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Abstract

We address the model acquisition problem for an unknown terrain by a team of two
robots. The terrain may be cluttered by a finite number of polygonal obstacles whose
shapes and positions are unknown. The robots are point-sized and equipped with
visual sensors which acquire all visible parts of the terrain by scan operations executed
from their locations. The robots communicate with each other via wireless connection.
The performance is measured by the number of the sensor (scan) operations which
are assumed to be the most time-consuming/expensive of all the robot operations. We
employ the restricted visibility graph methods in a hierarchical setup. For terrains with
convex obstacles the sensing time can be shown to be halved compared to that of a
single robot implementation. For terrains with concave corners, the performance of the
algorithm depends on the number of concave regions and their depths. A hierarchical
decomposition of the restricted visibility graph into 2-connected components and trees
is considered. The performance for the team of two robots is expressed in terms of
the sizes of 2-connected components, and the sizes and diameters of the trees. The
proposed algorithm and analysis can be applied to the methods based on Voronoi
diagram and trapezoidal decomposition.

Keywords and Phrases: path planning, Voronoi diagram, trapezoidal decomposition,
terrain model acquisition, two robot team.

1 Introduction

The terrain model acquisition problem (TMAP) deals with robots autonomously acquiring a
- complete model of a terrain (or environment) by systematically visiting portions of it. The
motivation for this problem is at least two-fold.

(a) Efficiency in Future Navigation: Once the terrain model is completely acquired,
the navigation algorithms of known terrains can be employed for path planning with
two potential advantages. First, the sensors may be switched off (at least in theory)
in future navigation, thereby avoiding the time-consuming sensor operations involved
in the acquisition and processing of sensor data. Second, navigation paths with the
shortest distance between the start and goal positions may be computed using the
terrain model. If the terrain model is not available, no algorithm can always guarantee
the shortest paths. Consequently, a robot can recognize a dead-end corner only after

it has moved into it and explored it; such situation can be avoided if the terrain map
is available.




(b) Assistance to Human Model Builders: In applications involving mobile robots
in indoor environments for repetitive operations, typically a human operator is in
charge of model building (which is tedious and time-consuming). Robots capable of
autonomous terrain model acquisition (even in only small parts of the terrain) can be
employed to relieve her/him of part of the work.

The focus here is on non-heuristic algorithms that are guaranteed to converge within the
assumptions of the formulation. The terrain model acquisition problem for three dimensional
polyhedral terrains has been solved by using the visibility graph structure by Rao et al. [14]
for the case of a discrete vision sensor. In the plane, the restricted visibility graph, which is
obtained by removing all non-convex vertices from the visibility graph, is shown to suffice
[13]. The same problem can also be solved by using a method based on the Voronoi diagram
[16]. The terrain model acquisition problem in the case of a robot equipped with a continuous
vision sensor has been solved by Lumelsky et al. [11]. The terrain model acquisition problem
for terrains where the obstacle boundaries consist of circular arcs and straight lines can be
solved by the methods of visibility graphs, Voronoi diagram and trapezoidal decomposition
using discrete and continuous vision sensors [12]. A survey of non-heuristic algorithms for
navigation in unknown terrains and terrain model acquisition can be found in Rao et al. [15].

To our knowledge, the problem of acquiring a model of an unknown terrain by a team of
robots has not been addressed in the formulation of non-heuristic algorithms. This problem,
however, has been studied by a number of researchers outside the non-heuristic formulation.
For example, Ishioka et al. [7] describe a cooperative map generation by heterogeneous
autonomous mobile robots (also see Dudek et al. [4]). A cooperative recognition system
for the environment using multiple robots has been developed by Ishiwata et al. [8]. Our
orientation is more along the lines of the unknown terrains algorithms pioneered by Lumelsky
[10]. In terms of the cooperative terrain model acquisition by two robots, the formulation
that comes closest to ours is the maze-searching algorithm by two pebble automata by
Blum and Kozen [1]. On the other hand, the navigation of multiple robots in known and
unknown terrains has been studied by a number of researchers. Most of the existing papers
on this problem are devoted to the case of known terrains, i. e. a terrain model is supplied
to the robot (see, for example, Latombe [9] for a comprehensive discussion). For unknown
terrains, the recent study by Harinarayan and Lumelsky [6] indicates that the simultaneous
navigation of two robots cannot be solved if no “cooperation” is present between them. Note
that our higher-level objective is different from theirs in two ways: (a) we are interested in
terrain model acquisition, and (b) we wish to explore the cooperation mechanisms so that
the objective can be achieved more effectively by a team of rcbots instead of a single robot.

