which is related to liquidus temperature. When
satisfactory models become available for liquidus temperature and crystallinity behavior, the
stand-in constraints may still be active as CVS region constraints, due to the role the stand-in
constraints have played in defining the CVS experimental program. Critical component
constraints are upper bounds on mass fractions of several minor species that may impair

melter function for some reason (e.g., solubility).




The current reference constraint set appears in Table 1. Some of these constraints will
not be included in the preliminary FTA, due to unavailability of satisfactory models or other

difficulties. This set is subject to modification as requirements change, as the CVS database

grows (which may relax some of the CVS region constraints), and as new CVS property

models become available. As discussed in Section 6.6, incorporation of new requirements

into the FTA and modification of existing requirements will present no new technical

difficulties.

Table 1. Current Reference Constraint Set

Category Constraints Lower Limit® Upper Limit®
WAPS PCT for Li n/a 4.8 g/m* °
WAPS PCT for Na n/a 6.6 g/m* ®
WAPS PCT for B n/a 8.2 g/m* °

Processability | Viscosity at 1150°C 2 Pas °© 10 Pass ¢
Processability | Electrical conductivity at 1150°C 18 S/m °© 111 S/m °
Processability | Liquidus temperature ' n/a 1050°C
Processability | Redox state (Fe*/Fe) 0.005 © 023°¢
Processability, | SiO, / ALO, 3.0 n/a

Stand-in :

" MgO + CaO n/a 0.08
" Fe,0, + ALO; + ZrO, + Others n/a 0.225
" AlLO; + Zr0O, n/a 0.14.
" MgO + CaO + ZrO, n/a 0.18

(a) Limits are expressed as mass fractions unless otherwise specified.

(b) WAPS does not specify limits. These limits are based on PCT testing of the EA glass
by the Savannah River Technology Center (WSRC, 1993). It is envisioned that these
limits will be applied by HWVP to models of Li, Na, and B PCT release from
quenched glass as well as canister centerline cooled glass.

(c) Units on viscosity are Pascal-seconds. Units on electrical conductivity are Siemens
per meter (Siemens = Ohm™"). Redox state is expressed as a unitless ratio of Fe™ to

total Fe.




Table 1.  Current Reference Constraint Set (continued)

Category Constraints Lower Limit? Upper Limit®
Processability | Cr,0,, SO, n/a 0.005
Critical
Component o
" P,0; n/a 0.010
" F n/a 0.017 ~
" th3, PdO, Ru,0, n/a 0.025
CVS Region | SiO, 0.42 0.57
" B,0, 0.05 0.20
" Na,O 0.05 0.20
" Li,O 0.01 0.07
" Ca0 0 0.10
" MgO 0 0.08
" Fe,0, 0.005 0.15
" ‘AL O, 0 0.17
" ZrO, 0 0.13
! Others 0.01 "0.10

(a) Limits are expressed as mass fractions unless otherwise specified.

(b) WAPS does not specify limits. These limits are based on PCT testing of the EA glass
by the Savannah River Technology Center (WSRC, 1993). It is envisioned that these
limits will be applied by HWVP to models of Li, Na, and B PCT release from
quenched glass as well as canister centerline cooled glass. )

(c¢) Units on viscosity are Pascal-seconds. Units on electrical conductivity are Siemens
per meter (Siemens = Ohm™). Redox state is expressed as a unitless ratio of Fe*™ to

total Fe.

The classification given above is useful for understanding the origins and roles of

these requirements and constraints, -but, for identifying the proper approaches to statistical

testing of these requirements, two other distinctions are more important. These distinctions

relate to the uncertainties that must be considered by the statistical tests.




The first distinction is that between direct constraints and constraints on modelled
properties. Direct constraints are those that apply to directly to measured quantities (e.g.,
mass fractions of certain components) or to known functions of these measured quantities.
Examples include the stand-in constraints, the critical component constraints, the CVS région
constraints, and the constraint on redox state. The only uncertainties to be taken into account
in testing these constraints are composition uncertainties (see Section 3.1 for more

information on composition uncertainty).

* Modelled properties include those properties for which CVS is developing empirical
models, as functions of composition, with parameters estimated from the CVS database.
Examples of modelled properties include viscosity at 1150°C, electrical conductivity at
1150°C, and PCT for B, Li, and Na. (Constraints on liquidus temperature and other
pr‘operties will be added to the FTA as models become available.) The.property models being

developed by CVS are second-order mixture models, the general form of which is

10 s 10
O = igaﬂe"i * ;; by &

where ¢, is the k-th melt/élass property (or, in some cases, a simple mathematical
transformation thereof), the x; and x; are the mass fractions of the i-th and j-th oxides, and the
ay and by, are the coefficients of the relation between the oxide mass fractions and ¢, (to be
estimated from the CVS database). The oxide mass fractions used in a mixture model must

sum to 1, that is,

10

Yx =1

i=1

Several of the models developed by CVS are first-order, meaning that, for some properties
(k), by, = 0 for all i and j. CVS may employ theoretical models of liquidus temperature;
these models may differ in form from the mixture models developed for other properties.

The details of the CVS database, models, estimation techniques, and validation techniques are



discussed by Hrma, Piepel, et al. (1992).

Each of the models developed by CVS has some associated model uncertainty,
because the coefficients of the models are estimated from experimental data. Both
composition uncertainty and model uncertainty must be taken into account in statistical testing
of constraints on modelled properties, with the result that the tesﬁﬁg methods are somewhat
more complicated for constraints on modelled properties than for direct constraints. Model
uncertainty is expressed as a covariance matrix for the estimated coefficients, a; and by,.
Model uncertainty is discussed further in Section 3.1, covariance matrices are discussed in
Section 3.2, and methods for combining composition and model uncertainties are discussed in

Section 3.3.

The second distinction important in identifying proper statistical methods is that
between single-batch requirements and multiple-batch requirements. Single;batch
requirements apply to the material within a single batch; i.e., these requirements are imposed

‘ona batch-by-batch basis, so that the quality of preceding and succeeding batches does not
affect the acceptability of the current batch. In contrast, a multiple-batch requirement is one
imposed on a set of batches (e.g., all batches derived from a single waste type). For example,
a requirement that the value of Property A be less than 10 for each batch is a single-batch
requirement, whereas a requirement that the mean value of Property A over some set of

batches be less than 10 is a multiple-batch requirement.

Most requirements imposed on HWVP material are of the single-batch type. The
WAPS 1.3 PCT requirements are the only members of the reference constraint set that will be
tested as multiple-batch requirements, and they will also be tested as single-batch
requirements (see Section 4.4 for discussion). Statistical methods used for single-batch
requirements must account for uncertainty within a single process batch, but methods for
multiple-batch requirements must also account for uncertainty between process batches. (The

various sources of uncertainty in the HWVP process are discussed in Section 3.1.)




All of the direct constraints identified above are also single-batch constraints;
statistical testing for singlev-batch direct constraints is discussed in Section 5.1. Statistical
methods for single-batch constraints on modelled properties are discussed in Section 5.2.
Statistical methods for muitiple-batch constraints on modelled properties (the WAPS 1.3 PCT
requirements) are discussed in Section 5.3. There are no multiple-batch direct constraints in
the reference constraint set -- the statistical method for such constraints would be a simplified
version (omitting model uncertainty) of the method for multiple-batch constraints on modelled

properties.