Each robot is equipped with a visual sensor that detects all visible boundaries of the
terrain from the present location by a scan operation. We consider that the sensor time
carries the overwhelming cost of the robot operations. This is a reasonable assumption in
the context of indoor navigation of mobile robots in terrains that are cluttered with unknown
obstacles. In systems employing vision systems in this context, each visual scan may take
of the order of minutes including the time required to acquire and process the sensory data.
The time required for terrain model acquisition is dominated by the total number of scan
operations performed, called the sensing time. In our model the robots communicate via an




ideal wireless connection to transfer finite sequences of real 'numbers.

Our formulation deals with strategies used by two robots that start at the same location
in an unknown planar polygonal terrain. The objective is to investigate the advantages of
using two robots instead of one. In “very bad ” cases, e. g. if the robots are initially located at
one end of a “long narrow polygonal corridor”, there may not be any advantage in employing
two robots. In the present formulation, the robots typically perform a scan operation and
decide the next destination from which the algorithm is repeated. Thus in a long narrow
corridor the robots are forced to “stay” together. If the terrain has “branches” so that the
robots can explore different parts of the terrain, two robots are likely to acquire the terrain
faster than one robot.

We show that the terrain model acquisition method based on the restricted visibility
graph (RVG) method [13] can be advantageously implemented by two robots. Using a single
robot, the terrain model can be obtained in N, sensor operations, where N, is the total
number of convex obstacle vertices [{13]. This method can be used to expedite the terrain
model acquisition using two robots. We first show that if all obstacles are convex, the
sensing time can be halved. If the terrain consists of non-convex obstacles, RVG can be
decomposed into 2-connected components C4,Cs,...,Cy, and trees Ty, T3, ..., Ty,. The C;’s
can be assigned to [ different levels in a hierarchical decomposition of RVG (see Section 5 for
precise definitions). Some T}’s connect C;’s of different levels while some are attached to a
C; of a single level. Then the hierarchy tree T is a tree obtained by condensing each of C;’s
to a node and removing the trees that do not connect C;’s of different levels. Informally, To
captures the nesting level of the terrain that can, in a worst case, force the two robots to
follow each other, thereby obviating the advantage of two robots. Let |C;], ¢ = 1,2,...n,,
and |Ty|, 7 = 0,1,...,n; denote the number of nodes of C; and T; respectively. The total
sensing time for a single robot, based on the RVG method, is given by

DOICH+ DTy
i=1 j=1

The sensing time achieved by a team of two robots, based on the proposed method, is
upper-bounded by
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where d(T;) is the diameter of the tree T}, which is the number of nodes on the longest path
of T;. When all obstacles are convex, RVG does not contain any trees in which case the
sensing time is halved using two robots as per the above estimate. On the other hand, if
RVG is a single path, typically corresponding to a long corridor, then RVG does not have
any 2-connected components and it consists of a single tree 77 with d(7;) = |T1|. Then the
above bound evaluates to 3|T}|, compared to the required sensing time of |71| (in a worst
case where both robots start at one end of the corridor).

1Since, in general a real number carries an infinite, uncompressible amount of information, this hypothesis
may seem unrealistic. However, for the specific aspects of the present problem, this is not crucial. This
hypothesis is similar in spirit to the infinite precision arithmetic often assumed to be available in the study
of path planning problem [9].