3.0 UNCERTAINTY: SOURCES. REPRESENTATION. AND ESTIMATION

Uncertainty arises in several places and forms in the HWVP process and the data
therefrom. The various sources of uncertainty arise from different-causes and may be best
handled in different ways. Therefore, it is useful to distinguish between several broad
categories of uncertainty: Terminology becomes a problem here. In this document,

" uncertainty (without a preceding modifier) will be used to refer to all sources. When
uncertainty is used to refer to a more specific source, it will be preceded by a qualifier, e.g.,

model uncertainty.

3.1 TYPES AND SOURCES OF UNCERTAINTY

Uncertainty in the HWVP process can be divided into two broad categories: model
uncertainty and composition uncertainty®. The latter category can be subdivided into
variability (heterogeneity) in material, and error in sampling and analytical procedures. (In

fact, a similar subdivision of model uncertainty is possible, but will not be considered here.)

As discussed in Section 2, models will be used to calculate melt and glass properties

(b) Composition uncertainty might also be called data uncertainty, since it exists to some
degree in virtually any process used to collect data. However, the main type of data
to be used in HWVP product control will be compositional data, so the more specific
term will be used here.
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from feed composition. These models will not be perfect representations of the true
relationships between feed composi.tion and melt/glass properties. Oné strength of the CVS
program is that it will yield not only models, but also estimates of the uncertainty inherent in
the models. This model uncertainty must be considered when judging the quality of a process '

batch.

The input streams (waste, frit, and recycle) and the contents of the SME will all be
heterogeneous to some degree. Given this fact, even if we could obtain an exact
measurement from a single place and time, we would not be guaranteed that we know the
truth at all other places and times. This spatial and temporal variability is inevitable (though,
of course, a well-designed process can minimize it). Variability in the HWVP process can be

broken down into several components:

. long-term variability, e.g., between waste t};pes or batches of frit (over the life of the
HWYVP);

. batch-to-batch variability, i.e., heterogeneity between process batches made from the
same waste type and frit batch; this type of heterogeneity might also be called
between-batch variability or within-waste type variability;

.. .within-batch (or within-tank) variability, i.é., heterogeneity within a single process
batch (and' the streams used to make the batch); and

* _within-sample variability, i.e., heterogeneity within a sample of material.

Even if the input streams and the tank contents were perfectly homogeneous (zero
variability), it would still be qﬁite difficult to know the éxact compositions, for the simple
reason that most sampling and analytical procedures are. imperfect. Samples drawn from a
single homogeneous tank or stream will usually differ slightly from each other and hence
from the true (but usually unknown) composition. This may occur because of differential
efficiency of the sampling technique with respect to the various physical phases or chemical
species in the sampled entity. Multiple analyses of the same sample will usually yield results

that are not in perfect agreement, even if the sample itself is perfectly homogeneous.
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Unpredictable departures of samples and analytical results from the true but unknown state of -

nature will be referred to here as sampling and analytical error.

For the sake of completeness, it should be noted that a third source of uncertainty
might exist in some stages of HWVP measurement processes: bias, which is here used to
refer to .consistent, predictable departures from reality in sampling and analytical results. The
consistent, predictable nature of bias distinguishes it from what has been termed sampling and
analytical error. For example, a sampling technique may be known (or may be shown) to
regularly underrepresent the amount of one or more chemical species in the sampled tank or
stream. Similarly, an analyﬁcal procedure may result in consistent underestimation of some
chemical species. Bias should be controlled operationally (by impfovin'g the procedure) or
therapeutically (by correcting known deficiencies when reporting or using results), but the
detection, documentation, and correction of sampling and analytical biases is beyond the
scope of this document. Possible biases in sampling and analytical methods should be
investigated in future efforts (see Bryan and Piepel, 1993, for more information). In all that

follows, it will be assumed that bias has been eliminated.

The two components of composition uncertainty, variability and error, may sometimes
be confounded at a given point in the process. For example, both within-batch variability and
sampling error contribute to observed differences between multiple samples drawn from a
single tank or stream. This combination of within-batch variability and sampling error will be
referred to here as sampling uncertainty. Similarly, the phenomenon commonly known as
analytical uncertainty is actually a combination of variability induced during sample
preparation and ‘the-inherent error of the measurement process itself. Dissection of these
composite types of uncertainty would be quite difficult (and expensive); therefore, sampling
uncertainty is usually treated as an indivisible source of uncertainty, as is analytical

uncertainty.

Some sources of uncertainty described above are not relevant to the problem of

judging acceptability of process batches. For example, long-term variability is important in
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plant design and in establishing the range of compositions included in the CVS database, but
this source of uncertainty is not relevant to judging the processability of a single batch, nor is
it relevant to judging the quality of glass made from a single waste type (i.e., compliance

with WAPS 1.3). Therefore, long-terrﬂ variability is not discussed further here.

Two sources of uncertainty must be considered in judging acceptability of a process

batch:

. Within-batch variability -- This is important in judging compliance with single-batch
requirements.

. Batch-to-batch variability (within a waste type) -- This is important in judging

compliance with WAPS 1.3 (and any other multiple-batch constraints that may be

added to the reference constraint set).

Statistical testing requires estimates of these sources of uncertainty, but, as noted above,
measured quantities include other uncertainties, such as within-sample variability, sampling
error, and analytical error. If present, these nuisance uncertainties decrease the efficiency of
statistical tests. In some cases, it may be possible to isolate and eliminate these nuisance
uncertainties. This issue is related to estimation and use of cohponents of variance and

components of covariance, which are discussed in more detail by Bryan et al. (1994b)l

3.2 REPRESENTATION OF UNCERTAINTY

The standard method of representing uncertainty in a single (univariate) measured or

estimated quantity is in terms of the standard deviation (sometimes called the standard error)
of the estimate. In the following, it will often be more convenient to refer to the variance of
the estimate. The variance is simply the square of the standard deviation and is defined as
the expected value of the squared deviation of an observation from the mean of the
distribution of the quantity. The standard deviation, being the square root of the variance, has
units identical to the quantity itself and hence is more easily used in judging the uncertainty

in the quantity. Both terms, variance and standard deviation, will be used below without
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further comment.

HWYVP product control will be achieved by controlling feed composition, which is
usually expressed as a ten-component vector (nine individual oxides and a catchall tenth
category, Others). Thus, feed composition is a multivariate form of data, in which each
observation consists of a vector of individual measurements é)t estimates. This complicates
the representation of uncertainty, in that we must account for covariance between components
of the composition. The covariance of two random quantities is defined as the expected value
of the pfoduct of the deviations of the two quantities from their respective means.

Covariance is a measure of the tendency of the two quantities to vary together. A positive

' covariance indicates that the two quantities vary directly (one tends to be greater than its
mean when the other is), while negative covariance indicates that the two vary inversely (one
tends to be greater than its mean when the other is smaller than its mean) and zero covariance
indicates that the two vary independently (here used in the lay sense, rather than in the
technical sense of probability and statistics). The (Pearson product-moment) correlation
between two random quantities is simply the covariance divided by the square roots of the
variances. This correlation coefficient is a standardized covariance that must lie between -1

and 1, inclusive.