To place our formulation in perspective, we briefly summarize the formulations of Blum
and Kozen [1], and Harinarayan and Lumelsky [6], and then distinguish them from ours.
Blum and Kozen [1] describe a method by which two pebble automata cover all the free
cells of a maze. The communication between the pebble automata is achieved by using the
pebbles that are placed on free cells. Also, the pebble automata can recognize the pebbles
but are not equipped with computational mechanisms to keep track of the coordinates of the
cells. On the contrary, we assume that the robots can store and manipulate real numbers
with arbitrary precision. In terms of the terrain, the maze consisting of a two-dimensional
arrangement of cells [1] is much simpler than the polygonal terrain considered here. This
maze exploration problem is similar to the terrain model acquisition problem here in that the
automata are required to visit all free cells of the maze. The problem studied by Harinarayan
and Lumelsky [6] deals with two robots that do not communicate with each other. So the
robots recognize each other when they “see” each other, whereas in our case one robot knows
the past location and next destination of the other robot at all times.

The organization of the paper is as follows. The problem formulation and some prelimi-
naries are described in Section 2. The case of terrain model acquisition in convex polygonal
terrains and along tree structures are described in Sections 3 and 4 respectively. The terrain
model acquisition in polygonal terrains is considered in Section 5. Several variations of the
solution of Section 5 are considered in Section 6.

2 Preliminaries

We consider a finite two-dimensional terrain populated by a finite and non-intersecting set
of polygons, O = {01,032, --,0,}. An obstacle vertex is called a convez vertez if the angle
included inside the obstacle by the edges that meet at this vertex is less than 180 degrees,
and the obstacle vertex is called concave otherwise. n
Let the free-space, denoted by 2, be the subset of the plane given by N Of, where OY
=1
denotes the complement of O; in the plane. Let  denote the closure of Q. Two points p
and ¢ in §) are visible to each other if the line segment joining p and ¢, denoted by 77, is
completely contained in Q.

The robot, denoted by R, is point-sized and equipped with a vision sensor. A discrete
vision sensoris characterized by a scan operation: a scan operation performed from a position
(point) p returns the visibility polygon of p, which is the polygonal region consisting’of all
points in the terrain visible to p (Fig. 1).

The robots communicate with each other in terms of finite sequences of real numbers such
that a real number can be communicated in a small time unit via the wireless connection.

We assume that the most time consuming-part of the robot operation is the scan oper-
ation, and hence the time of terrain model acquisition by a single robot is dominated by
the total time of scan operations. The total sensing time is given by the number of scan
operations performed by the robot(s) in sequence.

The restricted visibility graph is defined as follows [13]. The vertices of the RVG are the
convex obstacle vertices. Two vertices are connected by an edge if and only if they are visible
from each other or they are the end vertices of an obstacle edge. The RVG is shown to be
connected and satisfies the terrain-visibility property which implies that the union of the



visibility polygon

obstacle polygon

Figure 1: Visibility polygon from location p.

visibility polygons of all the vertices of RVG contains the entire free-space [13]. The latter
property implies that any graph search algorithm implemented by a robot will completely
acquire the terrain model in a sequence of N, scan operations, i. e. the sensing time for
solving TMAP by a single robot is given by N..

We use some terminology from graph theory, e. g. connectivity, condensation, decompo-
sition, etc., which can be found in books on graph theory (e. g. Harary [5]).

3 Convex Polygonal Terrains

In this section, we consider the terrain composed of convex polygonal obstacles. The ob-
jective of the terrain model acquisition algorithm is to perform a scan operation from every
node of RVG which guarantees that the entire free-space is seen. For solving the TMAP
with a single robot, it suffices to perform a graph search, e.g. depth-first search, which has
a sensing time of N,.

The overall algorithm for two robots is based on the robots executing a graph search
algorithm in a cooperative manner. At any step, each robot has the same version partial
RVG. For the team of robots R; and R,, let R, have a higher priority in the following sense.
Each robot performs a scan operation and obtains the resultant visibility polygon. Then each
robot computes its own adjacency list and communicates it to the other robot. Then R;

(a) terrain (b) restricted visibility graph

Figure 2: Restricted visibility graph.




sends its next destination which is one of the nodes adjacent to its present location to R,. If
the destinations of R; and R; are different, then both move to their destinations and repeat
the algorithm. If both destinations are the same, R, chooses a different destination and
communicates it to R; following a certain strategy. For concreteness, we discuss a strategy
based on the depth-first search (see, for example, Corman et al. [2] for details on depth first
search). R, chooses an unvisited vertex adjacent to its present location, if such vertex exists.
If not, Ry backtracks along the path towards its starting vertex until it is located at vertex
with an adjacent vertex that had not been visited so far or has been chosen by R;; R, then
communicates its destination to Ry. Then R, and R; move to their chosen destinations and
repeat the algorithm.

Note that an adjacency list computed after a scan operation consists of (possibly empty)
set of visited vertices and not yet visited vertices. The above algorithm terminates when
all known vertices have been visited; the connectivity property together with the terrain-
visibility property ensure that the terrain model had been completely acquired.

In order that the above algorithm be executed, we need to establish that R; can always
find its destination. The required property is the 2-connectedness of the RVG which is
established for convex polygonal terrains.

Lemma 3.1 The restricted visibility graph of a terrain cluttered by a finite number of convez
polygonal obstacles satisfies the following properties: (a) there is a path between any two
nodes u and v containing a node w, and also there is a path between v and v not containing

w, and (b) there are two node-disjoint paths between any two nodes of RVG, i. e. RVG is
2-connected.

Proof: We show this lemma by induction on the number of obstacles. Both Part (a) and
(b) are true for a terrain consisting of a single convex polygon. Assume that the claim true
for a terrain of k obstacles; let RV G} denote the RVG of the k obstacles. Now place the
(k4 1)th polygon Pi.;. The edges of the RV G}, that are intersected by the new polygon are
rerouted along the boundary of Pyyq. First consider Part (a). The claim is true individually
for the sets of vertices of Py and vertices of RV Gy. Now consider the properties between
the vertices of Py, and RV Gy. There are at least two edges between the vertices of Pyyq
and the vertices of RV Ggy1 as illustrated in Fig. 3. It is clear that any node u can be
included in a path between vy and v, of Piyq by using the path vy, uy, u, U2, ve. Similarly any
node v can be included in a path between pair w, and w, of RVG, as follows. By Theorem
5.14 of Harary [5], there are two node disjoint paths joining w; to u; and w; to u, (since by
hypothesis RGVj, is 2-connected); then the required path is given by wy, uy, vy, v, ve, g, ws.
Almost identical argument shows the second part of (a) that a chosen vertex can be excluded
from the path between two vertices.

Now consider the Part (b). The required 2-connectivity among the nodes of RV G}, is
preserved since no paths are broken by Pyi;. The required 2-connectivity among the nodes
of Py, is trivially satisfied. Now consider the 2-connectivity between a vertex v of Py and
u of RVGy. By hypothesis, there is a path P, between u; and us; via u going through only
the vertices of RV Gy. This path is vertex disjoint from the path v;, v, v2, and thus the paths
v, v1, U1, and v, vy, ug, u obtained by employing the pieces of P,, are vertex disjoint. O

Note that 2-connectivity implies that the above RVG cannot be disconnected by removing
a single vertex (or equivalently the graph does not have cut points whose removal will reduce
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Figure 3: Illustration of inductive step for Lemma 2.1.

the graph into two or or more disconnected pieces [5]). Then the sensing time of the above
algorithm can be shown to be [N,/2], where [z], for real z, denotes the smallest integer
larger than or equal to x. Notice that R; will move along a path without ever having
to backtrack. If we show that R, finds its destination at each step, then by the time R,
performed [N./2] scan operations, R, would have performed scan operations from the rest
of the nodes of RVG. Now we shall show that R, is always guaranteed to find a destination.
First notice that RVG is connected which implies that the every vertex of RVG is reachable
from present location of R3. Let the next destination chosen by R; at this step be denoted
by v. By connectivity, if there is an unvisited node {(other than v), then there is at least one
unvisited node adjacent to the paths traced by R; or R;. If not, all the unvisited nodes can
only be reached via v, which makes v a cut point; this in turn contradicts the 2-connectedness
of RVG. Thus by the time R; performs [N./2] scan operations, R, would have performed
scan operations from rest of the nodes of RVG. In summary we have the following theorem.