For multivariate data, the standard method of representing uncertainty is the variance- .
covariance matrix, a square (symmetric) matrix with the variances of the individual
components on the diagonal and the pairwise covariances in the off-diagonal positions. (For
brevity below, the variance-covariance matrix will be referred to as the covariance matrix.)

For example, if = represents the covariance matrix of a vector of length three, then

2
O; Oy 953

2

.E = g; Oy

O
2

Gy O3 O3
where o;? is the variance of the i-th element of the vector and G;; = Cj; is the covariance

between the i-th and j-th elements. (The covariance of a random variable with itself is simply

’
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the variance of the random variable.) The relationship of the covariance matrix to the vector
of estimated quantities is analogous to the relationship of the variance to a single estimated
value. Related to the covariance matrix is the correlation matrix, a square (Symmetric) matrix

with 1’s on the diagonal and the pairwise correlations in the off-diagonal positions.

The specific nature of the multivariate data involved in HWVP product control further
complicates the representation and interpretation of uncertainty. Ideally, the mass fractions
used to represent a singie composition should sum to one (or 100%). Thus, the data involved
in HWVP product control are compositional data, a type of multivariate data in which the
numerical values in each datum are the proportions (or percentages) of the individual
components of the material or characteristic being represented by the datum. From their
nature as proportions (percentages), these numerical values must be lie between 0 and 1 (0
and 100%), inclusive, and they must sum to 1 (100%). This unit-sum restriction is both the
defining feature of compositional data and the source of technical difficulties associated with
compositional data. Compositional data are discussed in depth by Aitchison (1986); the
implications of the compositional nature of the HWVP data are largely beyond the scope of

this documeént but are discussed briefly in the Section 6.2.

Several of the sources of uncertainty discussed in Section 3.1 are hierarchical. For
example, uncertainty exists among analyses on a single sample, among samples within a
single batch or input stream, among batches within a waste type, and among waste types.
Each estimated feed composition includes ﬁncertainty introduced at each level of this
hierarchy. As discussed in Bryan et al. (1994b), proper estimation of uncertainty in attribute
values requires recognition of this nested structure. Briefly, the uncertainty at each level in
this hierarchy may be represented by a variance (for a single measured quantity) or a
covariance matrix (for a multivariate quantity). These hierarchical representations of

uncertainty are known as components of variance and components of covariance.
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3.3 ESTIMATION OF UNCERTAINTY FOR MODELLED PROPERTIES

Estimates of model uncertainty will be obtained from CVS. The estimates of

composition uncertainty required by the FTA will be supplied by the existing algorithm
known as the Measurement Error Model (MEM) or as the Measurement Correction
Algorithm. This algorithm reconciles several sources of information on tank contents and
produces optimized estimates of feed composition, other data, and the associated uncertainties
(covariance matrices). It is possible that some uncertainty estimates may have to be modified,
combined, or updated during plant operation (e.g., during processing of a.single batch or from
batch to batch). These and other issues relating to estimation of uncertainty are discussed by
Bryan et al. (1994b). In what follows, the relevant covariance matrices are assumed to be
available. The section focuses on derivation of an estimate of uncertainty for a modelled
property value, using the available covariance matrices for feed corpposition and the

coefficients of the model.

Derivation of an estimate of uncertainty for a modelled property value is an
application of the general procedure known as propagatior; of error. Briefly, one method of
propagation of error works as follows. Let y represent a property of interest”, and assume
that y = f(z), where z is a random vector with mean p, and covariance matrix %,. Then, using
a Taylor series expansion about p, to approximate f(z), an approximation to the variance of

the estimated y, 6, can be derived:

o} =45 d,

(¢)  Among the sources of information used by the MEM are pressure differences and
gauge heights in various tanks, measured concentrations of various components,
masses of samples, and constants relating oxide masses to cation masses.
Reconciliation done by the MEM relates to several types of mass balances for material
in and transferred between tanks. In addition to estimates of feed composition, the
MEM produces optimized estimates of tank levels and densities of material.

(d) Standard statistical/mathematical practice is to place a caret ("hat") over the symbols
for estimated quantities (e.g., data, parameters, and uncertainties). Since all the
quantities to be employed in the FTA will be estimated, the "hats" will be omitted in
much of this document, thereby preventing a potentially bewildering proliferation of
such symbols. .
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where d, is the gradient (i.e., the vector of partial derivatives) of f with respect to z. The

partial derivatives are to be evaluated at the observed value of z.

Two distinct sources of uncertainty enter into the propagation of error for calculation
of a melt or glass property, y, from an estimated feed composition, X. First is composition
uncertainty, the uncertainty in the estimate of feed composition. For simplicity of
presentation, it is assumed here that a single covariance matrix for feed composition is
available. The case of several covariance components for feed composition is briefly

discussed at the end of this section.

The second source of uncertainty entering into the calculation of y is model
uncertainty. Let 3 be the vector of estimated coefficients (parameters) in the model relating y
to x. Model uncertainty is quantified by a covariance matrix associated with B; denote this
covariance matrix by Z;. The method of propagation of error outlined above can be applied
to the special case of y = f(x,8). Denote the gradients of f(x,) with respect to x and B.by d,
and dg, respectively. If x and [ are uncorrelated random vectors (a reasonable assumption
unless x is part of the data used to estimate [3), the approximate variance of y divides neatly
into two parts, one attributable to the uncertainty in x (i.e., composition uncertainty), the Sther

" attributable to uncertainty in B (i.e., model uncertainty):
O'yz = d,’Z.d, + d3'Zgd, 2)

For the special case where the function f(x,B) is linear in both the data, x, and the

parameters, [3, this formula takes on an even simpler form. For this case,

y= f(x,p) =xB

d,=p
dB =X
.0 = BB +xTx 3
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The role of this estimated variance in constructing tests for the acceptability of a feed batch is

discussed in Sections 5.2 and 5.3.

If several covariance components relevant to feed composition are available, these -
covariance components can be propagated separately and the resulting variance components
combined to form an overall estimate of uncertainty in y arising from the various covariance
components. This subject is beyond the scope of this document but is covered in greater

detail in Bryan et al. (1994b).

4.0 STATISTICAL INTERVALS AND DECISION-MAKING

The purpose of the FTA is to construct statistical tests for acceptability of a feed batch
_ with respect to the various requirements imposed on the HWVP process and product. The
statistical tests to be used by the FTA are intimately linked with statistical intervals. In this
section, three types of statistical intervals will be discussed, as will the .general principles
underlying the applicability of each interval type to the requirements imposed on HWVP feed,
melt, and glass. Specific applications of these interval types to specific requirements are

- discussed in Section 5. Technical issues surrounding the construction of statistical intervals

are discussed in Section 6.

A statistical interval is, roughly, a range of values in which an unknown true value is
believed (or expected) to lie. The interval is defined by a lower bound, an upper bound, or
both. A two-sided statistical interval has both a lower bound and an upper bound. A lower
one-sided interval is bounded only below (no statemént is made about an upper limit), while
an upper one-sided interval is bounded 6n1y above (no statement is made about a lower
limit). The bounds themselves are often referred to as two-sided or one-sided. Due to the
simultaneity required of two-sided bounds, they are farther apart (for a given statistical
confidence level) than the two corresponding one-sided bounds (i.e., a two-sided interval is

often wider than the intersection of two one-sided intervals).
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With each of the types of intervals to be discussed in this document is associated a
quantity called the statistical confidence. Confidence is a measure of the success rate of the
procedure by which a statistical interval is constructed, i.e., how often the procedure produces
an interval that actually traps the true value. For example, a procedure to produce a 95%
confidence bound has a 95% chance of producing a bound that traps the unknown true value.
Technically, the confidence actually rests in the procedure used to construct the bound or
interval, not in the bound or interval itself. Confidence refers to the long-run performance of
the procedure, not the performance of any particular calculated interval. The interval itself,
once produced, either does or does not trap the true value, and, though we do not know which
is the case, it is not technically correct to say that the interval has a 95% chance of trapping
the unknown true value. A method other than confidence for expressing strength of belief is

discussed briefly in Section 6.5.

4.1 CONFIDENCE INTERVALS

A confidence interval® is designed to trap a single fixed true value with specified

confidence. For example, a 95% confidence interval for the mean of a population is designed
to trap the mean of the population with 95% confidence. Lower and upper confidence bounds

" (LCB and UCB, respectively) are of the form:

LCB =7 - (m,"s) : 4
UCB =§ + (m,, * 5)

where ¥ is the estimated value, s is the estimated standard deviation of y, and m,, and m,, are
multipliers, the exact definition of which depends on the statistical distribution of the data, the
confidence to be associated with the interval, the desired nature of the bounds (one-sided or
two-sided), and the strength of information about s. (In practice, for two-sided intervals, the

two multipliers are usually equal, but this need not be the case.) The technical details

(e) This name, though endowed on the procedure by its creator, is somewhat unfortunate--
as stated above, statistical confidence is associated with each of the types of statistical
interval to be discussed here. The distinctions among the interval types lies in the
nature of the unknown quantities they are designed to trap.
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entailed in the choice of the multipliers are discussed in Section 6.1.

4.2 PREDICTION INTERVALS

A prediction interval is designed to trap a single random true value with specified
confidence. This differs from the confidence interval in that the target entity of a prediction
interval is a random quantity, while the target entity of a confidence interval is a fixed
quantity. A prediction interval must account for the random behavior of the target entity, in
addition to all the sources of uncertainty accounted for by a confidence interval. Therefore,
all else being equal, a prediction interval will be wider than a confidence interval. Hence, use
of prediction intervals in testing glass/melt properties is more likely to result in decisions to

reject a process batch.

Perhaps some examples will make clearer the distinction between confidence and
prediction intervals. If we believe that a given attribute is an exact function of true
composition, then ihe. true attribute value is a fixed quantity, all our uncertainty stems from
uncertainty about the true composition and model uncertainty, and a confidence interval is
appropriate. If we believe that the true attribute value is a function of true composition plus
some random effect (i.e., that the true attribute value may differ between two batches with
exactly the same composition)-, then the uncertainty about the true value must account for this
random effect in addition to the uncertainties about the true composition and the model, and a
prediction interval is appropriate. In the context of the FTA, confidence intervals are more
appropriate, since we expect that batches with exactly the same composition should have the
same properties, and we are interested in drawing inferences about these fixed but imperfectly
known quantities. Although not applicable to the FTA, prediction intervals may be
appropriate in other areas of HWVP process control, for example, in model validation and

process monitoring.
The formulae for lower and upper prediction bounds are very similar to those given in

Equation (4) for lower and upper confidence bounds, but the definitions of the statistical

multipliers and/or the uncertainty estimate differ. Since prediction intervals will not be used
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in the FTA, the details will not be given here.

4.3 TOLERANCE INTERVALS R

A tolerance interval is designed to capture, with specified confidence, a predefined

proportion of some statistical distribution of values. For example, consider testing whether
some proportion of process batches from a single waste type have attribute values below
some specified upper limit. In this application, individual batch attribute values are thought
of as arising at random from an underlying population (the population of all batches that
could have been made from this waste type), and the inference to be drawn concerns the
underlying population rather than the mean or some other single characteristic of this
population. The proportion of the population to be captured is termed the content of the
tolerance interval. As with confidence and prediction intervals, this capturing is to be done
with a specified level of confidence. Thus, two percentages (confidence/content) are usually
used to specify a tolerance interval; for example, a 95%/99% tolerance interval is one
designed to capture 99% of the underlying population with 95% confidence. Like other
statistical intervals, tolerance intervals may be two-sided (an attempt to capture the central
portion of the distribution), lower one-sided (an attempt to capture the upper portion of the

distribution), or upper one-sided (an attempt to capture the lower portion of the distribution).

The formulae for lower and upper tolerance bounds (LTB and UTB, respectively) look
very similar to those for confidence bounds, but the definitions of the items involved differ

from those for confidence bounds:

LTB = - (m, *s) ®)
UTB=§’+(1’D“,‘S)

where ¥ is the estimated mean value and s is the estimated standard deviation of the
distribution, and m, and m,, are multipliers, the exact definition of which depends on the
statistical distribution of the data, the confidence and content to be associated with the

interval, the desired nature of the bounds (one-sided or two-sided), and the strength of
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information about s. (Again, in practice, for two-sided intervals, the two multipliers are
usually equal, but this need not be the case.) The technical details entailed in the choice of

the multipliers are discussed in Section 6.1.

~

4.4 APPLICATION OF STATISTICAL INTERVALS TO THE FTA

To illustrate the role of statistical intervals in acceptance testing, assume that we wish

to test whether it is reasonable to conclude that a fixed, unknown true attribute value is less
than some specified upper limit, U. To perform this test, we obtain estimates of the attribute
value () and the uncertainty therein (s), choose a desirable confidence level (often 95%), and
calculate the UCB corresponding to this confidence level. If UCB < ﬁ, we conclude that the
requirement is satisfied. Otherwise, we conclude that the requirement is violated, leading to

rejection and remediation of the process batch.

The confidence level of this procedure controls the probability of concluding that a
requirement is met (i.e., the true attribute value is "good") wﬁen in reality it is violated (the
true attribute value is "bad™); in other words, confidence controls the probability of accepting
a bad batch (since a batch is deemed bad and rejected if any attribute of the batch is deemed
bad). THat is, when all the assumptions of the statistical test are met, the probability of
rejecting a borderline batch (one for which the true attribute value is exactly equal to the
specified upper limit) is equal to the confidence level, e.g., 95%, and the probability of
accepting a bad batch is no greater than 5%. As the true attribute value approaches the
specified upper limit, the probability of rejection approaches 95%, implying that good batches
with true attribute values near the limit are very likely to be rejected. Increased conservatism,
in the form of increased statistical confidence (which implies a larger statistical multiplier and
hence a larger UCB), is tantamount to increased probability of rejection of all process
batches, regardless of true status (acceptable or unacceptable). That is, higher confidence
levels correspond to lower probabilities of accepting bad batches (beneficial) and to higher
probabilities of rejecting good batches (detrimental). This demonstrates that choosing a
confidence level entails compromise. (Indeed, in this sense, the most "conservative” test is to

simply reject all process batches!) In addition, smaller uncertainties (as measured by smaller
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values of the standard deviation) correspond to smaller UCBs and hence to decreased rates of
rejection for good batches. Since the procedure fixes the probability of rejection of a
borderline batch at 95% (or whatever confidence level is chosen), the probability of accepting
a bad batch still does not exceed 5%. This demonstrates the intuitive concept that a smaller

standard deviation corresponds to increased efficiency of the statistical acceptance test.