Theorem 3.1 The terrain model of a polygonal terrain cluttered by a finite number of convez
obstacles can be obtained by a team of 2 robots in a sequence of [N./2] scan operations, where
N, is the total number of obstacle vertices.

The above method can be replaced by several other methods. We now briefly consider
-another algorithm that can be used by a team of two robots. The outline of the algorithm
can be visualized as follows: Consider the convex hull of the terrain. The boundary of the
terrain is called the outer path which consists of polygonal obstacle boundaries separated
by straight line segments. Then obtain the inner path by (a) identifying the alternative
paths for the non-obstacle parts of the outer path, and (b) replacing each obstacle chain of
the outer path by the other path around the obstacle. An illustration is shown in Fig. 4.
Then all obstacles that are part of the paths at this level are removed, and the procedure is
recursively carried out. As a result we obtain layers of inner and outer paths. The algorithm
for TMAP is to have the two robots move along different layers as long as possible.




4 Acquisition Along A Tree Structure

The RVG for a polygonal terrain can be decomposed into trees and 2-connected components
(see Fig. 5). While the 2-connected components can be easily explored in parallel by two
robots, the trees may prevent such explorations. If the RVG consists of single path, then the
sensing time cannot be improved by employing a team of robots in a worst case.

We now consider the case where the team of robots explore a tree which is connected.
Notice that in a worst case, d(T") is the minimum time required to explore a tree T’ by a team
of two robots. The strategy is for both robots to stay together until the first opportunity to
move along two edges of a tree. While the robots are in two different branches of the tree,
sensor operations are done simultaneously. At the same time the robots will not be together
for more than d(T') time since the diameter is the longest possible distance (in terms of sensor
operations) that the robots will stay together without branching off. To see this, assume
that it is not true, then we have sequences of paths (without branching ) whose total length
is longer than d(T); since the tree is connected and has no cycles, the union of these paths
constitutes a path of length larger than d(T'), which is a contradiction. Thus |T'| — d(T)
scan operations are performed while the robots are not together. Hence, the sensing time
required to explore a tree is upper-bounded by d(T') + |T|/2 ~ d(T)/2 = [|T| + d(T")]. Thus
we have the following result.

Lemma 4.1 The sensing time of exploring a tree T of |T| nodes by two robots is upper-
bounded by d(T)/2 + n/2, where d(T') is the diameter of T.

Notice that in a worst case of T being a single path the above lemma yields a sensing
time of |T'| which is actually the required (worst case) sensor time.

5 Polygonal Terrains

The restricted visibility graph of the terrain can be decomposed into a hierarchy of levels such
each level consists of a union of 2-connected parts and trees. Such hierarchy can be defined

outer layer

Figure 4: Tllustration of inner and outer layers.




tree

2-connected component

Figure 5: Decomposition of RVG into 2-connected parts and trees.

(2)

)

Figure 6: Example of terrain and RVG. RVG of (a) is shown in (b).
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Figure 7: [lustration of hierarchical decomposition of RVG of Fig. 6.

with respect to any starting location. For concreteness, we assume that the initial location
is outside the convex hull of the obstacle vertices. For illustration consider Fig. 6. We
identify the 2-connected component corresponding to the initial location. This 2-connected
component for the RVG of Fig. 6(b) is shown in Fig. 7(a). Then we remove this component
and all the trees that are emanating from this component and identify the 2-connected
components of the next level as shown in Fig. 7(b). The same process is repeated to identify
the next levels of 2-connected components as shown in Fig. 7(c). _

Trees of various levels are identified as follows. For any level, we specify the trees that
emanate from the nodes of the 2-connected components of that level. Fig. 7(d) and (e) show
the trees emanating from 2-connected components of level 1 and 2 respectively. There are
two types of trees. The first type are the trees that connect the nodes of one hierarchy with
nodes at another hierarchy, and the second type are the trees that strictly belong to one
hierarchy. In Fig. 7(d), the left and right trees belong to the former type and the middle one
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belongs to the second type.

We obtain a hierarchy tree from RVG by condensing each 2-connected component of the
hierarchical decomposition to a node and removing the trees of second kind. The resultant
tree is denoted by Tp. An example of hierarchy tree is shown in Fig. 8 where the hollow
circles represent nodes obtained by the condensation of 2-connected components.