Confidencer and prediction intervals are used to draw inferences about a single (fixed
or randofn) value; tolerance intervals are used to draw inferences about the populétion from
which random values are drawn. Most of the requireménts imposed on HWVP pertain to
single fixed values (the true attribute value in a single batch), and hence the use of confidence

intervals is a reasonable approach to testing most requirements.

The WAPS 1.3 PCT requirements are the only constraints in the current reference
constraint set for which confidence intervals may not be appropriate. The wording of WAPS
1.3 is such that an argument could be made for using either a confidence interval for each
batch or a tolerance interval over an entire waste type. The FTA will use a tolerance interval
approach to check compliance with the WAPS 1.3 i’CT requirements over an entire waste
type. In addition, these requirements will also be tested with confidence intervals within each
process batch (i.e., as single-batch requirements), so that the FTA will be checking
compliance with WAPS 1.3 during production (not just after). This will add conservatism to

the FTA and will serve as a check on the multiple-batch tolerance interval approach.

In the multiple-batch tolerance interval approach, complications arise from the need to
incorporate model uncertainty and the need to control the WAPS 1.3 prop.erties sequentially,
ie., as the individual batches are being processed. These complications are discussed in

Section 5.3.
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5.0 TESTING ACCEPTABILITY

Designing the appropriate statistical test for a given requirement entails answering

three questions:

. Is this a direct constraint (i.e., a constraint applied directly to a measured quantity or
to a known function of measured quantities) or a constraint on a modelled property?
If the former, only composition uncertainty enters into calculation of statistical bounds;
if the latter, model uncertainty must also be factored in. See Sections 2 and 3.1 for

more information.

. Is this a single-batch requirement or a muitiple-batch requirement? If the former, the
proper estimate of composition uncertainty is within-batch variability; if the latter, the
proper estimate of composition uncertainty must also include batch-to-batch variability.

'See Sections 2 and 3.1 and Bryan et al. (1994b) for more information on this choice.

. Is the quantity for which inference is to be drawn a single fixed value, a single
random value, or some pfoportion of a statistical distribution? This question relates to
the type of statistical interval (confidence, prediction, or tolerance, respectively) to be

employed. See Section 4 for more information on this choice.

The first two of these questions are dichotomous, while the last is triéhotomous.
Therefore, there are twelve (= 22-3) possible combinations of answers to these questions.
For the current reference constraint set, only three of these combinations occur; the proper
statistical tests for these combinations are described in Sections 5.1, 5.2, and 5.3. One of -
these sections is likely to cover any constraints added in the future. In any case, the
principles exhibited in these sections should provide sufficient guidance for constructing

statistical tests for added constraints.

For each requirement in the reference constraint set, the FTA will perform the
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following series of steps:

. Obtain an estimate of the quantity to be tested. The quantity may be supplied to the
FTA (e.g., oxide mass fractions) or may be calculated by the FTA from other inputs.

. Obtain the proper estimate of uncertainty. This entails acquiring or calculating an
estimate of variance, then computing the standard deviation (the square root of the
variance).

. Choose the appropriate statistical multiblier.

. Use Equations (4) or (5) to produce the required statistical bounds. If a lower limit on
the quantity is specified, a lower bound is calculated; if an upper limit is specified, an
upper bound is calculated.

. Compare the calculated boimd(s) to the corresponding limit(s), and record the results

of each comparison. For a suggested list of reported results, see Section 7.2

Sections 5.1, 5.2, and 5.3 concentrate on estimation of uncertainty and the choice of interval

type. The choice of statistical multipliers is discussed in Section 6.1.

5.1 CONFIDENCE‘]NTERVALS FOR SINGLE-BA-TCH DIRECT CONSTRAINTS

‘The constraint on redox state, the CVS region constraints, the critical component

constraints, and the stand-in processability constraints are direct constraints. Therefore, only
composition uncertainty enters into testing of these constraints. Since these are single-batch
constraints, within-batch uncertainty is the proper estimate of composition uncertainty for
these constraints. Finally, in each case, inference is required for a single fixed true value.
Thus, confidence intervals provide the proper approach to statistical tesfing of these

constraints.

The first three types of constraints (the constraint on redox state, the CVS region
constraints, and the critical component constraints) are applicable directly to measured
quantities (redox state and oxide mass fractions). For each of these constraints, the FTA must

be supplied with an estimate of composition uncertainty. For example, the estimated variance
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for an oxide mass fraction will be extracted from the covariance matrix associated with the
estimate of the feed composition. This covariance matrix will be obtained from the existing

MEM (see Section 3.3 for a discussion of the MEM).

The remaining direct constraints, the five stand-in processability constraints, are known
simple functions of oxide mass fractions. Four of these five are constraints on sums of oxide
mass fractions. Computation of the variance of a sum is quite simple: the variance of a sum
is the sum of the variances plus twice the relevant covariances. The FTA will extract all the
relevant variances and covariances from the input covariance matrix for the feed composition
and will use these to construct the variance and the standard deviation of the sum. This

standard deviation will be used to construct the confidence bounds.

The remaining stand-in constraint applies to the ratio of two oxide mass fractions. An
application of the general method of error propagation given in Section 3.3 shows that the

variance of the ratio, 2, is appréximately:

2 [ o o 2 (o
Sl RIS
y) \x* y? Y \xy
where x and y denote the oxide mass fractions of SiO, and Al,O,, respectively, and G2, O'y?',

and ©,, are the variances and covariance. Once this variance is calculated, it will be used to

compute the standard deviation and confidence bounds as above.

5.2 CONFIDENCE INTERVALS FOR SINGLE-BATCH CONSTRAINTS
ON MODELLED PROPERTIES

This section covers the testing of a single fixed value for single-batch constraints on

modelled properties. Constraints oh five modelled properties are covered by this section:
viscosity at 1150°C, electrical conductivity at 1150°C, and PCT for Li, Na, and B. (The
WAPS 1.3 PCT requirements will also be tested with tolerance intervals for multiple-batch
constraints on modelled properties; see Section 5.3.) When liquidus temperature models

become available, they will be used as described in this section to test constraints on liquidus
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temperature. (It is possible that several liquidus temperature models, corresponding to

different primary crystaliine phases, may be used. If so, each will be used as described here.)

Since the target of inference for each attribute is a single fixed value (the true attribute
value), use of a confidence interval is appropriate. For single-batch constraints, the proper
estimate of composition uncertainty is that corresponding to within-batch vaﬁability. The

required covariance matrix, Z,, will be estimated by the MEM and supplied to the FTA.

For constraints on modelled properties, uncertainty must be estimated by propagation
_of error. This error propagation must account for composition uncertainty and for model
uncertainty. The parameters of each property model, B, and the associated uncertainty
(expressed as a covarignce matrix, Zg) must be supplied to the FTA. These quantities will be

obtained from the latest:CVS results.