The overall strategy for solving TMAP by two robots is to avoid keeping two robots
in the same tree T; to the maximum extent possible. Using this strategy, the robots will
explore different trees until there is at most one tree left to be (possibly partially) explored
concurrently at the current level of hierarchy. This strategy can be implemented as follows.
Notice that the end points of trees can be recognized by a local concavity, but a local
concavity does not necessarily indicate the presence of a tree. The strategy is to delay
sending the robots into the same local concavity until this becomes the only available option
at that particular level.

Now consider the performance of the above method. Since the terrain is unknown, the
order in which the individual trees are explored is unknown. We carry out a worst case
analysis for each of the [ levels of the hierarchy. Consider the level k with 2-connected
components C¥,C¥, ... Ck,, and the trees Tu,le, ,le 1 and T21,T2k2, .. ,Tzkn%k of first

ne

and second type respectively. Also let Ty = {TF, T, . lk} U{T§, T, ..., Tf .} The
size of the tree that is left to be explored last is upper-bounded by

ST =30 IT)

Tel TeJd

max
1.J

where the maximum is taken over all sets I and J such that JTUJ = T}, INJ = ¢, ||I|-|J]|| = 1.
Now note that this quantity is upper-bounded by ,Irpea,Tx|T|, which in turn implies, from
k

Lemma 4.1, that the sensing time is upper-bounded by %%%x[d(T) + |T'|]. For the level k,
k

the number of scan operations that are performed simultaneously by the two robots is at
least > |T|-1 rjpe%gt[]ﬂ +d(T)]. Thus, the total sensing time for level k required by a team
TeTy k

of two robots is upper-bounded by

1% 1
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=1 TGT

The summation of above quantity over all levels yields an upper-bound on the sensing time of
N N,

the team. The summation of the first two quantities yields ; 3 |Ci] and ZE |T;| respectively.
=1 j=1

The summation of the third term is handled as follows. At every level only one tree (if any)

either of type one or two is last explored by the two robots (in a worst case). Thus the
contribution to the upper-bound by the trees of type two is no more than £ max[d(T}) +|T:],

and the contribution to the upper-bound by the trees of first type is upper-bounded by
3[d(To) + |Tol]. Thus we have the following theorem.

11




(b)

Figure 8: Illustration of hierarchy tree.
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Convex hull

@

Figure 9: Navigation course based on Voronoi diagram.

Theorem 5.1 The sensing time for two robots to acquire the model of a terrain of polygonal
obstacles is upper-bounded by
e 1 & 1 [
= Ci|l+ = T + —[d(T T - d(T; T:l].
52| |+2jZ=;l |+ 7[d(To) + 1Toll + 3 max [d(T) +|T:)

Notice that for terrains with convex polygonal obstacles, RVG consists of only one 2-
connected component. Thus this theorem subsumes Theorem 3.1. If RVG is a single tree
T, then Ty = T; for this case, since this theorem yields a weaker upper-bound, it does not
precisely subsume Lemma 4.1. The performance of the two robots is decided (in a worst
case) by the depth [ of the hierarchy described above. For typical office indoor environments
[ is of the order 2. On the other hand, deeply nested mazes can generate large values for I.

6 Variations

We now consider two geometric structures that are used for terrain model acquisition in
unknown terrains. These structures can be employed in place of RVG of last section.

(a) Voronoi Diagram: The Voronoi diagram corresponding to a set of line segments
and circular arc segments has been studied by Yap [17]. The distance d(p, s) between
a point p in free-space and a boundary edge s is defined as inf{d(p, q)|¢ € s}. The
clearance of a point p in free-space with respect to O is the minimum of d(p, s) for some
obstacle edge (segment or an arc) s of O. For z € {2, we define Near(z) as the set
of points that belong to the boundaries of obstacles O;, : = 1,2,...,n and are closest
(among all points on the obstacle boundaries) to z in terms of the metric d. The
Voronoi diagram, Vor(O), of the terrain populated by O is the set {z € Q|Near(z) is
a disconnected set }, (i. e. for each £ € Vor(O) the set Near(z) contains more than
one topologically connected components or equivalently z € Vor(O) is nearest two at
least two distinct points on the obstacle boundary). This definition implies that for
each € Vor(O) there are at least two distinct points on the obstacle boundary that
are closest to z in the metric d. See Fig. 9 for an example. In this case, Vor(O) is a
union of O(N) straight lines and algebraic arcs of degree at most four [17].
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(b) Dual Graph of Terrain

Figure 10: Navigation course based on trapezoidal decomposition.