From Equation (2), the approximate variance for a modelled property is
o) = d 54, + dy'Zydy

First-order property models are linear in both the oxide mass fractions, X, and the
* parameters, {3, so the simplified Equation (3) applies to properties modelled by first-order

equations:
0,2 = BLP + x'Tx

This approximate variance will be used to calculate a standard deviation and then the

required confidence bounds.
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5.3 TOLERANCE INTERVALS FOR MULTIPLE-BATCH CONSTRAINTS
ON MODELLED PROPERTIES

Currently the only multiple-batch constraints in the reference constraint set are the
WAPS 1.3 requirements, PCT results for B, Li, and Na. These requirements will be checked
both on a single-batch basis (Section 5.2) and on a multiple-batch basis. This section
describes the multiple-batch testing'procedure.

As discussed in Section 4.4, each WAPS 1.3 requirement will be tested using an upper
tolerance bound. Both the nominal confidence and content for this tolerance bound will be
set at 95%. This should ensure demonstrable compliance with the WAPS 1.3 product
consistency requirement: "One acceptable method of demonstrating that the acceptance
<_:1jiterion- is met ... would be to ensure that the mean. PCT results for each waste type are at
least two standard deviations below the mean PCT results of the EA glass”" (DOE, 1993;
italics added). See Bryan et al. (1994a) for a more detailed discussion of testing multiple-

batch requirements, with specific reference to the WAPS 1.3 requirements.

. Feed composition will vary somewhat among batches in the same waste type, and
therefore thé calculated property values will also vary. This variability must be monitored to
preclude its growing large enough to weaken the ability to statistically demonstrate
compliance over the entire waste type. The FTA will achieve this control by the use of a
running tolerance bound for each multiple-batch requirement. A record will be kept of the
calculated property value, the estimated model uncertainty (see below), and the feed
composition for each process batch in the waste type. The calculated value for the current
batch will be temporarily added to the database and used to compute a mean and standard
deviation for this property to ciate; this mean and standard deviation will be used to construct
a tolerance bound in the standard fashion. If this bound is within the specified limit, the
current batch will be deemed acceptable with respect to this requirement. If the batch is
deemed acceptable with respect to all other attributes as well (and hence the batch is sent on
to the melter), the calculated property value for this batch will be added permanently to the

database for this waste type.
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Because these requirements apply to modelled properties, the standard deviation to be
used in construction of the tolerance bound must account for both composition uncertainty
and model uncertainty. Composition uncerta\inty for a multiple-batch requirement must take
into account batch-to-batch variability. This can be estimated quite simply for each new
batch by calculating the variance of the recorded property values so far in this waste type.

To this composition uncertainty must be added an estimate of model uncertainty. For the i-th

batch, model uncertainty, oiz, can be estimated as in Equation (2)
o = dy'Tyd,

For each new batch, the preliminary FTA will calculate the mean model uncertainty for the
waste type so far; this will be added to the estimate of composition uncertainty (the variance
of the recorded property values), and the square root of the sum will be used as the required
standard deviation. This method of incorporating model uncertainty for multiple-batch
requirements is somewhat ad hoc, and its effect on the performance of the statistical test

should be investigated during testing of the FTA.

This testing procedure runs a slight risk that a few aberrant batches at the beginning of
processing of a waste type might skew the results for the rest of the waste type. If this
appears to be a problem in testing of the FTA or during plant operations, there are several
possible solutions to the problem. Stricter requirements might be imposed on the first batches
in a waste type, process monitoring algorithms might be designed to scrutinize these batches,
and/or a prior estimate of uncertainty might be included in the estimation of overall
uncertainty in the calculated property; value (for example, by forming a weighted sum of this
prior estimate and the composition and model uncertainties discussed above; the weight

assigned to the prior estimate should decrease as more batches are processed).

29




6.0 TECHNICAL ISSUES AND POSSIBLE MODIFICATIONS

In this section, certain technical issues involved in the problem of testing acceptability
of feed compositions will be raised. Many of these issues remain open, largely due to
inadequate knowledge of the HWVP process and the data arising therefrom. For this reason,

the FTA described in this document must be considered preliminary.

The FTA will be tested by implementation and incorporation into the Plant Simulation
Code (PSC), where it will be used to "test" the results of simulated HWVP runs. This testing
will assist in resolving some of the technical issues and in identifying worthwhile
modifications to the FTA. More on the role and application of the PSC to testing of PCC
algorithms appears in Bryan and Piepel (1993).

6.1 CHOOSING STATISTICAL MULTIPLIERS

Construction of each of the types of statistical intervals discussed in Section 4 requires

a statistical multiplier. Several considerations enter into the choice of a statistical multiplier.
These multipliers are essentially percentiles of certain statistical distributions. The proper
distribution from which the multiplier should be drawn is affected by the assumed statistical
distribution of the data and the type of interval being constructed. The statistical intervals to
‘be used in the FTA assume that the underlying data follow a normal (Gaussian) distribution.
The role of normality is discussed in Section 6.2. Given normally-distributed data, multipliers
for confidence intervals are usually drawn from the family of central t distributions, while
multipliers for (one-sided) tolerance intervals are usually drawn from the family of noncentral
t distributions. The particular t distributions depend on the degrees of freedom available for
estimation of uncertainty. The degrees of freedom associated with uncertainty estimates are
essentially measures of the strength of information about the uncertainties. Larger degrees of
freedom correspond to more information, smaller multipliers, and shorter intervals. In simple
cases (e.g., estimating variance from replicate measurements of the same quantity), the ‘
number of degrees of freedom is related to the number of observations used to construct the

uncertainty estimate. The situation is more complicated if several sources of uncertainty are
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combined into a single overall estimate. The number of degrees of freedom associated with
the combined uncertainty estimate is affected by the relative sizes and degrees of freedom
associated with each of the constituent uncertainties. The FTA will use Satterthwaite’s
approximation to derive the degrees of freedom associated with a combined uncértainty

estimate. Bryan et al. (1994b) discuss this apbroximation in more detail.

Central t distributions corresponding to large degrees of freedom look very much like
the standard ﬁormal distribution (a normal distribution with mean zero and variance one). (In
fact, as degrees of freedom increase, the central t distributions converge to the standard
normal distribution.) For this reason, if the number of degrees of freedom associated with the
uncertainty estimate is large, the normal distribution provides an adequate approximation to
the central t distribution, and hence confidence intervals may be constructed with multipliers
drawn from the standard normal distribution (which is easier to compute than are the central t
distributions). Similarly, if a confidence interval is to be constructed from a prior estimate of
uncertainty, and the pfior information is quite good, multipliers drawn from the standard

normal distribution will suffice.

As mentioned above, type of interval and degrees of freedom affect the choice of
statistical distribution from which a multiplier is drawn, and the multiplier itself is simply a
percentile of this distribution. The percentile is related to the confidence level to be
associated with the interval. Larger confidence levels correspond to larger percentiles and
hence to wider intervals. As discussed in Section 4.4, for a fixed sampling effort, higher
confidence levels correspond to increased probability of rejecting acceptable batches. Thus, a
compromise must be reached between confidence level, the probability of rejecting acceptable
batches, and the cost of sampling and analysis. Confidence levels should not automatically be
set to 95%, 99%, or any other level. Copsideration should be given to scaling the required

confidence level to the risk or importance of individual attributes.

Another consideration in the choice of statistical multiplier is the nature of the

required bounds -- one-sided vs. two-sided. Consider first the case for confidence intervals,
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i.e., for testing the behavior of a single fixed (but imperfectly known) true value. Clearly a
one-sided interval is appropriate for testing an attribute subject to only one limit (upper or
lower), but it may be somewhat surprising that one-sided intervals are also appropriate for
testing an attribute subject to both a lower limit and an upper limit. This feature stems from
the fact that it is impossible for-a single fixed value (the true value of the attribute) to
simultaneously violate a lower limit and an upper limit (provided of course that the limits
themselves are consistent, i.e., that the lower limit is indeed less than the upper limit). Thus,
“in acceptanbe testing using confidence intervals, only one-sided intervals are required. This is
not the case for tolerance intervals; however, the current reference constraint set contains only
.upper limits on attributes to be tested with tolerance intervals (the WAPS 1.3 PCT
requirements for B, Li, and Na), for which .one-sided intervals are. appropriate. Thus, for the

current reference constraint set, the FTA will employ only one-sided intervals.

6.2 THE ROLE OF NORMALITY

Implicit in the foregoing discussion of statistical intervals is the assumption of
normality, i.e., that the data or the random quantities being bounded follow a normal

(Gaussian) distribution. This assumption should be examined.

The individual components of a composition cannot be normally distributed. The
major reason .is that each component of a composition is constrained to fall in the interval
[0,1], while all normal distributions put positive probability outside this interval. However, if
the standard deviation of the true distribution of a single component is small relative to the
mean value, it is quite possible that the normal distribution may provide a good
approximation to the true distri;t)ution. If estimates of composition are based on several
measurements for each batch, the Central Limit Theorem (Lindgren, 1976, pp. 157-159)
guarantees that the means of the individual measurements will more closely follow the normal
distribution than will the individual observations. It is certainly possible, therefore, that
statistical techniques based on the normal distribution will perform reasonably well. Once
adequate knowledge is gained of the statistical behavior of the types of compositional data

arising from the HWVP process, the performance of normal-based techniques can be more
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thoroughly investigated.
)

Arguments based on generalizations of the basic Central Limit Theorem suggest that
property values calculated from the types of models being developed by CVS may also mimic
the normal distribution and, again, that statistical techniques based on the normal distribution
will perform reasonably well. This expectation is borne out by preliminary simulation results.
More such studies should be performed with updated CVS models and as more is learned of

the covariance structure associated with the HWVP feed compositions.

6.3 INDIVIDUAL AND SIMULTANEOUS STATISTICAL CONFIDENCE

As discussed in Section 4.0, the confidence associated with a statistical interval

controls the probability that the interval contains the true value®. When multiple statistical
intervals are constructed, two types of statistical confidence may be considered. For each
individual interval, there is a probability (confidence) that this interval contains the
corresponding true value. This type of confidence will be referred to as the individual
confidence level. In addition, there is a probability (confidence) that all the intervals contain
the corresponding true values simultaneously; this will be referred to as the simultaneous
confidence level. The simultaneous confidence level associated with a group of intervals
cénnot be greater than the smallest individual confidence level, and, in fact, the simultaneous
confidence level may be much lower than any of the individual confidence levels. For
example, if 30 confidence intervals are produced, each with an individual confidence level of
95%, and each of the attributes under examination is independent of all other attributes, then
the simultaneous confidence level, i.e., the probability that all intervals trap the corresponding
true values, is 0.95%° = 0.21 (21%). In other words, if the set of 30 confidence intervals is
produced a large number of times tfrom separate data each time), then in only 21% of the
sets of intervals will all the intervals within the set successfully trap the true values. In 79%

of the sets of intervals, at least one interval fails to trap the true value. This can be a serious

3] Again, confidence actually controls the probability that the procedure produces an
interval containing the true value, not the probability that any particular interval traps
the true value. This distinction is not important to the present discussion, so the more
concise wording will be used.
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problem if the failure of one or more intervals in each set is of concern.

Since statistical intervals will be used for.acceptance testing by the FTA, the problem
of simultaneous confidence must be addressed. At least two types of simultaneous confidence
may be considered in the context of acceptance testing for a series of batches: simultaneous
confidence over requirements for a single batch, and simultaneous confidence over batches for

a single requirement.

In order to understand the simultaneous confidence associated with testing all
requirements for a single batch, it is critical to understand the nature of each individual test.
Consider, for example, the test that viscosity ;1t 1150°C is less than 10 Pa's. As discussed in
Section 4.1, using a 95% upper confidence bound to test this attribute means that, when
viscosity is greater than 10 Pa‘s (i.e., when viscosity is "bad"), the probability of falsely
concluding that viscosity is less than 10 Pa's (i.e., viscosity is "good") is no greater than 5%.
Thus, for this method of acceptance testing, the individual confidence level of a given test
controls the probability of concluding that an attribute is good when in fact it is bad. In other

words, the individual confidence level controls the probability of accepting a bad attribute.

_ For testing all requirements in a singlé batch, simultaneous confidence should control
the probability of accepting a bad batch (a batch with one or more bad attributes). The FTA
will reject (or .at least call attention to) a batch if even a single one of the various attributes is
rejected. Given this approach, the probability of accepting a bad batch is no greater than the
' probability of accepting a single bad attribute, i.e., the simultaneous confidence level is at
least as large as the smallest of the individual confidence levels. (In fact, correlation among
the attributes may signiﬁcan{:ly raise the simultaneous confidence level, but that is beyond the
scope of this discussion.) Thus, the FTA does not need to make special provisions for

controlling simultaneous confidence over all requirements for a single batch.

Simultaneous confidence over batches for a single. requirement requires only

replacement of the statistical multipliers mentioned in Section 6.1 by multipliers designed to
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guarantee simultaneous confidence. In many cases, multipliers that guarantee simultaneous
confidence are much larger than those required for individual confidence levels. This implies
that the chance of accepting a bad batch is reduced, but with the side-effect of an increased
rate of rejection of acceptable batches (see the discussion in Section 4.4). Therefore, the
preliminary FTA will not implement simultaneous confidence over batches; the need for

simultaneous control can be investigated as part of testing of the FTA.

6.4 MODEL UNCERTAINTY AND THE QUALIFIED COMPOSITION REGION
. For testing constraints on modelled properties, the preliminary FTA will combine

composition and model uncertainties into an overall uncertainty estimate and then use this
overall uncertainty estimate to set confidence bounds, which will then be compared to limits
on property values. In this approach, model and composition uncertainties are combined and
associated with the confidence bounds for the estimated property value. This is not the only
possible way to déal with model uncertainty. Another approach would be to treat model and
composition uncertainties separately, and to associate composition uncertainty with the
estimated property value and model uncertainty with the limits on the property value. To
illustrate the difference, assume that we. wish to use an upper confidence bound (UCB) to
compare the estimated property value with an upper limit, U. In the preliminary FTA, this
comparison will be done by cons&ucﬁng the UCB using a combined estimate of uncertainty,
as in Equation (4):

UCB, =§ + (m, )
where, from Equation (2) .

st=d T d, + dy’Zd,

Here, UCB, denotes the upper conﬁder.lce bound based on the combined estimate of
uncertainty, s, denotes the standard deviation derived from the combined uncertainty estimate,
and m, is the statistical multiplier appropriate for this uncertainty estimate (the other symbols
are defined in Section 3.3). This UCB, will then be compared directly to the upper limit, U,
as discussed in Section 4.4. The alternate approach discussed here would compute UCB, and
U

m*
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UCB, =3 + (m, *s))
Un=U-(mg, *sy)
where
52 =454,
Su? = dy Ty

Here, UCB, is the confidence bouna taking into account only composition uncertainty
(prop'agated through the property model and expressed in property units as s,), U, is the limit
on the property value, modified to incorporate model uncertainty (estimated by s,), and m,
and-m,, are the statistical multipliers appropriate for the separate estimates of uncertainty.