(b) Dual graphs based on trapezoidal decomposition: First, we decompose the free-
space into trapezoids by sweeping a line (for example, moving a horizontal line from
top to bottom) such that whenever the line passes through a vertex, extend a sweep-
line segment from this vertex into free-space until it touches an obstacle boundary or
extends to infinity as shown in Fig. 10. Now free-space is partitioned into trapezoids.
There are many ways to define dual graphs based on the decomposition, and we consider
a version that is suited for the present problem. For each sweep-line segment we
have one of the two following cases: (a) if the segment is finite, the dual graph node
corresponds to the mid point of the segment , or (b) if the segment is not finite, the
dual graph node corresponds to a point on the segment at a distance 6 from the vertex.
Two nodes belonging to the boundary of the same trapezoid are connected by an edge
of the dual graph. See Fig. 10 for an example of a dual graph based on the trapezoidal
decomposition.

Each of the above structures can be combined with a graph search algorithm to solve TMAP
by a single robot [12]. Notice that both the structures can be decomposed into 2-connected
components and trees and thus results along the lines of Theorem 5.1 can be derived for the
case of two robots. In particular, the structure of the hierarchy tree for these two will be
similar to that of RVG.
~ In terms of the sensing time for a single robot, the Voronoi diagram method could require
a larger number of scan operations, whereas trapezoidal decomposition method yields about
the same number as required by the RVG method. The RVG method requires that the robots
be capable of navigating along the obstacle boundaries, whereas Voronoi diagram method
keeps them as much away from the obstacles as possible. The trapezoidal decomposition
method could require that the robot navigate close to obstacles, but less frequently than the
RVG method.

If the terrain is composed of generalized polygons whose edges are circular arcs and
straight lines, the present method can be applied. In such terrains, a complete solution to
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TMAP cannot be guaranteed, but if narrow “generalized” corridors of width smaller than e
are treated as obstacles, the present method can be applied using the generalized visibility
graphs, Voronoi diagrams, and trapezoidal decompositions [12].

7 Discussion

This paper is an initial attempt to identify the terrain model acquisition problems where it
would be beneficial to employ a team of robots to perform a task rather than a single robot.
Only the sensor time is considered here as a measure of performance, and the main discussion
is based on the visibility graph methods. In this context, we have identified the parts of the
terrain that can be advantageously explored in parallel and the parts in which having more
than one robot may not be effective (in a worst case). Similar conclusions are also valid
for methods based on Voronoi diagrams and trapezoidal decompositions. The estimates for
the sensing time for two robots derived here are conservative. We believe that alternative
characterizations and better performance estimates are possible. Also the method discussed
is restricted to one particular way of solving the TMAP, namely, using a graph search on
a navigation course [12]. These methods in general do not guarantee that the sensing time
or the distance traversed by a single robot is close to the optimal achievable if the terrain
model is known. The recently studied class of competitive algorithms for TMAP by Deng
et al. [3] guarantee that the distance traversed by a single robot is bounded within a factor
of the minimum possible value achieved if the terrain model is available. Improving the
performance of the algorithms of this type by employing a team of robots will be of future
interest.

The effectiveness of employing a team of robots for terrain model acquisition might be
judged by other measures of performance such as distance traversed, total time of sensor
operations, travel time, etc. For example in the RVG method for a single robot, the distance
traversed in solving TMAP is a function of the search algorithm employed, whereas the
sensor operations is given by N, (fixed for a terrain). The analysis of the parameter such as
the distance appears to be significantly difficult even for the case of RVG. Another direction
of future research could be the deployment of a team of more than two robots.
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