UCB, would then be compared with U,, just as UCB, is to be compared with U.

The approach based on separate estimates of composition and model uncertainties has
certain advantages. Since two statistical muitipliers are used, the confidence level associated
with composition uncertainty need not be the same as that associated with model uncertainty.
In fact, it would be possible to use a simultaneous confidence approach for one type of
uncertainty and an individual confidence approach for the other. In addition, this approach
makes clear the relationship between the FTA and the Qualified Composition Region (QCR),
which is being developed as part of the CVS work (see Hrma, Piepel, et al., 1992, for more
discussion of the QCR). The QCR is intended to include all compositions that are acceptable
given model uncertainty. Briefly, there exists some multidimensional space of compositions
that are acceptable, i.e., for which all true attribute values conform to the requirements
imposed on HWVP material. - However, this region is not perfectly known, owing to
‘uncertainties in the models used to estimate property values. Thus, the space of acceptable
compositions must be "shrunken" to eliminate compositions for which one or more
requirements might be violated, due to imperfections in the models. Thus, the QCR consists
of all compositioné for which all estimated property values, ¥, fall within the limits defined
by the various U, where k indexes the requirements imposed on HWVP. The approach to
testing acceptability of compositions based on separate estimates of composition and model

uncertainty can be thought of as testing whether, given composition uncertainty, it is
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reasonable to conclude that the true composition lies within the QCR. (Actually, the QCR
may be constructed with simultaneous intervals, while the preliminary FTA will use only
individual intervals, but this simply means that different statistical multipliers will be

employed; the analogy holds).

The approach based on separate estimates of composition and model uncertainty is
likely to be more conservative (i.e., higher probability of rejection of acceptable batches) than
that based on a single combined estimate. The preliminary FTA will employ the latter. Once
the performance of the preliminary FTA has been investigated, the need for the conservatism

of the alternate approach can be evaluated.

6.5 THE BAYESIAN APPROACH

One annoying feature of the standard (frequentist) statistical tests discussed above is

the cumbersome interpretation of confidence, the frequentist measure of degree of belief. As
discussed in Section 4.0, it is possible to misinterpret the statement "with 95% confidence,
this batch is acceptable” as "the probability that this batch is acceptable is 95%." Bayesian
statistical methods are.designed to produce statements of the second type in a rigorous
manner. In addition, Bayesian methods can be used when frequentist methods suffer from
lack of data (which may well be the case for HWVP; see Bryan et al., 1994b), and Bayesian
methods can be used to smooth dat:a and update existing estimates (e.g., of uncertainty). Of
course, there is a price to pay for these seemingly more easily interpretable and effective
results -- in order to perform Bayesian analyses, the user is required to provide rigorous
information on prior knowledge (indeed, Bayesian analysis with data lacking essentially
consists of substituting prior knowledge for data). Still, if reasonable statements of prior
knowledge can be obtained, there may be a place for Bayesian methods in the HWVP PCC.
This may be especially true in the early étages‘ of operation, when data from actual operation

will be scarce.
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6.6 MISCELLANEQUS ISSUES

As mentioned in Section 2, the framework for testing acceptability of process batches

that has been established in this document should be flexible enough to accommodate any
additions to or changes in requirements imposed on the ~HWVP process. Modification of
models and updating of model covariance information will be as simple as modifying input
files or FORTRAN DATA statements. Incorporation of new constraints requires only the
classification of the new constraint into one of the categories described in Section 5.0 and
modification of the corresponding input files. If theoretical quels for liquidus temperature

are developed by CVS, some additional work may be required.

As mentioned in Section 6.1, varying confidence levels can be used to weight
constraints according to their relative importance to process/product performance. Methods
other than statistical tests with varying confidence levels (e.g., penalty functions rather than

strict limits for non-critical attributes) may be more appropriate in some cases.

7.0 ETA INPUTS, OUTPUTS, AND SUPPORTING ALGORITHMS

The lists provided here of inputs, outputs, and supporting algorithms for the FTA are
preliminary -- they will be modified during implementation of the FTA in the PSC and as the
implementation of the FTA evolves to reflect accumulation of knowledge about the HWVP

process.

7.1 INPUTS TO THE FTA
Among the items certain to be required by the FTA are:

. estimated feed composition and relevant covariance matrix (or components);
. the desired confidence coefficient for each attribute;
. the desired content for each tolerance interval;

. the vector of estimated parameters, the covariance matrix, mean squared error, and
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associated degrees of freedom for each model obtained from CVS; and
. the vectors of calculated property values, compositions, and model uncertainties for
previous batches in the current waste type (one set of vectors for each multiple-batch

requirement).

If oxide mass fractions are estimated from more than one sample per batch or more
than one analysis per sample, the numbers of samples and analyses should be made available
to the FTA. If models nonlinear in either the parameters or the data are to be used for some
properties, derivatives of these models (or an algorithm to obtain these derivatives) must be
available to the FTA.

7.2 QUTPUTS FROM THE FTA
The possible outputs from the FTA are numerous; the actual set of outputs will be

determined from the requirements of the PSC and the testing to be performed with this
software. At a minimum, the FTA must return a flag for whether the current batch is deemed

acceptable. Possible additional outputs include:

. a list of the current reference constraint set, relevant statistical bounds for each
attribute, and a score vector flagging any violated constraints;

. for violated constraints, the distance of the statistical bound from the limit, in absolute
terms and in terms of standard deviation units; and

. for an acceptable batch, the attribute (or attributes) coming closest to violating.

constraints.

7.3 SUPPORTING ALGORITHMS

The FTA will require routines for various matrix and vector manipulations. Several of

these already exist in the PSC. As.mentioned in Section 7.1, for testing multiple-batch
requirements, access to the calculated property values, compositions, and model uncertainties
for previous batches in the current waste type will be required, as will the capability to update

these databases. Also, if models nonlinear in either the parameters or the data are to be used
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for some properties, derivatives of these models (or an algorithm to obtain these derivatives)

must be available to the FTA.

Several statistical multipliers will be required by the FTA. These multipliers-might be
provided as inputs (in thé form of tables to be consulted by the FTA), or algorithms to
calculate the multipliers as needed might be provided (either from code in the PSC or from a
standard mathematical/statistical subroutine library). Among the statistical distributions from

which multipliers (i.e., percentiles) might be required are:

. the normal (or Gaussian) distribution, for use in constructing confidence intervals
when the relevant standard deviations are well known or the sample sizes are quite
high;,

*  the central t distribution, for use in constructing confidence intervals when the relevant
standard deviations are not well known or the sample sizes are relatively low; and

. the noncentral t distribution, for calculation of one-sided tolerance intervals.

When various estimated sources of uncertainty are combined into a single pooled
estimate of uncertainty, the FTA must be able to compute an estimate of the degrees of
freedom associated with this pooled estimate. A general implementation of the Satterthwaite
approximation is desirable, since this requirement will surface at several places in the PSC as

more statistical algorithms are added.
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